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BROWNIAN MOTION AND ENTROPY GROWTH ON
IRREGULAR SURFACES

C. CHEVALIER AND F. DEBBASCH

Abstract. Many situations of physical and biological interest involve diffusions

on manifolds. It is usually assumed that irregularities in the geometry of these

manifolds do not influence diffusions. The validity of this assumption is put

to the test by studying Brownian motions on nearly flat 2D surfaces. It is

found by perturbative calculations that irregularities in the geometry have a

cumulative and drastic influence on diffusions, and that this influence typically

grows exponentially with time. The corresponding characteristic times are

computed and discussed. Conditional entropies and their growth rates are

considered too.
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1. Introduction

Stochastic process theory is one of the most popular tools used in modelling time-
asymmetric phenomena, with applications as diverse as economics ([21, 22]), traffic
management ([20, 15]), biology ([16, 2, 10, 8]), physics ([23]) and cosmology ([5]).
Many diffusions of biological interest, for example the lateral diffusions ([4, 17]), can
be modelled by stochastic processes defined on differential manifolds ([12, 13, 9, 18]).
In practice, the geometry of the manifold is never known with infinite precision,
and it is common to ascribe to the manifold an approximate, mean geometry and
to assume irregularities in the geometry have, in the mean, a negligible influence
on diffusion phenomena ([4, 1, 3, 6, 19]). The aim of this article is to investigate if
this last assumption is indeed warranted.

To this end, we fix a base manifold M and focus on Brownian motion. We intro-
duce two metrics on M. The first one, g, represents the real, irregular geometry of
the manifold; what an observer would consider as the approximate, mean geometry
is represented by another metric, which we call ḡ; to keep the discussion as general
as possible, both metrics are allowed to depend on time.

We compare the Brownian motions in the approximate metric ḡ to those in the
real, irregular metric g by comparing their respective densities with respect to a
reference volume measure, conveniently chosen as the volume measure associated
to ḡ. Explicit computations are presented for diffusions on nearly flat 2D sur-
faces whose geometry fluctuates on spatial scales much smaller than the scales on
which these diffusions are observed. We investigate in particular if the densities
generated by Brownian motions in the real, irregular metric g coincide on large
scales with the densities generated by Brownian motions in the approximate metric
ḡ. We perform a perturbative calculation and find that, generically, these densi-
ties differ, even on large scales, and that the relative differences of their spatial
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Fourier components grow exponentially in time; on a given surface, the character-
istic time τ at which the perturbative terms become comparable (in magnitude) to
the zeroth order terms depends on the amplitude ε of the irregularities and on the
large scale wave vector k at which diffusions are observed; we find that τ generally
scales as − (

ν−2 ln(ε/ν1/2)
) × (

1/ | K∗ |2 χ
)
, where χ is the diffusion coefficient

and ν =| k | / | K∗ |, K∗ being a typical wave-vector characterizing the metric
irregularities. Our general conclusion is that geometry fluctuations have a cumu-
lative effect on Brownian motion and that their influence on diffusions cannot be
neglected.

2. Brownian motions on a manifold

2.1. Brownian motion in a time-independent metric. Let M be a fixed real
base manifold of dimension d. Let g be a time-independent metric on M. This
metric endows M with a natural volume measure which will be denoted hereafter
by dVolg. If C is a chart on M with coordinates x = (xi), i = 1, ..., d, integrating
against dVolg comes down to integrating against

√
detgijd

dx, where the gij ’s are
the components of g in the coordinate basis associated to C.

There is a canonical definition of a Brownian motions onM equipped with metric
g ([14, 9, 11, 18]). Quite intuitively, these Brownian motions are defined through
the diffusion equation obeyed by their densities n with respect to dVolg. Given an
arbitrary positive diffusion constant χ, this equation reads:

(1) ∂tn = χ∆gn,

where ∆g is the Laplace-Beltrami operator associated to g ([7]); given a chart C
with coordinates x, one can write:

(2) ∆gn =
1√

detgkl

∂i

(√
detgkl gij∂jn

)
,

where ∂i represents partial derivation with respect to xi and the gij ’s are the
components of the inverse of g in the coordinate basis associated to C. Observe that
one of the reasons why this definition makes sense is that the diffusion equation (1)
conserves the normalization of n with respect to dVolg.

