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CONVERGENCE OF HIGH ORDER METHODS
FOR MISCIBLE DISPLACEMENT

YEKATERINA EPSHTEYN AND BEATRICE RIVIÈRE

Abstract. We derive error estimates for a fully discrete scheme using primal

discontinuous Galerkin discretization in space and backward Euler discretiza-

tion in time. The estimates in the energy norm are optimal with respect to the

mesh size and suboptimal with respect to the polynomial degree. The proposed

scheme is of high order as polynomial approximations of pressure and concen-

tration can take any degree. In addition, the method can handle different types

of boundary conditions and is well-suited for unstructured meshes.
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1. Introduction

A high order numerical method for solving miscible displacement is introduced
and analyzed in this paper. Miscible displacement occurs in important applica-
tions such as remediation of contaminated groundwater and production of oil from
petroleum reservoirs. The physical model that describes the miscible displacement
phenomena arises from the natural law of conservation of mass. This law is applied
to each component of the fluid mixture. The mathematical model consists of a
coupled system of partial differential equations: a pressure equation and a concen-
tration equation for each component. Since the components of the fluid mixture
may react with each other, the numerical method must accurately solve the laws
of conservation. In particular, it is important to solve the continuity equation that
describes the flow phenomena with high accuracy.

In this work, we propose a fully discrete scheme that is locally mass conser-
vative. The approximations of pressure and concentration at each time step are
discontinuous piecewise polynomials of different degrees. We show convergence
of the numerical method with respect to both the mesh size and the polynomial
degree. The flexibility inherent to discontinuous approximation spaces allows the
use of complicated geometries and unstructured meshes. The primal discontinuous
Galerkin method, analyzed in this paper, encompasses the nonsymmetric interior
penalty Galerkin (NIPG) method, the symmetric interior penalty Galerkin (SIPG)
and the incomplete interior penalty Galerkin (IIPG) method introduced for elliptic
problems in [18, 26, 4]. Discontinuous Galerkin methods have been recently popular
in modeling complex flow and transport problems in porous media (see for instance
[22, 6, 5, 10, 14]).
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Several methods for solving the miscible displacement are proposed and ana-
lyzed in the literature. When classical continuous finite element approximations
are used for both the pressure and the concentration equations, optimal conver-
gence rates are proved in the dispersion-free case and nearly optimal convergence
rates in the dispersion case, under somewhat idealized circumstances [8]. However,
this procedure does not handle the transport-dominated problem arising from the
concentration equation. Strong improvement in the accuracy of the approximation
of the concentration is obtained by considering interior penalty Galerkin methods
that can be based on continuous piecewise polynomial spaces [27] or on discontin-
uous piecewise polynomial spaces [11]. In this case, the pressure equation is solved
with a continuous finite element method and penalty terms involving the jumps in
the normal derivative are introduced in the concentration equation.

In the miscible displacement problem, only the velocity enters the equation for
the concentration and therefore a natural procedure for solving the pressure equa-
tion is the locally mass conservative mixed finite element method. The concentra-
tion equation can be handled either by a continuous finite element method [12, 13]
or by a modified method of characteristics, which combines the time derivative and
the advection terms as a directional derivative [16, 24, 3]. In [23], a combination
of a continuous finite element method and the method of characteristics for the
concentration equation and a standard continuous finite element method for the
pressure equation is used. As in the above cases, time stepping is done along the
characteristics.

More recently, primal discontinuous Galerkin methods have been applied and
analyzed for solving the miscible displacement problem using a semi-discrete ap-
proach. The system of equations is discretized in space only. A combined mixed
method for the pressure equation with NIPG for concentration equation is studied
in [20]. Both pressure and concentration are approximated by the NIPG method
in [21, 17]. However, the convergence result in [21] is valid only if the boundary
condition for pressure is a Neumann type. The numerical scheme presented in this
paper, is fully discrete and valid for both Dirichlet and Neumann boundary condi-
tions for the pressure and Dirichlet, Neuman and mixed boundary conditions for
the concentration.

The outline of the paper is as follows. Section 2 contains the model problem and
assumptions on the data. The coupled discontinuous Galerkin scheme is formulated
in Section 3. Existence and convergence of the numerical solution are obtained in
Section 4. Extensions of the scheme to several types of boundary conditions are
presented in Section 5.

2. Model Problem and Notation

Consider the miscible displacement of one incompressible fluid by another in a
porous medium Ω ⊂ IR2 and over the time interval (0, T ). Let p denote the pressure
in the fluid mixture and let c denote the concentration (fraction volume) of the
displaced fluid in the fluid mixture. The partial differential equations describing
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this type of flow are:

−∇ · ( K

µ(c)
∇p) = f1, in Ω× (0, T ),(1)

u = − K

µ(c)
∇p, in Ω× (0, T ),(2)

ϕ
∂c

∂t
+∇ · (uc−D(u)∇c) = f2, in Ω× (0, T ),(3)

subject to the following boundary conditions:

(4) p = pdir on ΓD × [0, T ],

(5) u · n = udir on ΓN × [0, T ],

(6) c = cdir on ∂Ω× [0, T ],

where ΓD ∪ ΓN is a partition of the boundary ∂Ω. Equation (1), referred to as the
pressure equation, is coupled with equation (3) through the viscosity of the fluid
mixture. Equation (3), referred to as the concentration equation, is coupled with
equation (1) through the fluid velocity (2) and the dispersion-diffusion tensor D(u):

D(u) = (αt‖u‖2 + dm)I + (αl − αt)
uuT

‖u‖2 .

The coefficient dm is the molecular diffusivity, αl and αt are the longitudinal and
transverse dispersivities, ‖u‖2 is the Euclidean norm of the velocity and I is the
identity matrix. Let us also note, that the permeability K in the velocity equation
(2) is obtained from a macroscopic averaging of the microscopic features of the
medium. Hence, it can be discontinuous in space variable and can vary over several
orders of magnitude. The coefficient φ in (3) is the porosity. Assumptions on the
coefficients are made below.
Assumption H1. The function µ−1 is positive, bounded below and above by µ and
µ respectively and it is also Lipschitz continuous.

∀x1, x2 ∈ IR,
∣∣ 1
µ(x1)

− 1
µ(x2)

∣∣ ≤ µL|x1 − x2|.(7)

Assumption H2. The matrix K is symmetric positive definite and uniformly bounded
above and below. There are positive constants k, k such that:

(8) ∀x ∈ IR2, kxT x ≤ xT Kx ≤ kxT x.

