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A FORMULATION FOR FULLY RESOLVED SIMULATION (FRS)
OF PARTICLE-TURBULENCE INTERACTIONS IN TWO-PHASE

FLOWS

SOURABH V. APTE AND NEELESH A. PATANKAR

Abstract. A numerical formulation for fully resolved simulations of freely

moving rigid particles in turbulent flows is presented. This work builds upon

the fictitious-domain based approach for fast computation of fluid-rigid par-

ticle motion by Sharma & Patankar ([1] Ref. J. Compt. Phy., (205), 2005).

The approach avoids explicit calculation of distributed Lagrange multipliers

to impose rigid body motion and reduces the computational overhead due to

the particle-phase. Implementation of the numerical algorithm in co-located,

finite-volume-based, energy conserving fractional-step schemes on structured,

Cartesian grids is presented. The numerical approach is first validated for flow

over a fixed sphere at various Reynolds numbers and flow generated by a freely

falling sphere under gravity. Grid and time-step convergence studies are per-

formed to evaluate the accuracy of the approach. Finally, simulation of 125

cubical particles in a decaying isotropic turbulent flow is performed to study

the feasibility of simulations of turbulent flows in the presence of freely moving,

arbitrary-shaped rigid particles.

Key Words. DNS, particle-turbulence interactions, point-particle, fully re-

solved particles.

1. Introduction

Many problems in nature and engineering involve two-phase flows where solid
particles of arbitrary shape and sizes are dispersed in an ambient fluid (gas or liq-
uid) undergoing time dependent and often turbulent motion. Examples include
sediment transport in rivers, fluidized beds, coal-based oxy-fuel combustion cham-
bers, biomass gasifiers, among others. These applications involve common physical
phenomena, at disparate length and time scales, of mass, momentum, and energy
transport across the interface between the dispersed particles and a continuum fluid.

Numerical simulations of these flows commonly employ Lagrangian description
for the dispersed phase and Eulerian formulation for the carrier phase. Depending
on the volumetric loading of the dispersed phase two regimes are identified: dilute
(dp << `) and dense (dp ≈ `), where dp is the characteristic length scale of the
particle (e.g. diameter), and ` the inter-particle distance. Furthermore, the grid
resolution (∆) used for solution of the carrier phase could be such that the particles
are ‘subgrid’ (dp << ∆), ‘partially resolved’ (dp ∼ ∆), or ‘fully resolved’ (∆ < dp).
In addition, these regimes may occur in the same problem and are dependent on the
particle size as well as the grid resolution. Clearly, multiscale numerical approaches
are necessary to simulate various regimes of the flow.
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The standard approach to simulate turbulent particle-laden flows uses direct
numerical simulation (DNS) [2, 3, 4], large-eddy simulation (LES) [5, 6, 7, 8]
or Reynolds-Averaged Navier Stokes (RANS) approach [9] for the carrier phase
whereas the motion of the dispersed phase is modeled. In all these approaches,
the particles are assumed ‘point-sources’ compared to the grid resolutions used (so
dp < η, the Kolmogorov length scale, for DNS whereas dp < ∆, the grid size, in
LES or RANS). The fluid volume displaced by the particles are presumed negligible.
Recently, an improved approach, based on mixture theory and considering the vol-
umetric displacements of the fluid by the particles was developed for DNS/LES of
particle-laden flows [10]. However, both of these approaches model the interactions
between the fluid and the particles, use drag and lift correlations to approximate the
drag and lift forces on the particles. The accuracy of these approaches in capturing
the complex particle-fluid interactions in turbulent flows depends on the validity of
simplified drag and lift laws.