2.2. Brownian motion in a time-dependent metric. The preceding definition
of Brownian motion cannnot be used in this case because the diffusion equation (1)
does not conserve the normalization of n(t) with respect to the volume measure
dVolg(t) associated to a time-dependent metric. To proceed, we introduce an arbi-
trary, time-independent metric γ on M, denote by µg(t)|γ the density of dVolg(t)

with respect to dVolγ , and define the Brownian motion in the time-dependent met-
ric g(t) as the stochastic process whose density n with respect to dVolg(t) obeys the
following generalized diffusion equation:

(3)
1

µg(t)|γ
∂t

(
µg(t)|γn

)
= χ∆g(t)n.

Given an arbitrary coordinate system (x), equation (3) transcribes into:

(4) ∂t

(√
detgkln

)
= χ∂i

(√
detgkl g

ij∂jn
)

,
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which shows that the Brownian motion in g(t) does not actually depend on γ.
Moreover,

d

dt

∫

M
dVolg(t)n =

d

dt

∫

M
dVolγµg(t)|γn

=
∫

M
dVolγ∂t

(
µg(t)|γn

)

= χ

∫

M
dVolγµg(t)|γ∆g(t)n

= χ

∫

M
dVolg(t)∆g(t)n

= 0.(5)

Thus, contrary to (1), equation (3) conserves the normalization of n(t).

2.3. Entropies of Brownian motion in a time-dependent metric. Let n
and ñ be two solutions of (3). We define the time-dependent conditional entropy
Sn|ñ of n with respect to ñ by:

(6) Sn/ñ(t) = −
∫

M
dVolg(t)n ln(

n

ñ
).

This entropy is a non decreasing function of t. This can be seen by the following
calculation. One can write:

(7) Sn|ñ(t) = −
∫

M
dVolγ µg(t)|γn ln(

µg(t)|γn

µg(t)|γ ñ
),

which leads to
dSn|ñ

dt
= −

∫

M
dVolγ

(
∂t(µg(t)|γn) ln(

µg(t)|γn

µg(t)|γ ñ
)

+ µg(t)|γn
µg(t)|γ ñ∂t(µg(t)|γn)− µg(t)|γn∂t(µg(t)|γ ñ)

µ2
g(t)|γnñ

)
.(8)

Equation (3) can then be used to transform all temporal derivatives into spatial
ones and one obtains:

(9)
dSn|ñ

dt
= −χ

∫

M
dVolg(t)

(
∆g(t)n

(
ln(

n

ñ
) + 1

)
− n

ñ
∆g(t)ñ

)
.

Integrating by parts delivers:

(10)
dSn|ñ

dt
= +χ

∫

M
dVolg(t)ñ

(
∇(ln

n

ñ
)
)2

,

which proves the expected result. Conditional entropies of Brownian motions thus
obey a very simple H-theorem, even in time-dependent geometries.

The Gibbs entropy SG[n] of a density n is defined by

(11) SG[n](t) = −
∫

M
dVolg(t)n ln n.

The H-theorem above applies to SG[n] only if the ñ = 1 is a solution of the transport
equation (3). This is automatically the case if the metric g is time-independent,
but may not be true in time-dependent metrics. Note also that a uniform density
is not normalizable on non compact manifolds.
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3. How to compare Brownian motions in different metrics

Let M be a real differential manifold of dimension d. We first introduce on M
a metric ḡ(t) which describes what an observer would consider as the approximate,
mean geometry of the manifold. The real, irregular geometry of M is described by
a different metric g(t).

Consider an arbitrary point O in M and let Bt be the Brownian motion in g(t)
that starts at O. The density n of Bt with respect to dVolg(t) obeys the diffusion
equation:

(12)
1

µg(t)|γ
∂t

(
µg(t)|γn

)
= χ∆g(t)n.