Assumption H3. The diffusion coefficient is strictly positive and the dispersivities
are bounded.

∀x ∈ IR2, 0 ≤ αl(x) ≤ αl, 0 ≤ αt(x) ≤ αt, and 0 < d ≤ dm.

Under assumption H3 it was shown that D(u) is uniformly positive definite in Ω
and Lipschitz continuous [21]:

∀u ∈ IR2, ∀x ∈ IR2, dxT x ≤ xT D(u)x,(9)

∀u, v ∈ IR2, ‖D(u)−D(v)‖2 ≤ k2 ‖u− v‖2 ,(10)

Assumption H4. The matrix D(u) is uniformly bounded above.

(11) ∀u ∈ IR2, ∀x ∈ IR2, xT D(u)x ≤ dxT x.

We propose a discontinuous finite element discretization of (1)-(6). For this, we
introduce a non-degenerate quasi-uniform subdivision of Ω, made of either triangles
or quadrilaterals. The quasi-uniformity assumption is only needed for the p-version,
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i.e. for deriving error estimates in terms of the polynomial degree. As usual, the
maximum diameter over all mesh elements is denoted by h. The set of interior
edges is denoted by Γh. To each edge e in Γh, we associate a unit normal vector ne.
For a boundary edge, ne is chosen so that it coincides with the outward normal.
The space of discontinuous polynomials of degree r ≥ 1 is denoted by Dr(Eh):

Dr(Eh) = {v ∈ L2(Ω) : ∀E ∈ Eh : v|E ∈ Pr(E)}.
For any function v ∈ Dr(Eh), we denote the jump and average over a given edge e
by [v] and {v} respectively. Assuming that ne is outward to E1

e , we can write:

∀e = ∂E1
e ∩ ∂E2

e , [v]|e = v|E1
e
− v|E2

e
, {v}|e = 0.5v|E1

e
+ 0.5v|E2

e
,

∀e = ∂E1
e ∩ ∂Ω, [v]|e = v|E1

e
, {v}|e = v|E1

e
.

Let N be a positive integer and let ∆t = T/N be the time step. Denote ti = i∆t
for 0 ≤ i ≤ N . Define the space

DN
r,h = {v = (vi)0≤i≤N : ∀0 ≤ i ≤ N vi ∈ Dr(Eh)}.

We also denote by M̃ the constant that only depends on the maximum number of
neighbors that one mesh element can have so that the following inequality holds.
Let A be any quantity depending on E1

e or E2
e :

∀i = 1, 2, (
∑

e∈Γh

A(Ei
e))

1/2 ≤
√

M̃

2
(

∑

E∈Eh

A(E))1/2.(12)

(
∑

e∈ΓD

A(E1
e ))1/2 ≤

√
M̃(

∑

E∈Eh

A(E))1/2.(13)

Let Hk(O) be the usual Sobolev space on O ⊂ Rd, d ≥ 1 with norm ‖·‖k,O. We also
define the broken norm: |||v|||k,Ω =

( ∑
E∈Eh

‖v‖2k,E

)1/2. We now recall well-known
trace results and inverse inequality used in the error analysis [1, 25, 19].

Lemma 1. There is a constant Mt independent of h such that if E is a triangle
or quadrilateral, for any e ⊂ ∂E:

∀v ∈ Hs(E), s ≥ 1, ‖v‖0,e ≤ Mth
−1/2(‖v‖0,E + h ‖∇v‖0,E),(14)

∀v ∈ Hs(E), s ≥ 2, ‖∇v · n‖0,e ≤ Mth
−1/2(‖∇v‖0,E + h

∥∥∇2v
∥∥

0,E
).(15)

Lemma 2. Let E be a mesh element. Let g : N → N be a function defined by
g(k) = (k + 1)(k + 2) if E is a triangle, and by g(k) = k2 if E is a quadrilateral.
There is a constant Mt independent of h and k such that:

(16) ∀v ∈ Pk(E), ∀e ⊂ ∂E, ‖v‖0,e ≤ Mt

√
g(k)
h

‖v‖0,E .

Lemma 3 (Inverse Inequalities). Let E be a mesh element and v ∈ Pr(E). Then
there exists a constant C independent of h and r such that

‖v‖L∞(E) ≤ Ch−1r2‖v‖0,E ,(17)

‖v‖1,E ≤ Ch−1r2‖v‖0,E .(18)
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3. Scheme

At each discrete time ti, we will approximate the pressure p(ti, ·) and concen-
tration c(ti, ·) by discontinuous piecewise polynomials P i and Ci of degree rp and
rc respectively. For the p-version, we assume that the degrees are related in the
following fashion. There exist positive constants δ0, δ1 such that

(19) δ0 ≤ rc

rp
≤ δ1.

Before formulating the scheme, we introduce additional notation. Let ε be a param-
eter that takes the value −1, 0 or 1. By changing the value of ε, we will obtain the
NIPG, SIPG or IIPG method. Let σp > 0 and σc > 0 be the penalty parameters.
Our numerical method is the following: find P = (P i)0≤i≤N ∈ DN

rp,h and C =
(Ci)0≤i≤N ∈ DN

rc,h such that
Initial Concentration

(20) ∀v ∈ Drc(Eh),
∫

Ω

C0v =
∫

Ω

c0v.

Pressure Equation: ∀0 ≤ i ≤ N − 1,

∀z ∈ Drp(Eh),
∑

E∈Eh

∫

E

1
µ(Ci+1)

K∇P i+1 · ∇z + σp

∑

e∈Γh∪ΓD

g(rp)
|e|

∫

e

[P i+1][z]

−
∑

e∈Γh

∫

e

{ 1
µ(Ci+1)

K∇P i+1 · ne}[z]−
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇P i+1 · nez

+ε
∑

e∈Γh

∫

e

{ 1
µ(Ci+1)

K∇z · ne}[P i+1] + ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z · neP
i+1

(21) =
∫

Ω

f1z+
∑

e∈ΓN

∫

e

udirz+σp

∑

e∈ΓD

g(rp)
|e|

∫

e

pdirz+ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z·nepdir.