Fully resolved simulation (FRS) of these flows require grid resolutions finer than
the characteristic size of particles. In this approach, all scales associated with the
particle motion are resolved and the drag/lift forces on the particles are directly
evaluated rather than modeled. Considerable work has been done on fully resolved
simulations of particles in laminar flows. Arbitrary Lagrangian-Eulerian (ALE)
method [11], distributed Lagrange multiplier/fictious domain (DLM) based meth-
ods [12, 13, 14], Lattice Boltzmann (LBM) [15], and Immersed Boundary (IBM)
based methods [16, 17, 18] have been proposed and used. These methods have been
applied to simulate a modest number of particles (around 1000s) at low Reynolds
numbers. In spite of several different numerical schemes, full three-dimensional
direct simulations of two-phase turbulent flows in realistic configurations are rare.
There are only few three-dimensional turbulent flow studies in canonical configu-
rations on fully resolved rigid particles [19, 20] . There appears to be no reported
study of fully resolved moving particles in complex geometries. In the present
work, a fictitious domain based approach for motion of arbitrary rigid particles
is implemented in a structured finite-volume solver capable of simulating turbu-
lent flows. The approach is based on an efficient numerical algorithm proposed by
Patankar [21] to constrain the flow field inside the particle to a rigid body motion.
This facilitates simulation of large-number of particles by reducing the overhead
associated with the computation of particle motion.

The paper is arranged as follows. A mathematical formulation of the basic
scheme is described briefly. Numerical implementation of the scheme in a co-located
grid, finite volume framework is provided next. The numerical scheme is validated
for flow over a fixed sphere at different Reynolds numbers and a freely falling sphere
under gravity. Simulation of 125 cubic particles in an isotropic turbulent flow is then
performed to show the feasibility of the approach to capture multiscale interactions
between the particles and unsteady turbulent flows.

2. Mathematical Formulation

Let Γ be the computational domain which includes both the fluid (ΓF ) and the
particle (ΓP (t)) domains. Let the fluid boundary not shared with the particle be
denoted by B and have a Dirichlet condition. For the present work, focus is placed
on flows in closed domains and thus number of particles inside the computational
domain remains fixed. Further evaluation of generalized boundary conditions is
necessary for inflow-outflow systems where number of particles inside the domain
may vary with time. For simplicity, let there be a single particle in the domain
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and the body force be assumed constant so that there is no net torque acting
on the particle. The basis of fictitious-domain based approach [12] is to extend
the Navier-Stokes equations for fluid motion over the entire domain Γ inclusive of
particle regions. The natural choice is to assume that the particle region is filled
with a Newtonian fluid of density equal to the particle density (ρP ) and some
fluid viscosity (µF ). Both the fluid and the particle regions will be assumed as
incompressible and thus incompressibility constraint applies over the entire region.
In addition, as the particles are assumed as rigid, the motion of the material inside
the particle is constrained to be a rigid body motion. Several ways of obtaining the
rigidity constraint have been proposed [12, 13, 21, 14]. We follow the formulation
developed by Patankar [21] which is briefly described for completeness.

The momentum equation for fluid motion applicable in the entire domain Γ is
given by:

(1) ρ

(
∂u
∂t

+ (u · ∇) u
)

= −∇p+∇ ·
(
µF

(
∇u + (∇u)T

))
+ ρg + f ,

where ρ is the density field, u the velocity vector, p the pressure, µF the fluid
viscosity, g the gravitational acceleration, and f is an additional body force that
enforces rigid body motion inside the particle region ΓP . For direct numerical
simulations of incompressible fluid as considered in this work, µF is the dynamic
viscosity of the fluid. It is assumed to be constant and the viscous term can be
simplified to µF∇2u using the incompressibility constraint. The viscosity µF is
defined at the cv centers and then evaluated at the faces using simple arithmetic
averages. In the case where the grid resolution is such that all scales of turbulence
are not captured, turbulence closure may be obtained using large-eddy simulations
(LES) or Reynolds Averaged Navier Stokes (RANS) models. The viscosity µF will
then be replaced by the eddy viscosity as provided by closure models used in either
approaches. However, it should be noted that the turbulence closure models are
valid in the bulk flow (far from the boundary). Near the moving boundary, wall
modeling techniques may become necessary.

The density ρ is given as:

(2) ρ = ρF (1−ΘP ) + ρPΘP ; ΘP = { 0 in ΓF

1 in ΓP

where ρF and ρP are the fluid and particle densities, respectively, Θp is the indicator
function that assumes a value of unity inside the particle region and zero outside. In
general numerical implementations, the indicator function is smeared over a small
region (proportional to the grid spacing) around the boundary giving a smooth
variation. As the particle moves, so does the indicator function and thus DΘp/Dt =
0 on the particle boundary, where D/Dt() represents a material derivative. The
continuity equation in Γ for this variable density Newtonian fluid is given as:

(3)
∂ρ

∂t
+∇ · (ρu) = 0.