We denote by B̄t the Brownian motion in ḡ(t) that starts at point O and by n̄
its density with respect to dVolḡ(t); this density obeys:

(13)
1

µḡ(t)|γ
∂t

(
µḡ(t)|γ n̄

)
= χ∆ḡ(t)n̄.

We will compare the two Brownian motions by comparing on large scales their
respective densities with respect to a reference volume measure on M. From an
observational point of view, the best choice is clearly dVolḡ(t), the volume measure
associated to the approximate, mean geometry of the manifold. The density N of
Bt with respect to dVolḡ(t) is given in terms of n by:

(14) N = µg(t)|ḡ(t)n,

where µg(t)|ḡ(t) is the density of dVolg(t) with respect to dVolḡ(t). The transport
equation obeyed by N can be deduced from (12) and reads:

(15)
1

µg(t)|γ
∂t

(
µḡ(t)|γN

)
= χ∆g(t)

(
1

µg(t)|ḡ(t)
N

)
.

In a chart C with coordinates (x), (14) transcribes into:

(16) N(t, x) =

√
detgij(t, x)√
detḡij(t, x)

n(t, x)

and (15) becomes:
(17)

∂t

(√
detḡkl(t, x)N(t, x)

)
= χ∂i

(√
detgkl(t, x)gij(t, x)∂j

√
detḡkl(t, x)√
detgkl(t, x)

N(t, x)

)
.

Let N and Ñ be the densities with respect to dVolḡ(t) corresponding to two
solutions n and ñ of equation (3). The conditional entropy of n with respect to ñ
can also be written:

(18) Sn|ñ(t) = −
∫

M
dVolḡ(t)N ln(

N

Ñ
).

This entropy can thus be also interpreted as the conditional entropy of N with
respect to Ñ on the manifold equiped with metric ḡ(t). Note however that the
Gibbs entropy of n in g(t) does not coincide with the Gibbs entropy of N in ḡ(t).

The main question investigated in this article is: how does the density N obeying
(15) differ on large scales from the density n̄ obeying (13)? Since this question is
extremely difficult to solve in its full generality, we now concentrate on nearly flat
2D surfaces.



40 CHEVALIER AND DEBBASCH

4. Brownian motions on nearly flat 2D surfaces

4.1. The problem. We choose R2 as base manifold M and retain ḡ = η, the flat
Euclidean metric on R2. The real, irregular metric of the manifold is still denoted
by g(t) and we define h(t) by g−1(t) = η−1 + εh(t), where ε is a small parameter
(infinitesimal) tracing the nearly flat character of the surface. From now on, we
will use the metric η (resp. the inverse of η) to lower (resp. raise) all indices.

Let us choose a chart C where ηij = diag(1, 1). The tensor field h(t) is then
represented by its components hij(t, x). A particularly simple but very illustrative
form for these components is:

(19) hij(t, x) =
∑

nn′
hij

nn′ cos (ωn′t− kn.x + φnn′) ,

where kn.x = kn 1x
1 + kn 2x

2 and both integer indices run through arbitrary finite
sets. This choice has the double advantage of leading to conclusions which are
sufficiently robust to remain qualitatively valid for all sorts of physically interesting
perturbations h while making all technical aspects of the forthcoming computations
and discussions as simple as possible. The Ansatz (19) will therefore be retained in
the remainder of this article. Let us remark that perturbations h(t) proportional
to η amount to a simple modification of the conformal factor linking the 2D metric
g(t) to the flat metric η.

Equation (17) reads, in the chart C:

(20) ∂tN = χ∂i

(√
detgkl(t, x)gij(t, x)∂j

N√
detgkl(t, x)

)

or, alternately,

(21) ∂tN = χ∂i

(
gij(t, x) (∂jN −N∂j l)

)
,

where

(22) l(t, x) = ln
√

detgkl(t, x).

4.2. General perturbative solution. The solution of (21) will be searched for
as a perturbation series in the amplitude ε of the fluctuations:

(23) N(t, x) =
∑

m∈N

εmNm(t, x).

Setting to 0 both coordinates of the point O where the diffusion starts from, we
further impose, for all x, that N0(0, x) = δ(x) and Nm(0, x) = 0 for all m > 0.