Concentration Equation: ∀0 ≤ i ≤ N − 1,

∀v ∈ Drc(Eh),
∫

Ω

ϕ

∆t
(Ci+1 − Ci)v +

∑

E∈Eh

∫

E

Ci+1

µ(Ci+1)
K∇P i+1 · ∇v

+
∑

E∈Eh

∫

E

D(U i+1)∇Ci+1 · ∇v −
∑

e∈Γh

∫

e

{ Ci+1

µ(Ci+1)
K∇P i+1 · ne}[v]

−
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇P i+1 · nev −

∑

e∈Γh∪ΓD∪ΓN

∫

e

{D(U i+1)∇Ci+1 · ne}[v]

+ε
∑

e∈Γh

∫

e

{ Ci+1

µ(Ci+1)
K∇v · ne}[P i+1] + ε

∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v · neP

i+1

+ε
∑

e∈Γh

∫

e

{D(U i+1)∇v · ne}[Ci+1] + σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∫

e

[Ci+1][v]

(22)

= ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v·nepdir+σc

∑

e∈ΓD∪ΓN

g(rc)
|e|

∫

e

cdirv+
∫

Ω

f2v+
∑

e∈ΓN

∫

e

cdirudirv,

with the definition of the discrete velocity U i+1 given by

(23) U i+1 = − K

µ(Ci+1)
∇P i+1.



52 Y. EPSHTEYN AND B. RIVIÈRE

We obtain a nonlinear system of equations that can be written in short as

∀z ∈ Drp
(Eh), ∀v ∈ Drc

(Eh), 0 ≤ i ≤ N, L(P i, Ci; z, v) = 0.

It is easy to check, using standard techniques for Interior Penalty discontinuous
Galerkin methods, that the scheme (20)-(22) is consistent, i.e. if the solution of
(1)-(6) is smooth enough and if we denote ci = c(ti, ·) and pi = p(ti, ·), then

(24) ∀0 ≤ i ≤ N, ∀z ∈ Drp(Eh), ∀v ∈ Drc(Eh), L(pi, ci; z, v) = 0,

4. Existence and Convergence of the Discrete Solution

In this section, we prove the existence and show convergence of the numerical
solution (P ,C) by the use of the Schauder’s fixed point theorem (see for example
theorem 6.44 in [9]). Let p̃ and c̃ be approximations of p and c. We assume that

(25) p̃ ∈ L∞(0, T, W 1,∞(Ω)), c̃ ∈ L∞(0, T, L∞(Ω)), c̃tt ∈ L∞(0, T, L2(Ω)).

We will denote p̃i(·) = p̃(ti, ·) and c̃i(·) = c̃(ti, ·). We assume that there are con-
stants κp, κc ≥ 2 such that

∀0 ≤ i ≤ N, ∀t > 0, pi(t) ∈ Hκp(Ω), ci(t) ∈ Hκc(Ω).

We assume that the following standard hp-type approximation results hold [2]

∀0 ≤ i ≤ N, ‖p̃i − pi‖Hs(Ω) ≤ M
hmin(rp+1,κp)−s

r
κp−s
p

‖pi‖Hκp (Ω),(26)

∀0 ≤ i ≤ N, ‖c̃i − ci‖Hs(Ω) ≤ M
hmin(rc+1,κc)−s

rκc−s
c

‖ci‖Hκc (Ω),(27)

Here and throughout the paper, M is a generic constant independent of h, rc, rp

and ∆t, that takes different values at different places. In addition, in the case of
the p-version, we assume that κp, κc ≥ 3.
Next we prove existence and convergence of the solution using an idea similar to
idea in [15]. Let us define the following subset of the broken Sobolev space:

W =
{

(ψ,φ) ∈ DN
rp,h ×DN

rc,h : φ0 = c̃0, and there exist positive constants

K1, K2, . . . , K6, ∆t0 independent of h such that for ∆t ≤ ∆t0 and 0 ≤ i ≤ N − 1 :

(
1

∆t
−K1)

∥∥φi+1 − c̃i+1
∥∥2

0,Ω
− 1

∆t

∥∥φi − c̃i
∥∥2

0,Ω

+|||φi+1 − c̃i+1|||21 ≤ K2
h2rp

r
2κp−4
p

+ K3
h2rc

r2κc−4
c

+ K4∆t2,

|||ψi+1 − p̃i+1|||21 ≤ K5
h2rp

r
2κp−4
p

+ K6
h2rc

r2κc−4
c

}
.

The set W is closed, convex subset of the broken Sobolev space and it is not empty
since it contains the element (p̃i, c̃i)0≤i≤N .

Lemma 4. For any (ψ, φ) in W, if ∆t is small enough (namely ∆t = O(h/rc) <
1/K1), there exist positive constant M1,M2, M3 for any 1 ≤ i ≤ N

∥∥φi − c̃i
∥∥

0,Ω
≤ M1

( hrp

r
κp−2
p

+
hrc

rκc−2
c

+ ∆t
)
,(28)

||φi||∞,Ω ≤ M2, |||ψi|||1 ≤ M3.(29)

The constants M1,M2 are independent of h, rp, rc and ∆t but depend on K1, . . . , K4.
The constant M3 is independent of h, rp, rc and ∆t but depends on K5,K6.
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Proof. We will show that (29) is a consequence of the definition of W. We first
prove (28), which will yield (29). From the definition of the space W, we have for
0 ≤ i ≤ N − 1:

∥∥φi+1 − c̃i+1
∥∥2

0,Ω
−

∥∥φi − c̃i
∥∥2

0,Ω
+ ∆t|||φi+1 − c̃i+1|||21

≤ ∆tK2
h2rp

r
2κp−4
p

+ ∆tK3
h2rc

r2κc−4
c

+ K4∆t3 + ∆tK1

∥∥φi+1 − c̃i+1
∥∥2

0,Ω
.

Fix n ≥ 1, sum from i = 0 to i = n− 1 and note that
∑n−1

i=0 ∆t ≤ T and φ0 = c̃0:

‖φn − c̃n‖20,Ω + ∆t

n−1∑

i=0

|||φi+1 − c̃i+1|||21

≤ K2T
h2rp

r
2κp−4
p

+ K3T
h2rc

r2κc−4
c

+ K4T∆t2 + ∆tK1

n−1∑

i=0

∥∥φi+1 − c̃i+1
∥∥2

0,Ω
.

From Gronwall’s lemma, if ∆t < 1/K1, there is a constant M independent of h and
∆t such that

‖φn − c̃n‖20,Ω + ∆t

N−1∑

i=0

|||φi+1 − c̃i+1|||21 ≤ M(
h2rp

r
2κp−4
p

+
h2rc

r2κc−4
c

+ ∆t2).

This yields (28). Besides, from (19) and choosing ∆t = O( h
r2

c
), we conclude that

‖φn − c̃n‖0,Ω ≤ M
h

r2
c

.

Using an inverse inequality (17), we have

‖φn − c̃n‖∞,Ω ≤ Mr2
ch−1 ‖φn − c̃n‖0,Ω ≤ M.