Using the definition of ρ, expanding the above equation and noting than DΘp/Dt =
0 on the particle boundaries gives the incompressibility constraint over the entire
domain Γ:

(4) ∇ · u = 0,

In order to enforce that the material inside the particle region moves in a rigid
fashion, a rigidity constraint is required so that it will lead to a non-zero forcing
function f in the particle region. Different ways have been proposed to obtain f .
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Inside the particle region, the rigid body motion implies vanishing deformation rate
tensor:

1
2

(
∇u + (∇u)T

)
= D[u] = 0,

u = uRBM = U + Ω× r
} in ΓP ,(5)

where U and Ω are the particle translation and angular velocities and r is the po-
sition vector of a point inside the particle region from the particle centroid. The
vanishing deformation rate tensor for rigidity constraint automatically ensures the
incompressibility constraint inside the particle region. The incompressibility con-
straint gives rise to the scalar field (the pressure, p) in a fluid. Similarly, the tensor
constraint D[u] = 0 for rigid motion gives rise to a tensor field inside the particle
region [13]. Distributed Lagrange multipliers (DLM)-based approaches have been
proposed to solve for the rigid body motion and impose the rigidity constraint
which requires an iterative solution strategy. Patankar [21] proposed an approach
that provides the rigidity constraint explicitly, thus reducing the computational
cost significantly. Noting that the tensorial rigidity constraint can be reformulated
to give:

∇ · (D[u]) = 0 in ΓP;(6)
D[u] · n = 0 on particle boundary.(7)

a two-stage fractional-step algorithm can be devised to solve the coupled fluid-
particle problem [21]. Knowing the solution at time level tn the goal is to find u at
time tn+1.

(1) In this first step, the rigidity constraint force f in equation 1 is set to zero
and the equation together with the incompressibility constraint (equation 4)
is solved by strandard fractional-step schemes over the entire domain. Ac-
cordingly, a pressure Poisson equation is derived and used to project the
velocity field onto an incompressible solution. The obtained velocity field
is denoted as un+1 inside the fluid domain and û inside the particle region.

(2) The velocity field in the particle domain is obtained in a second step by
projecting the flow field onto a rigid body motion. Inside the particle region:

(8) ρP

(
un+1 − û

∆t

)
= f .

To solve for un+1 inside the particle region we require f . Obtaining the
deformation rate tensor from un+1 given by the above equation and using
the equations (6, 7) we obtain:

∇ ·
(
D[un+1]

)
= ∇ ·

(
D
[
û +

f∆t
ρ

])
= 0;(9)

D[un+1] · n = D
[
û +

f∆t
ρ

]
· n = 0.(10)

The velocity field in the particle domain involves only translation and angular
velocities. Thus û is split into a rigid body motion (uRBM = U + Ω × r) and
residual non-rigid motion (u′). The translational and rotational components of the
rigid body motion are obtained by conserving the linear and angular momenta and
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are given as:

MPU =
∫

ΓP

ρûdx;(11)

IPΩ =
∫

ΓP

r× ρûdx,(12)

where MP is the mass of the particle and IP =
∫

ΓP
ρ[(r · r)I − r ⊗ r]dx is the

moment of inertia tensor. Knowing U and Ω for each particle, the rigid body
motion inside the particle region uRBM can be calculated. The rigidity constraint
force is then simply obtained as f = ρ(uRBM − û)/∆t. This sets un+1 = uRBM

in the particle domain. Note that the rigidity constraint is non-zero only inside
the particle domain and zero everywhere else. In practice, the fluid flow near the
boundary of the particle (over a length scale on the order of the grid size) is altered
by the above procedure owing to the smearing of the particle boundary.

The key advantage of the above formulation is that the projection step only
involves integrations in the particle domain with no iterations. A similar approach
was recently proposed in a finite-element framework by Veeramani et al. [14].