The function l(t, x) can be expanded in ε, so that l(t, x) =
∑

m∈N εmlm(t, x)
and one finds, for the first three contributions:

l0(t, x) = 0

l1(t, x) = − 1
2

ηijh
ij(t, x)

l2(t, x) =
1
4
ηikηjlh

ij(t, x)hkl(t, x).(24)

Equation (21) can then be rewritten as the system

(25) ∂tNm = χ∆ηNm + χSm[h,Nr],m ∈ N, r ∈ Nm−1



BROWNIAN MOTION AND ENTROPY GROWTH ON IRREGULAR SURFACES 41

where the source term Sm is a functional of the fluctuation h and of the contribu-
tions to N of order strictly lower than m. In particular,

S0 = 0

S1 = ∂i

(
hij∂jN0 +

1
2
N0η

ijηkl∂jh
kl

)

S2 = ∂i

(
hij∂jN1 +

1
2

(
N0h

ij + N1η
ij

)
ηkl∂jh

kl − 1
4
N0η

ijηmkηnl∂j

(
hmnhkl

))
.

(26)

Two remarks are now in order. Taken together, S0(t, x) = 0 and N0(t, x) = δ(x)
imply that N0 coincides with the Green function of the standard diffusion equation
on the flat plane:

(27) N0(t, x) =
1

4πχt
exp

(
− x2

4χt

)
.

Moreover, the fact that Sm is a divergence for all m implies that the normalizations
of all Nm’s are conserved in time. The initial condition Nm(0, x) = 0 for all x and
m > 0 then implies that all Nm’s with m > 0 remain normalized to zero and only
contribute to the local density of particles, and not to the total density. This is
perfectly coherent with the fact that N0 is normalized to unity.

Define now spatial Fourier transforms by

(28) f̂(t, k) =
∫

IR2
f(t, x) exp(−ik.x)d2x,

where k.x = k1x
1 + k2x

2. A direct calculation then delivers:

(29) Ŝ1(t, k) = −ki

∫

IR2
Ai(t, k, k′)N̂0(t, k − k′)d2k′

where

(30) N̂0(t, k) = exp
(−χk2t

)

and

(31) Ai(t, k, k′) = (kj − k′j)ĥ
ij(t, k′) +

1
2

ηijk′jηklĥ
kl(t, k′).

The first order density fluctuation N1 is then obtained by solving equation (25)
with (29) as source term, taking into account the initial condition N1(0, x) = 0 for
all x. One thus obtains:

(32) N̂1(t, k) = I1(t, k) exp(−χk2t)

with

(33) I1(t, k) =
∫ t

0

Ŝ1(t′, k) exp(χk2t′)dt′.

Equation (26) then gives:

Ŝ2(t, k) = −ki

∫

IR2
Ai(t, k, k′)N̂1(t, k − k′)d2k′

+
∫

IR2×IR2
Bi(t, k′, k′′)N̂0(t, k − k′)d2k′d2k′′(34)
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with

Bi(t, k, k′) =
1
2

k′jηklĥ
kl(t, k′)ĥij(t, k − k′)

− 1
4

ηijk′jηmkηnl

(
ĥmn(t, k′)ĥkl(t, k − k′) + ĥkl(t, k′)ĥmn(t, k − k′)

)
.(35)

The second order density fluctuation N2 then reads:

(36) N̂2(t, k) = I2(t, k) exp(−χk2t)

with

(37) I2(t, k) =
∫ t

0

Ŝ2(t′, k) exp(χk2t′)dt′.