This implies that
‖φn‖∞,Ω ≤ M + ‖c̃n‖∞,Ω ≤ M2,

which with (25) yields gives the result (29). ¤
We now define an operator F that acts on elements in W.

∀(ψ, φ) ∈ W, F(ψ,φ) = (ψL, φL),

where (ψL, φL) satisfies initial conditions:

(30) (ψ0
L, φ0

L) = (ψ0, φ0),

and for 0 ≤ i ≤ N − 1, ψi+1
L ∈ Drp(Eh) and φi+1

L ∈ Drc(Eh) such that

∀z ∈ Drp(Eh),
∑

E∈Eh

∫

E

1
µ(φi+1)

K∇ψi+1
L · ∇z + σp

∑

e∈Γh∪ΓD

g(rp)
|e|

∫

e

[ψi+1
L ][z]

−
∑

e∈Γh

∫

e

{ 1
µ(φi+1)

K∇ψi+1
L · ne}[z]−

∑

e∈ΓD

∫

e

1
µ(cdir)

K∇ψi+1
L · nez

+ε
∑

e∈Γh

∫

e

{ 1
µ(φi+1)

K∇z · ne}[ψi+1
L ] + ε

∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z · neψ
i+1
L

(31) =
∫

Ω

f1z+
∑

e∈ΓN

∫

e

udirz+σp

∑

e∈ΓD

g(rp)
|e|

∫

e

pdirz+ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z·nepdir.

∀v ∈ Drc(Eh),
∫

Ω

ϕ

∆t
(φi+1

L − φi
L)v +

∑

E∈Eh

∫

E

φi+1

µ(φi+1)
K∇ψi+1

L · ∇v
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+
∑

E∈Eh

∫

E

D(ζi+1)∇φi+1
L · ∇v −

∑

e∈Γh

∫

e

{ φi+1

µ(φi+1)
K∇ψi+1

L · ne}[v]

−
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇ψi+1

L · nev −
∑

e∈Γh∪ΓD∪ΓN

∫

e

{D(ζi+1)∇φi+1
L · ne}[v]

+ε
∑

e∈Γh

∫

e

{ φi+1

µ(φi+1)
K∇v · ne}[ψi+1

L ] + ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v · neψ

i+1
L

+ε
∑

e∈Γh

∫

e

{D(ζi+1)∇v · ne}[φi+1
L ] + σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∫

e

[φi+1
L ][v]

(32)

= ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v·nepdir+σc

∑

e∈ΓD∪ΓN

g(rc)
|e|

∫

e

cdirv+
∫

Ω

f2v+
∑

e∈ΓN

∫

e

cdirudirv,

where

(33) ζi+1 = − K

µ(φi+1)
∇ψi+1.

We show that F is well-defined by proving existence and uniqueness of (ψL, φL).

Lemma 5. There exists a unique solution (ψL,φL) ∈ DN
rp,h × DN

rc
that satisfies

(30)-(32).

Proof. Since the problem (30)-(32) is linear and finite-dimensional, it suffices to
show uniqueness of the solution. Let (ψL1, φL1) and (ψL2,φL2) be two solutions
and let (ψ̄, φ̄) denote their differences. Then, the pair (ψ̄, φ̄) satisfies (30)-(32)
with zero data f1 = pdir = udir = cdir = f2 = 0 and φi

L = 0. Clearly, we have
(ψ̄0, φ̄0) = (0, 0). Fix i ∈ {0, . . . , N − 1} and choose the test function z = ψ̄i+1 in
(31).

||| 1
µ(φi+1)1/2

K1/2∇ψ̄i+1|||20,Ω + σp

∑

e∈Γh∪ΓD

g(rp)
|e| ‖[ψ̄

i+1]‖20,e

−(1−ε)
∑

e∈Γh

∫

e

{ 1
µ(φi+1)

K∇ψ̄i+1·ne}[ψ̄i+1]−(1−ε)
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇ψ̄i+1·neψ̄
i+1 = 0.

If ε = 1, we directly have that ψ̄i+1 = 0. Otherwise, using assumption H1 and trace
and inverse inequalities, we can bound the last two terms of the left-hand side of
the equation above by

1
2
||| 1

µ(φi+1)1/2
K1/2∇ψ̄i+1|||20,Ω + M

∑

e∈Γh∪ΓD

1
|e| ‖[ψ̄

i+1]‖20,e,

which implies that ψ̄i+1 = 0 if the penalty value σp is large enough. Next, we
choose the test function v = φ̄i+1 in (32). A similar argument gives that φ̄i+1 = 0
if the penalty σc is large enough. ¤

We now show that the range of F is included in the spaceW. The same technique
can be used to show that F is continuous.

Theorem 1.
∀(ψ, φ) ∈ W, F(ψ, φ) ∈ W.
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Proof. Let (ψ, φ) ∈ W, (ψL, φL) = F(ψ,φ) and denote

∀0 ≤ i ≤ N, τ i = ψi
L − p̃i, θi = pi − p̃i, ξi = φi

L − c̃i, χi = ci − c̃i.

From the consistency equations (24), we have
∑

E∈Eh

∫

E

1
µ(φi+1)

K∇p̃i+1 · ∇z + σp

∑

e∈Γh∪ΓD

g(rp)
|e|

∫

e

[p̃i+1][z]

−
∑

e∈Γh

∫

e

{ 1
µ(φi+1)

K∇p̃i+1 · ne}[z]−
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇p̃i+1 · nez −
∑

e∈ΓN

∫

e

udirz

+ε
∑

e∈Γh

∫

e

{ 1
µ(φi+1)

K∇z · ne}[p̃i+1] + ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z · nep̃
i+1

−
∫

Ω

f1z − σp

∑

e∈ΓD

g(rp)
|e|

∫

e

pdirz − ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z · nepdir

= −
∑

E∈Eh

∫

E

1
µ(ci+1)

K∇θi+1 · ∇z − σp

∑

e∈Γh∪ΓD

g(rp)
|e|

∫

e

[θi+1][z]

+
∑

e∈Γh

∫

e

{ 1
µ(ci+1)

K∇θi+1 · ne}[z] +
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇θi+1 · nez

−ε
∑

e∈Γh

∫

e

{ 1
µ(ci+1)

K∇z · ne}[θi+1]− ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇z · neθ
i+1

+
∑

E∈Eh

∫

E

(
1

µ(φi+1)
− 1

µ(ci+1)
)K∇p̃i+1·∇z−

∑

e∈Γh

∫

e

{( 1
µ(φi+1)

− 1
µ(ci+1)

)K∇p̃i+1·ne}[z]

(34) +ε
∑

e∈Γh

∫

e

{( 1
µ(φi+1)

− 1
µ(ci+1)

)K∇z · ne}[p̃i+1].