3. Numerical Implementation

The above formulation was implemented and tested in a finite-volume method
on staggered grids by Sharma & Patankar [1]. However, their work was limited
to laminar flows and few number of particles. In this paper, we present the im-
plementation of the above formulation in an energy-conserving, co-located grid
finite-volume method. The original single-phase fluid flow solver is based on that
developed by Mahesh et al. [23] on arbitrary shaped, unstructured grids. The main
advantage of this single phase flow algorithm is that it is directly applicable to tur-
bulent flows where numerical dissipation is undesirable. We use their approach on
a simple, uniform Cartesian grids, however, the scheme can be readily implemented
into an unstructured grid solver for complex configurations.

Figure 1a shows the schematic of variable storage in space. All variables are
stored at the control volume (cv) center with the exception of the face-normal
velocity uN, located at the face centers. The face-normal velocity is used to enforce
continuity equation. Capital letters are used to denote particle fields. We follow
the collocated spatial arrangement for velocity and pressure field as has been used
by [24, 25, 23, 26]. The main reason to use this arrangement as opposed to spatial-
staggering is the flexibility of extending the scheme to unstructured grids and/or
adaptive mesh refinement.

Figure 1b shows the arrangement of material volumes for cubic or spherical
particles. Each material volume is cubic has a characteristic length (∆M ) which can
be compared with the background grid resolution ∆. Usually, ∆/∆M ≥ 2 is used
for better approximations of interpolated quantities between the background grid
and the material volumes. In this work, conservative interpolation kernels similar to
those used in Immersed Boundary Methods (IBM) are used for interpolations [22].
For example, computation of an Eulerian volume fraction field, Θp(x), from the
material points at xk is performed as:

(13) Θp (x) =
Nm∑
k=1

Vkδ
3
∆ (x− xk) ,

where Vk = ∆3
M is the volume associated with each material point and δ3

∆ is a
delta function used for interpolation. In this work, a three-point delta-function
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Figure 1. (a) Schematic of the variable storage for a co-located
grid finite-volume scheme. The velocity field (uN) represents the
face-normal velocity and is used to enforce continuity constraint.
The velocities ui represent the Cartesian components and are co-
located with the volume fraction (Θ), density (ρ), pressure (p),
particle position (Xi), and the rigidity constraint force Fi,R at the
control volume (cv) centroid. In this co-located formulation, the
face-normal velocity uN is used to enforce the continuity constraint.
(b) Schematic of material volume representation of particles. Each
particle domain consists of cubic material volumes which retain
their position with respect to the centroid of the particle. Interpo-
lations between material volumes and background grids are used
to calculate Eulerian fields such as volume fractions.

with compact support is used. In three-dimensions, the kernel is given as:

(14) δ3
∆(x− xk) =

1
∆3

ξ(
x− xk

∆
)ξ(

y − yk
∆

)ξ(
z − zk

∆
),

where the function ξ is given as:

(15) ξ(r) =


1
6 (5− 3|r| −

√
−3(1− |r|)2 + 1, 0.5 ≤ |r| ≤ 1.5, r = (x−x0)

∆
1
3 (1 +

√
−3r2 + 1, |r| ≤ 0.5

0, otherwise

The same interpolation kernel is used to interpolate an Eulerian quantity defined
at the grid centroids to the material volume centroids. The interpolation kernel is
second order accurate for smoothly varying fields [22].

Assuming that the solution at time level tn is known, the following steps are
performed to advance the fluid and particle velocity fields and the particle positions
to time level tn+1. Integrating the governing equations over the control volume and
applying Gauss’ divergence theorem to convert volume integrals to surface integrals
wherever possible, the discrete governing equations are derived. Accordingly, the
continuity equation is

(16)
ρn+1
cv − ρncv

∆t
+

1
Vcv

∑
faces of cv

ρn+1
faceu

n+1
N Aface = 0

where the subscript “face” corresponds to the face-center, Aface is the face area,
Vcv the volume of the control volume, and uN is the face-normal velocity. The
density field (at any discrete time) is a linear function of the volume fraction and
is given by equation (2). The particle volume fraction is a function of the position
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of the particle and is obtained by interpolation procedure described above. Note
that for a single phase, incompressible fluid, the above continuity equation becomes
the incompressibility constraint

∑
faces of cv u

n+1
N Aface = 0. For the particle-laden

computational domain, it also enforces the same constraint inside the fluid and
particle regions. Changes in density are non-zero only near the interface, due to
smearing of the particle boundary using the above interpolation kernels.