4.3. How the irregularities influence diffusions.

4.3.1. First order terms. Let us now insert Ansatz (19) in the above expressions
(29) and (32) for Ŝ1 and N̂1. One finds:

(38) Ŝ1(t, k) =
∑

nn′σ

Aσ
nn′(k) exp

(
iσ(ωn′t + φnn′)− (k + σkn)2χt

)

with

(39) Aσ
nn′(k) = − 1

2

[
ki(kj + σknj)h

ij
nn′ −

1
2

σηijkiknjηklh
kl
nn′

]

and σ ∈ {−1, +1}. This leads to:

N̂1(t, k)
N̂0(t, k)

=
∑

σ





∑

(n,n′)/∈Σσ(k)

Iσ
nn′(k)

[
exp

(
σiωn′t− (k2

n + 2σk.kn)χt
)− 1

]

+ t
∑

(n,n′)∈Σσ(k)

Aσ
nn′(k) exp (iφnn′)



 .(40)

with

(41) Iσ
nn′(k) =

Aσ
nn′(k) exp(iφnn′)

iσωn′ + (k2 − (k + σkn)2) χ
,

and Σσ(k) =
{

(n, n′), σiωn′ +
(
k2 − (kσkn)2

)
χ = 0

}
. Note that both sets are

disjoint, unless there is an (n, n′) for which kn = 0 and ωn′ = 0.
This expression characterizes how Brownian motions in the irregular metric dif-

fer, at first order, from Brownian motions on the flat Euclidean plane. The depen-
dence on the wave vector k indicates that the influence of the irregularities varies
with the spatial scale at which the diffusion is observed. Two opposite situations
are particularly worth commenting upon. Take a certain kn and consider N̂1 at
scales characterized by wave vectors much smaller than kn, say | k |=| kn | O(ν),
where ν is an infinitesimal (small parameter). Neglecting the contributions of the
frequencies ωn′ , the amplitudes A±nn′(k) typically scale as | k || kn |, so that the
I±nn′(k)’s scale as O(ν). Note however that perturbations h proportional to η do
not obey this typical scaling, but rather A±nn′(k) ∼ k2, and I±nn′(k) ∼ O(ν2). The
sets σ± are empty and the time-dependence of | N̂1/N̂0 | is controled by the real
exponentials in (40), which essentially decrease as exp(−k2

nχt). The first order rel-
ative contribution εN̂1/N̂0 thus tends towards a quantity L1(k) which is linear in
the I±nn′(k); the typical relaxation time is τ1 ∼ 1/(χk2

n), which is much smaller than
the diffusion time 1/(χk2) associated to scale k. Moreover, the limit L1(k) scales as
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O(εν), except for perturbations h proportional to η, for which it scales as O(εν2);
L1(k) is therefore always much smaller than ε and, in particular, tends to zero with
ν i.e. as the scale separation tends to infinity. The effect of the kn Fourier mode
on scales characterized by a wave vector k verifying | k |¿| kn | is thus in practice
negligible.

Consider now the opposite case, i.e. | k | comparable to, or larger than | kn |.
Neglecting again the contribution of the frequencies ωn′ , the amplitudes A±nn′(k)
then scale as k2, and I±nn′(k) ∼| k | / | kn |. Let now θ be the angle between k
and kn and suppose, to simplify the discussion, that cos θ does not vanish. At least
one of the exponentials in (40) will then be an increasing function of time provided
| k |>| kn | /(2 cos θ). Take for example k = kn; the second exponential in (40)
then increases with a characteristic time-scale 1/(k2χ). This means that the first
order contributions of the irregularities to the density actually become comparable
to unity at this scale at characteristic times τ1 ∼ −(ln ε)/(k2χ); this time probably
also signals the break down of the perturbative expansion in ε for the scale k = kn.
As for the linear terms in t appearing on the right-hand side of (40), they actually
contribute to N̂1/N̂0 if at least one of the sets σ±(k) is not empty. This condition
is realized if ωn′ = 0 and | k |=| kn | /(2 cos θ).

The conclusion of this discussion is that, at first order in the amplitude of the
perturbation h, a given Fourier mode kn of h dramatically influences diffusions on
scales characterized by wave vectors with modulus comparable to or larger than
| kn |, but has a negligible influence on scales characterized by wave vectors with
modulus much smaller than | kn |. We will now show that this conclusion cannot
be extended to all perturbation orders and that taking into account terms of orders
higher than 1 proves that h generally influences diffusions on all scales.

4.3.2. Second order terms. It is straightforward to obtain from equations (34),
(36) , (40) and (30) explicit expressions for Ŝ2(t, k) and N̂2(t, k)/N̂0(t, k). These
are extremely complicated and do not warrant full reproduction here.