Subtracting equation (34) from (31) and choosing z = τ i+1, we obtain:

||| 1
µ(φi+1)1/2

K1/2∇τ i+1|||20,Ω + σp

∑

e∈Γh∪ΓD

g(rp)
|e| ‖[τ

i+1]‖20,e

= (1−ε)
∑

e∈Γh

∫

e

{ 1
µ(φi+1)

K∇τ i+1·ne}[τ i+1]+(1−ε)
∑

e∈ΓD

∫

e

(
1

µ(cdir)
K∇τ i+1·ne)τ i+1

−
∑

E∈Eh

∫

E

1
µ(ci+1)

K∇θi+1 · ∇τ i+1 − σp

∑

e∈Γh∪ΓD

g(rp)
|e|

∫

e

[θi+1][τ i+1]

+
∑

e∈Γh

∫

e

{ 1
µ(ci+1)

K∇θi+1 · ne}[τ i+1] +
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇θi+1 · neτ
i+1

−ε
∑

e∈Γh

∫

e

{ 1
µ(ci+1)

K∇τ i+1 · ne}[θi+1]− ε
∑

e∈ΓD

∫

e

1
µ(cdir)

K∇τ i+1 · neθ
i+1

+
∑

E∈Eh

∫

E

(
1

µ(φi+1)
− 1

µ(ci+1)
)K∇p̃i+1 · ∇τ i+1

−
∑

e∈Γh

∫

e

{( 1
µ(φi+1)

− 1
µ(ci+1)

)K∇p̃i+1 · ne}[τ i+1]

(35) +ε
∑

e∈Γh

∫

e

{( 1
µ(φi+1)

− 1
µ(ci+1)

)K∇z · ne}[p̃i+1] = T1 + · · ·+ T11.
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Next, we bound each term in the right-hand side of (35) using techniques standard
for discontinuous Galerkin methods. In what follows, the quantities εi are positive
real numbers to be defined later. Using Assumptions H1 and H2 and Cauchy-
Schwarz inequality, we have

|T1| ≤ (1− ε)µ
∑

e∈Γh

∥∥∥{K 1
2∇τ i+1}

∥∥∥
0,e

∥∥[τ i+1]
∥∥

0,e

We now fix an interior edge e and denote E1
e and E2

e two elements sharing the edge
e. Using (12) and the trace inequality (16), we have:
∑

e∈Γh

∥∥∥{K 1
2∇τ i+1}

∥∥∥
0,e

∥∥[τ i+1]
∥∥

0,e
≤

∑

e∈Γh

1
2
(
∥∥∥K

1
2∇τ i+1|E1

e

∥∥∥
0,e

+
∥∥∥K

1
2∇τ i+1|E2

e

∥∥∥
0,e

)
∥∥[τ i+1]

∥∥
0,e

≤ 1
2
Mt

√
g(rp)

h

∑

e∈Γh

(
∥∥∥K

1
2∇τ i+1

∥∥∥
0,E1

e

+
∥∥∥K

1
2∇τ i+1

∥∥∥
0,E2

e

)
∥∥[τ i+1]

∥∥
0,e

≤ (
∑

e∈Γh

M2
t g(rp)
4h

∥∥[τ i+1]
∥∥2

0,e
)

1
2

(
(
∑

e∈Γh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E1
e

)
1
2 +(

∑

e∈Γh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E2
e

)
1
2

)

≤ (
∑

e∈Γh

M̃M2
t g(rp)
4h

∥∥[τ i+1]
∥∥2

0,e
)

1
2 (

∑

E∈Eh

∥∥∥K
1
2∇τ i+1

∥∥∥
2

0,E
)

1
2 .

Therefore, we have the following bound on T1:

|T1| ≤
µ

24
|||K 1

2∇τ i+1|||20,Ω + (1− ε)2
3(µ)2kM̃M2

t

2µ

∑

e∈Γh

g(rp)
h

∥∥[τ i+1]
∥∥2

0,e
.

Similarly, using (13) and (16), we have for T2:

|T2| ≤
µ

24
|||K 1

2∇τ i+1|||20,Ω + (1− ε)2
6(µ)2kM̃M2

t

µ

∑

e∈ΓD

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e
.

The term T3 is bounded using assumption H1 and (8), Cauchy-Schwarz and Young’s
inequalities:

|T3| ≤
µ

12
|||K 1

2∇τ i+1|||20,Ω + M |||∇θi+1|||20,Ω.

Using the trace inequality (14), we have for the term T4:

|T4| ≤ σp

8

∑

e∈Γh∪ΓD

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e
+ Mg(rp)

∑

E∈Eh

(h−2
∥∥θi+1

∥∥2

0,E
+

∥∥∇θi+1
∥∥2

0,E
).

The terms T5 and T6 are bounded in a similar way as the terms T1 and T2, except
that the trace inequality (15) is used instead of (16).

|T5|+|T6| ≤ σp

8

∑

e∈Γh∪ΓD

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e
+

M

g(rp)

∑

E∈Eh

(
∥∥∇θi+1

∥∥2

0,E
+h2

∥∥∇2θi+1
∥∥2

0,E
).

The terms T7 and T8 are handled in the same way as terms T1 and T2, with the
exception that the trace inequality (14) is used to handle the approximation error
term.

|T7|+ |T8| ≤
µ

6
|||K1/2∇τ i+1|||20,Ω + Mg(rp)

∑

E∈Eh

(h−2
∥∥θi+1

∥∥2

0,E
+

∥∥∇θi+1
∥∥2

0,E
).

Using (7), (8), Cauchy-Schwarz inequality and assumption on p̃i+1 (25), we have:

|T9| ≤
µ

12
|||K 1

2∇τ i+1|||20,Ω+M‖∇p̃i+1‖2∞‖φi+1−c̃i+1‖20,Ω+M‖∇p̃i+1‖2∞
∥∥χi+1

∥∥2

0,Ω
.
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The term T10 is a summation term over interior edges. We assume that the edge
e is shared by the elements E1

e and E2
e . Thus, we have using (7), (8), (25) and

Cauchy-Schwarz inequality:

|T10| ≤
∥∥∇p̃i+1

∥∥
∞ k

µL

2

∑

e∈Γh

(
(
∥∥(φi+1 − c̃i+1)|E1

e

∥∥
0,e

+
∥∥(φi+1 − c̃i+1)|E2

e

∥∥
0,e

)
∥∥[τ i+1]

∥∥
0,e

+(
∥∥χi+1|E1

e

∥∥
0,e

+
∥∥χi+1|E2

e

∥∥
0,e

)
∥∥[τ i+1]

∥∥
0,e

)
.