The discrete momentum equation for the ith component of velocity is

ρn+1
cv un+1

i,cv − ρncvuni,cv
∆t

+
1
Vcv

∑
faces of cv

ρ
n+1/2
face u

n+1/2
i,face u

n+1/2
N Aface = − ∂

∂xi
pn+1
cv +

(17)
1
Vcv

∑
faces of cv

(τij)
n+1/2
face Nj,faceAface + fn+1

i,cv ,

where (τij)face is the viscous stress at the faces of control volume, and Nj,face rep-
resents the components of the outward face-normal. The velocity field (ui,face) and
the density (ρface) at the faces are obtained using arithmetic averages of the cor-
responding fields at two control volumes associated with the face. The interaction
force fi is used to impose the rigidity constraint within the particle domain. The
above equations are solved using the fractional-step algorithm:

(1) Advance the particle positions An explicit update of the particle position
is performed.

Xn+1
i,P = Xn

i,P + ∆tUn+1/2
i,P

An Adams-Bashforth predictor is used to obtain the particle velocity at the
midpoint in time, Un+1/2

i,p = 3
2U

n
i,P − 1

2U
n−1
i,P . For non-spherical particles, it

is also necessary to advance the angular orientation of the particle about
its centroid. Knowing the angular velocity at the material points Ωn+1/2

i,M ,
it is straight forward to obtain their new orientation with respect to the
particle centroid.

(2) Evaluate Θn+1
P , ρn+1

cv using the equation 2
(3) Solve the momentum equations for the cell-centered velocities to obtain a

predictor (ûn+1
i,cv ) without the rigidity constraint (fn+1

i,cv ).

ρn+1
cv ûi,cv − ρncvuni,cv

∆t
+

1
Vcv

∑
faces of cv

ρ
n+1/2
face u

n+1/2
i,face u

n+1/2
N Aface = − ∂

∂xi
pncv +

1
Vcv

∑
faces of cv

(τij)
n+1/2
face Nj,faceAface

Arithmetic averages are used in time and space to evaluate the densities
at tn+1/2 and faces of a control volume. A Gauss-Seidel iterative solution
scheme is used to solve the above non-linear partial differential equations.
Second-order Adams-Bashforth predictor is used for the face-normal veloc-
ities un+1/2

N .
(4) Remove the old pressure gradient

ρn+1
cv u∗i,cv − ρn+1

cv ûi,cv

∆t
= +

∂

∂xi
(pncv)

(5) Solve the Poisson equation for pressure to impose the continuity constraint∑
faces of cv

δ

δN
(pn+1
cv )Aface =

1
∆t

∑
face of cv

ρn+1
faceu

∗
NAface + Vcv

δ

∆t
(ρn+1
cv )
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where u∗N = 0.5(u∗i,nbr1 +u∗i,nbr2)Ni, is the face-normal velocity at the faces
of control volumes obtained as an arithmetic average of the velocities at
the neighboring control volumes (nbr1 and nbr2). The pressure Poisson
equation is solved using HYPRE, the Algebraic Multi Grid (AMG) libraries,
developed at Lawrence Livermore National Laboratory [27].

(6) Correct the velocity field by projecting out the continuity constraint. The
corrected cv-center based velocity field is denoted as u∗n+1

i,cv as it may not
satisfy the rigidity constraint in the particle domain. This is corrected
further in following steps. In a co-located grid formulation, the role of
the face-normal velocity un+1

N is to enforce continuity equation. This is
obtained by projecting out the face-normal pressure gradient:

ρn+1
cv

(u∗n+1
i,cv − u∗i,cv)

∆t
= − ∂

∂xi
pn+1
cv

ρn+1
face

(u∗n+1
N − u∗N)

∆t
= − ∂

∂N
pn+1
cv

Note that it is important to properly re-construct the pressure gradient
at the cv-centers ∂pn+1

cv /∂xi. Mahesh et al. [23, 26] developed a face-area
weighted least-squares based reconstruction that was shown to give stable
and accurate results for high Reynolds number turbulent flows on arbitrary
shaped, unstructured grids. We use the same algorithm here to reconstruct
the pressure gradient at the cv-centers by minimizing the following expres-
sion in a least-squares sense:

εcv =
∑

faces of cv

(
∂

∂xi
pn+1
cv Ni,face −

∂

∂N
pn+1
cv

)2

Aface,

with
∂

∂N
pn+1
cv =

pn+1
nbr − pn+1

cv

‖scv,nbr‖
where ‖scv,nbr‖ is the length of the vector connecting between the nbr and
cv control volumes associated with a face.