Of interest is that N̂2/N̂0 contains contributions whose amplitudes potentially
grows exponentially in time. One of these reads

D1(t, k) =
∑

n,n′,σ1,σ2,σ3

Iσ1
nn′(k + σ2kp)Aσ2

pp′(k)Jσ1σ3
nn′pp′(k)×

[
exp

(
i(σ1ωn′ + σ2ωp′)t−

(
(kn + σ1σ2kp)2 + 2k.(kn + σ1σ2kp)

)
χt

)− 1
]

(42)

with σi = ± 1 (i = 1, 2, 3) and

(43) Jσ1σ3
nn′pp′(k) =

exp (iσ1σ3φpp′)
iσ1(ωn′ + σ3ωp′) + (k2 − (k + σ1(kn + σ3kp))2)χ

.

The right-hand sides of (42) contains four exponentials of given (n, n′, p, p′); these
involve the wave vectors K±

np = kn ± kp. Let us for the moment ignore the factors
in front of these exponentials. Let k be an arbitrary wave vector and let θ± be the
angle between k and K±

np. Each of the conditions 2k | cos θ± |>| K−
np | makes one of

the four exponentials an increasing function of t. At second order, the spatial scales
at which diffusions are influenced by the perturbation h are thus determined, not
by the kn’s, but by the combinations K±

np = kn ± kp. Indeed, quite generally, the
temporal behaviour of terms of order q, q ≥ 1, will be determined by combinations
of q wave vectors kn. For perturbations h with a rich enough spectrum, these
combinations correspond to all sorts of spatial scales and, in particular, to scales
much larger than those over which h itself varies. Thus, h will generally influence
diffusions on all spatial scales.
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Let us elaborate quantitatively on this conclusion by further exploring the be-
haviour of D1(t, k). Suppose for example that the moduli of all kn’s are of the
same order of magnitude, say k∗, but that there are some n and p for which
| K−

np |∼ K∗O(ν), where ν << 1. The condition introduced above, which en-
sures that one of the exponentials involving K−

np grows with t, then translates into
| k |> (2/ cos θ−)K∗O(ν), and is realized for | k |= K∗O(ν) provided cos θ− . 1
Let us check now that the factors in front of the exponentials do not tend towards
zero with ν. Ignoring as before the influence of the frequencies ωq, the quantity
I−nn′(k + kp) (see (41)) scales as A−nn′(k + kp)/k2

p i.e. as k2
p/k2

p = 1. The quantity

J̃−nn′pp′(k) scales as (Qnp(k))−1 =
[
2k.K−

np − (K−
np)2

]−1. The factor in front of the
exponential thus scales as | k || kp | (Qnp(k))−1 for perturbations h not propor-
tional to η, and as k2(Qnp(k))−1 otherwise. Taking into account that | k |∼| Knp |
and putting cos θ− = 1 to simplify the discussion, one finds that the factor in front
of the exponentials scales as | kp | / | k |= O(1/ν) if h is not proportional to η and
as O(1) otherwise. This factor therefore does not tend to zero with the separation
scale parameter ν. Actually, for perturbations which are not proportional to η, this
factor tends to infinity as ν tends to zero, a fact which only increases the influence
of h on diffusions.

These estimates can be used to evaluate some characteristic times. For per-
turbations proportional to η, the second order term ε2D1 reaches unity after a
characteristic time τη

2 ∼ −(2/ν2K∗ 2χ) ln ε; for perturbations not proportional to
η, the corresponding characteristic time is τ2 ∼ −(2/ν2K∗ 2χ) ln(ε/ν1/2) << τη

2 .
These characteristic times are probably upper bound for the time at which the
perturbation expansion ceases to be valid for scale k.

5. Influence of the irregularities on the entropies

The influence of generic metric irregularities on conditional entropies is techni-
cally extremely difficult to investigate in detail. We therefore restrict our discussion
by considering only time-independent perturbations h proportional to η and write:

(44) hij(x) =
∑

n

anηij cos (kn.x− φn) .