Using the trace inequality (14), (16), we have:

|T10| ≤ σp

8

∑

e∈Γh

g(rc)
|e|

∥∥[τ i+1]
∥∥2

0,e
+ M‖∇p̃i+1‖2∞‖φi+1 − c̃i+1‖20,Ω

+
M

∥∥∇p̃i+1
∥∥2

∞
g(rc)

∑

E∈Eh

(
∥∥χi+1

∥∥2

0,E
+ h2

∥∥∇χi+1
∥∥2

0,E
).

The term T11 vanishes if the approximation p̃ is continuous. Otherwise, we can
bound exactly like the term T5.

|T11| ≤
µ

12
|||K1/2∇τ i+1|||20,Ω + Mg(rp)

∑

E∈Eh

(h−2
∥∥θi+1

∥∥2

0,E
+

∥∥∇θi+1
∥∥2

0,E
).

Combining all the bounds above, using the fact that 1 ≤ r2 ≤ g(r) ≤ 6r2, we have
the pressure:

µ

2
|||K 1

2∇τ i+1|||20,Ω + (
σp

2
− (1− ε)2

3(µ)2kM̃M2
t

2µ
)

∑

e∈Γh

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e

+(
7
8
σp − (1− ε)2

6(µ)2kM̃M2
t

µ
)

∑

e∈ΓD

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e
≤ M

g(rp)
h2

∥∥θi+1
∥∥2

0,Ω

+M(1+g(rp))|||∇θi+1|||20,Ω+M
∥∥χi+1

∥∥2

0,Ω
+

Mh2

g(rc)
|||∇χi+1|||20,Ω+M‖φi+1−c̃i+1‖20,Ω.

Define the limiting value of the penalty parameter:

σ∗p = (1− ε)2
48(µ)2kM̃M2

t

7µ
.

Assuming that σp > σ∗p , using the approximation results and the fact that φ belongs
to W, we obtain:

|||∇τ i+1|||20,Ω +
∑

e∈Γh∪ΓD

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e

≤ M max(
1
µk

,
1

σp − σ∗p
)
(h2 min(rp+1,κp)−2

r
2κp−4
p

‖pi+1‖2Hκp (Ω)

(36) +
h2 min(rc+1,κc)−2

r2κc−2
c

‖ci+1‖2Hκc (Ω) + M1(
h2rp

r
2κp−4
p

+
h2rc

r2κc−4
c

+ ∆t2)
)
.

Next, we consider the concentration equation in the system (24). The same way as
for the pressure equation, the concentration equation can be rewritten as:
∫

Ω

φ

∆t
(c̃i+1 − c̃i)v +

∑

E∈Eh

∫

E

φi+1

µ(φi+1)
K∇p̃i+1 · ∇v +

∑

E∈Eh

∫

E

D(ζi+1)∇c̃i+1 · ∇v
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−
∑

e∈Γh

∫

e

{ φi+1

µ(φi+1)
K∇p̃i+1 ·ne}[v]−

∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇p̃i+1 ·nev−

∑

e∈ΓN

∫

e

cdirudirv

−
∑

e∈Γh∪ΓD∪ΓN

∫

e

{D(ζi+1)∇c̃i+1 · ne}[v] + ε
∑

e∈Γh

∫

e

{ φi+1

µ(φi+1)
K∇v · ne}[p̃i+1]

+ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v · nep̃

i+1 + ε
∑

e∈Γh

∫

e

{D(ζi+1)∇v · ne}[c̃i+1]

+σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∫

e

[c̃i+1][v]− ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v · nepdir

−σc

∑

e∈ΓD∪ΓN

g(rc)
|e|

∫

e

cdirv −
∫

Ω

f2v =
∫

Ω

φ∆tρi+1v −
∫

Ω

φχi+1
t v

−
∑

E∈Eh

∫

E

ci+1

µ(ci+1)
K∇θi+1 · ∇v −

∑

E∈Eh

∫

E

D(ui+1)∇χi+1 · ∇v

+
∑

e∈Γh

∫

e

{ ci+1

µ(ci+1)
K∇θi+1 · ne}[v] +

∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇θi+1 · nev

+
∑

e∈Γh∪ΓD∪ΓN

∫

e

{D(ui+1)∇χi+1 · ne}[v]− ε
∑

e∈Γh

∫

e

{ ci+1

µ(ci+1)
K∇v · ne}[θi+1]

−ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇v · neθ

i+1 − ε
∑

e∈Γh

∫

e

{D(ui+1)∇v · ne}[χi+1]

−σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∫

e

[χi+1][v] +
∑

E∈Eh

∫

E

(D(ζi+1)−D(ui+1))∇c̃i+1 · ∇v

+
∑

E∈Eh

∫

E

( φi+1

µ(φi+1)
− ci+1

µ(ci+1)

)
K∇p̃i+1 · ∇v

−
∑

e∈Γh

∫

e

{
( φi+1

µ(φi+1)
− ci+1

µ(ci+1)

)
K∇p̃i+1 · ne}[v]

−
∑

e∈Γh∪ΓD∪ΓN

∫

e

{
(
D(ζi+1)−D(ui+1)

)
∇c̃i+1 · ne}[v]

+ε
∑

e∈Γh

∫

e

{
( φi+1

µ(φi+1)
− ci+1

µ(ci+1)

)
K∇v · ne}[p̃i+1]

(37) +ε
∑

e∈Γh

∫

e

{
(
D(ζi+1)−D(ui+1)

)
∇v · ne}[c̃i+1].