(7) Evaluate the rigid body motion for each particle by calculating the trans-
lational and rotational velocity components:

MPUn+1
P =

M∑
k=1

ρPU∗n+1
M Vk;

IPΩn+1
P =

M∑
k=1

(r× ρPU∗n+1
M )Vk,

where MP and IP are the mass and moment of inertia for the particle P , the
summation is over all material points M within the particle P , Vk(= ∆3

M ) is
the volume of each material point, ρP is the density of the particle, U∗n+1

M

is the velocity field at the material point M obtained via interpolation
from the velocity field (u∗n+1

cv at the neighboring control volumes, r is the
position vector of each material point from the centroid of the particle P .
The interpolations are performed using the three-point delta function given
by equation 14.

(8) The rigid body motion at each material point is given as Un+1,RBM
M =

Un+1
P +Ωn+1

P ×r. This can be interpolated to the computational grid using
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the delta functions to obtain the rigid body motion un+1,RBM and the
rigidity constraint force fn+1

i,cv at the cv centers:

fn+1
i,cv = ρn+1

cv

uRBM,n+1
i,cv − u∗n+1

i,cv

∆t

un+1
i,cv = u∗n+1

i,cv +
fn+1
i,cv ∆t

ρn+1
cv

Note that the interpolations from material points to the cv centers provide
a non-zero rigidity constraint force only in the particle domain.

This completes the advancement of the particle and velocity fields by one time-
step. Extending the algorithm to multiple particles is straightforward. For multiple
particles, the inter-particle collision force must be modeled to prevent the particles
from penetrating each other. In case of multi-particle simulations, the accuracy
of inter-particle interactions is determined by the collision model. Implementation
and model details are given in detail by Glowinski et al. [12] and are not repeated
here.

4. Results

4.1. Flow over a Fixed Sphere. Flow over a fixed sphere in a uniform stream is
calculated to investigate the accuracy of the numerical scheme to predict the drag
coefficient and wake effects at different Reynolds numbers. A sphere of diameter
Dp = 0.8 units is placed at (2, 0, 0) in a square domain of range (0,−4,−4) to
(8, 4, 4) units. Uniform cubic grids (1283) are used over the entire region. This gives
around 12 grid points within the particle domain. The material volume resolution
is set based on the ratio ∆

∆M
= 6. Note that, in this study, the spherical particle is

represented by cubic material volumes. Uniform flow of U∞ = 1 units is imposed
at the left boundary of the domain. A convective outflow boundary condition is
imposed at the exit. Slip condition ( ∂u∂N = 0; where N represents normal to the
boundary), is imposed on the boundaries in the vertical and spanwise directions.
The fluid viscosity is varied to simulate flow over a sphere at different Reynolds
numbers. Since the sphere is fixed, the material volumes are assigned a velocity of
UP = 0, ΩP = 0 and setting URBM,n+1

M = 0 in evaluating the rigidity constraint
of the numerical algorithm.

Figure 2 shows the instantaneous streamlines over the fixed sphere at different
Reynolds numbers. The flow remains symmetric for low Reynolds numbers (Rep =
20,40, and 100). At Rep = 100, the reverse flow patterns are clearly visible. At
large Reynolds number Rep > 300, the flow starts to become asymmetric, shedding
unsteady vortices. Table 1 compares the drag coefficients on a sphere at different
Reynolds numbers with those obtained from experimental correlations [32].

Table 1. Comparison of drag coefficients over a fixed sphere at
different Reynolds numbers.