Let us focus on the Gibbs entropy SG[n] of the density n evaluated in Section 4.
This entropy reads

(45) SG[n](t) = −
∫

IR2
d2x N(t, x) ln

(
N(t, x)√
detg(t, x)

)
.

The perturbative expansion of both g and N , together with the normalization
conditions

∫
IR2 Nmd2x = 0 for m = 1, 2, leads to:

(46) SG[n](t) =
∑

m∈N

εmSGm[n](t)

with

SG0[n](t) = −
∫

IR2
d2x N0(t, x) ln N0(t, x),

SG1[n](t) = −
∫

IR2
d2x (N1(t, x) ln N0(t, x)−N0(t, x)l1(x)) ,(47)

SG2[n](t) =

−
∫

IR2
d2x

(
N2(t, x) ln N0(t, x)−N0(t, x)l2(x)−N1(t, x)l1(x) +

N2
1 (t, x)

2N0(t, x)

)
.
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Expression (27) for N0 leads to SG0[n](t) = 1 + ln(4πχt), which is, as expected, an
increasing function of t. This function is also strictly positive. A direct computation
shows that N1 is an uneven function of x. SInce N0 is even in x, so is ln N0 and
the contribution of N1 ln N0 to SG1[n] vanishes identically. One finds, using (24),
that:

(48) SG1[n](t) = −
∑

n

an cosφn exp
(−k2

nχt
)
.

The first order contribution to the Gibbs entropy may thus be a decreasing or
an increasing function of time, and its sign is not fixed either. Each term in the
sum tends to zero on a characteristic time Tn = 1/(χk2

n). Suppose the diffusion is
observed at scale k with | k |=| kn | O(ν). The relaxation time Tn is then much
smaller than the typical diffusive time T = 1/(χk2) at scale k and the first order
contribution to SG[n] can then be neglected. This echoes the conclusion obtained
above in Section 4 that, at first order in ε, the effects of metric perturbations are
confined to scales comparable to the variation scales of the perturbations.

The second order term SG2[n] cannot be computed exactly. Considering the
conclusions of Section 4, one nevertheless expects increasing, possibly exponential
functions of the time t to contribute to SG2[n], the characteristic time scale Tnn′

of these functions being related to the differences kn − kn′ in wave numbers of the
metric perturbation by Tnn′ = 1/(χ(kn−kn′)2). This expectation can be confirmed
by computing exactly the contribution of N1l1 to SG2[n]. Naturally, given a certain
wave number k, Tnn′ may be comparable to T = 1/(χk2), even if both | kn |
and | kn′ | are much larger than | k |. The behaviour of the Gibbs entropy thus
confirms that, at second order, metric irregularities an influence diffusions at all
scales, including scales much larger than the typical variation scales of the metric
perturbation.

6. Conclusion

We have investigated how metric irregularities influence Brownian motion on
a differential manifold. We have performed explicit perturbative calculations for
nearly flat 2D manifolds and reached the conclusion that the metric irregularities
have a cumulative effect on Brownian motion; more precisely, we have found that
the relative difference of the spatial Fourier components of the densities generated
by a Brownian motion on the flat surface and a Brownian motion on the irregular
surface grows exponentially with time on all spatial scales, including scales much
larger than those characteristic of the metric perturbation; entropy behavior has
also been considered and characteristic times have been derived.

Let us conclude this article by mentioning some problems left open for further
study. As stated in the introduction, many biological phenomena involve lateral
diffusions on 2D interfaces. The results of this article suggest that the fluctua-
tions of the interfaces profoundly affect these lateral diffusions; the discrepancies
between real diffusions on irregular interfaces and idealized diffusions on highly reg-
ular surfaces are therefore probably observable and the biological consequences of
these discrpancies should be carefully studied. On the theoretical side, one should
envisage a non perturbative treatment of at least some of the problems studied in
this article; this is probably best achieved through numerical simulations; a first
step would be to confirm numerically, at least for 2D diffusions, the characteristic
time estimates we have derived here. Finally, the case of relativistic diffusions in
fluctuating space-times is certainly worth investigating, notably in a cosmological
context.
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