Subtracting equation (37) from (32), using (33) and choosing z = ξi+1, we obtain:
∫

Ω

φ

∆t
(ξi+1 − ξi)ξi+1 + |||D(ζi+1)1/2∇ξi+1|||20,Ω + σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e| ‖[ξ

i+1]‖20,e

=
∑

E∈Eh

∫

E

φi+1

µ(φi+1)
K∇τ i+1 · ∇ξi+1 −

∑

e∈Γh

∫

e

{ φi+1

µ(φi+1)
K∇τ i+1 · ne}[ξi+1]

−
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇τ i+1 · neξ

i+1 + (1− ε)
∑

e∈Γh

∫

e

{D(ζi+1)∇ξi+1 · ne}[ξi+1]
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+
∑

e∈ΓD∪ΓN

∫

e

D(ζi+1)∇ξi+1 · neξ
i+1 − ε

∑

e∈Γh

∫

e

{ φi+1

µ(φi+1)
K∇ξi+1 · ne}[τ i+1]

−ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇ξi+1 · neτ

i+1 −
∫

Ω

φ∆tρi+1ξi+1 +
∫

Ω

φχi+1
t ξi+1

+
∑

E∈Eh

∫

E

ci+1

µ(ci+1)
K∇θi+1 · ∇ξi+1 +

∑

E∈Eh

∫

E

D(ui+1)∇χi+1 · ∇ξi+1

−
∑

e∈Γh

∫

e

{ ci+1

µ(ci+1)
K∇θi+1 · ne}[ξi+1]−

∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇θi+1 · neξ

i+1

−
∑

e∈Γh∪ΓD∪ΓN

∫

e

{D(ui+1)∇χi+1 · ne}[ξi+1] + ε
∑

e∈Γh

∫

e

{ ci+1

µ(ci+1)
K∇ξi+1 · ne}[θi+1]

+ε
∑

e∈ΓD

∫

e

cdir

µ(cdir)
K∇ξi+1 · neθ

i+1 + ε
∑

e∈Γh

∫

e

{D(ui+1)∇ξi+1 · ne}[χi+1]

+σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∫

e

[χi+1][ξi+1]−
∑

E∈Eh

∫

E

(D(ζi+1)−D(ui+1))∇c̃i+1 · ∇ξi+1

−
∑

E∈E〈

∫

E

( φi+1

µ(φi+1)
− ci+1

µ(ci+1)

)
K∇p̃i+1 · ∇ξi+1

+
∑

e∈Γh

∫

e

{
( φi+1

µ(φi+1)
− ci+1

µ(ci+1)

)
K∇p̃i+1 · ne}[ξi+1]

+
∑

e∈Γh∪ΓD∪ΓN

∫

e

{
(
D(ζi+1)−D(ui+1)

)
∇c̃i+1 · ne}[ξi+1]

−ε
∑

e∈Γh

∫

e

{
( φi+1

µ(φi+1)
− ci+1

µ(ci+1)

)
K∇ξi+1 · ne}[p̃i+1]

(38) −ε
∑

e∈Γh

∫

e

{
(
D(ζi+1)−D(ui+1)

)
∇ξi+1 · ne}[c̃i+1] = S1 + . . . S24.

The term S8 contains the numerical error in the time discretization:

ρi+1 =
1

∆t
(
c̃i+1 − c̃i

∆t
− ∂c̃i+1

∂t
).

We now bound each term in the right-hand side of (38). The terms S1, . . . , S18 are
bounded like the terms Ti’s. We skip the details (see [7]). Consider the term S19

using the assumptions H1, H3 and that (ψ,φ) ∈ W we have:

S19 ≤ d

28
|||∇ξi+1|||20 + M‖∇c̃i+1‖2∞(|||∇(ψi+1 − p̃i+1)|||20 + |||∇θi+1|||20)
+M‖∇c̃i+1‖2∞‖∇pi+1‖2∞(‖φi+1 − c̃i+1‖20 + ‖χi+1‖20).

Before bounding the term S20 we remark that

| φi+1

µ(φi+1)
− ci+1

µ(ci+1)
| ≤ µ̄2(

1
µ̄

+ µL‖ci+1‖∞)|φi+1 − ci+1|.

Therefore we have

S20 ≤ d

28
|||∇ξi+1|||20 + M‖∇p̃i+1‖2∞(1 + ‖ci+1‖∞)2(‖φi+1 − c̃i+1‖20 + ‖χi+1‖20).
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The term S21 is bounded similarly to the term T10.Consider the term S22, using
the assumptions H1 and H3 we have:

S22 ≤ σc

18

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e| ‖[ξ

i+1]‖20,e +
Mg(rp)‖∇c̃i+1‖2∞

g(rc)
|||∇(ψi+1 − p̃i+1)|||21

+
M‖∇c̃i+1‖2∞

g(rc)

∑

E∈Eh

(‖∇θi+1‖2E + h2‖∇2θi+1‖2E) + M‖∇c̃i+1‖2∞‖∇pi+1‖2∞‖φi+1 − c̃i+1‖20

+
M‖∇c̃i+1‖2∞‖∇pi+1‖2∞

g(rc)

∑

E∈Eh

(‖χi+1‖2E + h2‖∇χi+1‖2E).

The terms S23 and S24 are bounded like the term T11. Combining the bounds
above, using (36) and the fact that 1 ≤ r1 ≤ g(r) ≤ 6r2, we obtain the following
estimate:

1
2∆t

(
∥∥∥φ1/2ξi+1

∥∥∥
2

0,Ω
−

∥∥∥φ1/2ξi
∥∥∥

2

0,Ω
) +

d

2
|||∇ξi+1|||20,Ω

+
(σc

3
− (1− ε)2

7(d)2M̃M2
t

4d

) ∑

e∈Γh

g(rc)
|e|

∥∥[ξi+1]
∥∥2

0,e

+
(σc

3
− 7(d)2M̃M2

t

d

) ∑

e∈ΓD∪ΓN

g(rc)
h

∥∥[ξi+1]
∥∥2

0,e

≤ M |||∇τ i+1|||20 + M
∑

e∈Γh∪ΓD

g(rp)
|e|

∥∥[τ i+1]
∥∥2

0,e
+

1
2

∥∥ξi+1
∥∥2

0,Ω
+ M∆t2

∥∥ρi+1
∥∥2

0,Ω

+M
∥∥χi+1

t

∥∥2

0,Ω
+ M(

g(rc)
h2

+ 1)‖χi+1‖20,Ω + M
g(rc)
h2

‖θi+1‖20,Ω

+M(1 + g(rc))|||∇χi+1|||20,Ω + M(1 + g(rc))|||∇θi+1|||20,Ω + M‖φi+1 − c̃i+1‖20,Ω

+M
h2

g(rc)
|||∇2χi+1|||20,Ω + M

h2

g(rc)
|||∇2θi+1|||20,Ω + M |||∇(ψ̃i+1 − p̃i+1)|||20,Ω.