Rep CD, Present CD, Experiment Error (%)
10 4.25 4.2 1.19
20 2.665 2.61 2.1
40 1.771 1.735 2.07
100 1.118 1.087 2.86
600 0.58 0.523 9.43
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Figure 2. Instantaneous streamlines for flow over a fixed sphere
at different Reynolds numbers.

The error in drag coefficient for low Reynolds numbers is less than 3%. The
drag coefficient is consistently over-predicted. This may be attributed to the fact
that the represented particle boundary is not perfectly spherical due to the cubical
material volumes used. In addition, the boundary is smeared by the interpolation
functions between the background grid and the material volumes. This has an
indirect effect of making the sphere slightly larger than its actual diameter. Note
that this error in spherical boundary representation can be reduced by increasing
the number of material volumes (higher ∆/∆M ratio) or using material volumes
conforming with the boundary of the sphere [31]. For large Reynolds numbers,
(Rep = 600) the background grid resolution of (∆ ≈ DP /12) is not sufficient and
affects the predicted drag coefficient. However, the algorithm is able to capture
the asymmetric wake and unsteady vortex shedding as shown in Fig. 2. Accurate
prediction of drag force can be obtained by further grid refinements. In most
particle-laden turbulent flows, the particle Reynolds number is much lower (except
for flows with high density ratios between the fluid and particle, e.g. air-particle)
and a grid resolution of 10–12 points may be sufficient to capture the fluid-particle
interactions.

4.2. Freely Falling Sphere. Freely falling solid sphere of density 3 kg/m3 and
diameter 0.625 m falling under gravity in a rectangular channel of cross-section
2 m× 2 m and height 8 m is simulated. The fluid viscosity is 0.05 kg/m.s and the
density is 2 kg/m3. Simulations were carried out for increasing grid refinement.
The test case is same as that used by Sharma & Patankar [1] and validates our
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numerical implementation in a colocated finite-volume scheme. Figure 3a shows
the time evolution of the fluid velocity magnitude together with the location of
the sphere. As seen from the velocity magnitudes, the adjacent walls do affect the
overall drag on the particle. The blocking ratio defined as the ratio of the particle
diameter to the channel cross-sectional length is 0.3125. The terminal velocity
of the sphere considering the wall effects can be estimated using the correlations
proposed in the literature [29, 28]. Accordingly, for the present case the terminal
velocity is 1.2722 m/s.

Figure 3b shows the particle terminal velocity with grid refinement. Two differ-
ent studies are considered: (a) keeping the Courant-Friedrichs-Lewis (CFL = 0.1)
number fixed and (b) keeping the time step fixed (∆t = 2.5 × 10−3) with grid
refinement. Five different grid resolutions (∆ = 1/25,1/30,1/40,1/50,1/60) with
cubical elements are used. The resolution of each material volume is fixed such
that ∆/∆M = 2. The terminal velocity obtained with fixed CFL number is 1.288
whereas that with fixed time step is approximately 1.295. With fixed time-steps
under grid refinement, the CFL number increases as the particle approaches its ter-
minal velocity. Increased CFL numbers may lead to decreased accuracy over longer
periods of time. However, with small CFL numbers, the numerical algorithm is
able to predict the particle terminal velocity with good accuracy.

Figure 3c shows the time evolution of the particle velocity for CFL = 0.1 and
grid resolution of ∆ = 1/60. The particle velocity is normalized by its terminal
velocity and the time is normalized by the time it takes to reach 95% of the terminal
velocity (t95). This time evolution of the particle velocity is in qualitative agree-
ment with the temporal behavior of sedimenting particle as observed by Mordant
and Pinton [30]. The experiments were carried out at small blockage ratio (thus
negligible wall effects) and thus quantitative comparison is not performed.

4.3. Particle Laden Isotropic Turbulent Flow. The numerical scheme is used
to simulate particle-laden homogeneous, isotropic turbulent flow in a periodic box
of length π with grid resolution of 1283. A stationary isotropic turbulent flow is
first developed using linear forcing in the fluid momentum equations proportional
to the local velocity [33]. The turbulence parameters correspond to the Reynolds
number of 54 based on the Taylor microscale. The turbulence intensity is U ′ = 0.84,
the dissipation rate ε = 0.2, the fluid density ρ = 1, and the kinematic viscosity
ν = 0.013. This gives the Kolmogorov length scale of η = 0.056, the Kolmogorov
time scale is τK = 0.25 the Taylor microscale λ = 0.81, the integral length scale of
L = 1.65, the integral time scale T = 1.98, and kmaxη (the measure of resolution)
is 2.28. The time-step used is ∆t = 1× 10−3.