The error ‖ρi+1‖0,Ω is bounded using a Taylor expansion with integral remainder:

c̃i = c̃i+1 −∆t
∂c̃i+1

∂t
+

1
2

∫ ti+1

ti

(t− ti)
∂2c̃i+1

∂t2
dt,

which yields
‖ρi+1‖0,Ω ≤ M‖c̃tt‖L∞(ti,ti+1,L2(Ω)).

Define

σ∗c = max
(
(1− ε)2

21(d)2M̃M2
t

4d
,
21(d)2M̃M2

t

d

)
.

Under the condition σc > σ∗c and using the approximation result, we obtain the
following estimate:

∥∥ϕ1/2ξi+1
∥∥2

0,Ω

∆t
−

∥∥ϕ1/2ξi
∥∥2

0,Ω

∆t
+ |||∇ξi+1|||2Ω +

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∥∥[ξi+1]
∥∥

0,e

(39) ≤ max(1,
1
d
,

3
2(σc − σ∗)

)
( ∥∥ξi+1

∥∥2

0,Ω
+ K2

h2rp

r
2κp−4
p

+ K3
h2rc

r2κc−4
c

+ K4∆t
)
.

Equations (36) and (39) imply that (ψ, φ) belongs to W. ¤
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From Lemma 4 and Theorem 1, we have that the set F(W) is bounded. Using
similar techniques as in Lemma 5 and Theorem 1 it can be shown that F is contin-
uous. Since we are in finite dimension, this means that the operator F is compact.
Therefore, by Schauder’s fixed point theorem there is a solution (ψ, φ) ∈ W such
that

(ψ, φ) = F(ψ, φ).

This fixed point solution is the DG solution to (20)-(22). Using the definition of
the space W, the approximation results (26), (27) and Lemma 4, we obtain the
following a priori error estimates.

Theorem 2. Let (P , C) be a solution to (20)-(22). Assume that the solution
(p, c) to (1)-(6) belongs to L∞(0, T ; Hκp(Ω))×L∞(0, T ; Hκc(Ω)). Assume that the
penalty parameters satisfy:

σp ≥ σ∗p , σ∗p = (1− ε)2
48(µ)2kM̃M2

t

7µ

σc ≥ σ∗c , σ∗c = max
(
(1− ε)2

21(d)2M̃M2
t

4d
,
21(d)2M̃M2

t

d

)
.

Then, there exists a constant M independent of h, rp, rc,∆t such that for all i ≥ 1

∥∥Ci − ci
∥∥

0,Ω
+ (∆t

i∑

j=1

|||Cj − cj |||21)1/2 + |||P i − pi|||1 ≤ M1

( hrp

r
κp−2
p

+
hrc

rκc−2
c

+ ∆t
)
.

More technical details of the convergence analysis presented above, can be found
in [7].

5. Extensions and Concluding Remarks

We studied the application of primal discontinuous Galerkin methods, namely
NIPG, IIPG, SIPG, and backward Euler discretization to solve the miscible dis-
placement problem. We gave explicit expressions of the limiting values of the
penalty parameters above which the method is stable and convergent. The meth-
ods, presented above can be modified slightly to consider several other boundary
conditions. The convergence analysis developed in Section 4 is independent of the
choice of the boundary conditions and it can be applied in the same way as above to
show the stability and convergence of the scheme introduced below. For instance,
we may have

u · n = udir ∀(x, t) ∈ ∂Ω× J̄ ,(40)

c = cdir on ΓD × J̄ ,(41)

D(u)∇c · n = 0, ΓN × J̄ .(42)

If (6) and (40) hold, the scheme becomes:
Pressure Equation: ∀0 ≤ i ≤ N − 1,

∀z ∈ Drp(Eh),
∑

E∈Eh

∫

E

1
µ(Ci+1)

K∇P i+1 · ∇z + σp

∑

e∈Γh

g(rp)
|e|

∫

e

[P i+1][z]

−
∑

e∈Γh

∫

e

{ 1
µ(Ci+1)

K∇P i+1·ne}[z]+ε
∑

e∈Γh

∫

e

{ 1
µ(Ci+1)

K∇z·ne}[P i+1] =
∫

Ω

f1z+
∫

∂Ω

udirz.
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Concentration Equation: ∀0 ≤ i ≤ N − 1,

∀v ∈ Drc
(Eh),

∫

Ω

ϕ

∆t
(Ci+1 − Ci)v +

∑

E∈Eh

∫

E

Ci+1

µ(Ci+1)
K∇P i+1 · ∇v

+
∑

E∈Eh

∫

E

D(U i+1)∇Ci+1 · ∇v −
∑

e∈Γh

∫

e

{ Ci+1

µ(Ci+1)
K∇P i+1 · ne}[v]

−
∑

e∈Γh∪∂Ω

∫

e

{D(U i+1)∇Ci+1 · ne}[v] + ε
∑

e∈Γh

∫

e

{ Ci+1

µ(Ci+1)
K∇v · ne}[P i+1]

+ε
∑

e∈Γh

∫

e

{D(U i+1)∇v · ne}[Ci+1] + σc

∑

e∈Γh∪∂Ω

g(rc)
|e|

∫

e

[Ci+1][v]

= σc

∑

e∈∂Ω

g(rc)
|e|

∫

e

cdirv +
∫

Ω

f2v +
∑

e∈∂Ω

∫

e

cdirudirv,

If (40), (41), (42) hold, the concentration equation becomes:
Concentration Equation: ∀0 ≤ i ≤ N − 1,

∀v ∈ Drc(Eh),
∫

Ω

ϕ

∆t
(Ci+1 − Ci)v +

∑

E∈Eh

∫

E

Ci+1

µ(Ci+1)
K∇P i+1 · ∇v

+
∑

E∈Eh

∫

E

D(U i+1)∇Ci+1·∇v−
∑

e∈Γh

∫

e

{ Ci+1

µ(Ci+1)
K∇P i+1·ne}[v]−

∑

e∈ΓN

∫

e

Ci+1udirv

−
∑

e∈Γh∪ΓD

∫

e

{D(U i+1)∇Ci+1 · ne}[v] + ε
∑

e∈Γh

∫

e

{ Ci+1

µ(Ci+1)
K∇v · ne}[P i+1]

+ε
∑

e∈Γh

∫

e

{D(U i+1)∇v · ne}[Ci+1] + σc

∑

e∈Γh∪ΓD∪ΓN

g(rc)
|e|

∫

e

[Ci+1][v] =

+σc

∑

e∈ΓD

g(rc)
|e|

∫

e

cdirv +
∫

Ω

f2v +
∑

e∈ΓN

∫

e

cdirudirv,
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