Once a stationary state is obtained, the forcing function is turned off and 125
solid cubic particles are injected into the domain, with initial uniform distribution.
The length of the particles is 0.2 providing around 8 grid points over the particle
domain. The particles are arranged such that they have a separation distance of
π
5 between their nearest neighbors. The material volume resolution is based on
the ratio ∆

∆M
= 3. The particle density is ρp = 9 and the particle relaxation time

is τp = 1
18
ρp

ρ
σ2

ν ≈ 0.9, where σ is the characteristic length of the particle, and ν

is the fluid viscosity. For the present case, the size of the particle is larger than
the Kolmogorov length scale. Accordingly, different time scales can be used to
normalize the particle relaxation time and define the Stokes number. Based on
the Kolmogorov time-scale, the Stokes number, St = τp/τK = 3.6. The particle
Reynolds number (Rep = ρdp|urel|/µ), where urel is the relative velocity between
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Figure 3. Simulation of a freely falling sphere under gravity: (a)
time evolution of velocity magnitudes, (b) convergence study un-
der grid refinement, and (c) time evolution of the particle velocity
normalized by its terminal velocity. t95 corresponds to the particle
response time or the time it takes for the particle to reach 95% of
its terminal velocity.

the fluid and the particle, is on the order of 20–30 in these simulations. As was
shown earlier for the flow over a fixed spherical particle, the resolution of 8–12 grid
cells inside the particle domain is sufficient to resolve the fluid-particle interactions
in this regime. As the turbulent flow decays, the particles first accelerate, reach a
maximum velocity and then decelerate.
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Figure 4 shows the time-evolution of the out-of-plane vorticity contours together
with the location of the particles in the symmetry plane z = 0. Note that since a
planar cut of instantaneous particle positions is shown, the particle boundary (as
seen by red lines) may not appear as a square depending upon the instantaneous
location of the particle centers. Accordingly, the shapes and sizes of the particles
shown in the figures appear different. However, this is just the plotting artifact
and in the simulations the particles retain their size. The particles cluster in low
vorticity regions as they evolve from uniform distribution. Similar results have
been reported for spherical particles in isotropic turbulent flow using the Lattice-
Boltzmann approach [20]. The interactions between turbulence and particle motion
is fully resolved and the numerical approach can be used for further investigations
of particle-laden turbulent flows.

The simulation was performed on 64-processors (IBM machines at San Diego
Supercomputing Center). It requires approximately 6 seconds per time-step for
this simulation. The overhead of the computing time due to computation of the
rigidity constraint, the motion of particles and inter-particle collisions is only 20%
of the overall time. For the present case, since the particles are initially uniformly
distributed, load balancing was not an issue. The grid was partitioned such that
each processor has approximately the same number of grid points. However, for
inhomogeneous distribution of large number of particles, such partitioning may
result in parallel load imbalance and advanced domain decomposition concepts are
necessary for improved computation. In addition, in the current approach, the
material volumes are present over the entire region of the particle. This is done
for simplicity in the implementation of the integrations over the particle domain
and also characterization of the boundary of the particle. Use of material volumes
in a small band around the particles (similar to the particle level set methods)
to characterize the particle-boundaries, is possible and will reduce the number of
material volumes required per particle. The integration over the particle domain
then can be performed using the background grid and interpolation operations.

5. Discussion

A numerical formulation for fully resolved simulations of freely moving rigid
particles in turbulent flows is developed based on a co-located grid, finite-volume
method. In this fictitious domain based approach, the entire computational domain
is first treated as a fluid of density corresponding to the fluid or particle densities in
their respective regions. The incompressibility and rigidity constraints are applied
to the fluid and particle regions, respectively, by using a fractional step algorithm.
The approach extends the formulation developed by Patankar [21, 1] to obtain the
rigid body motion without requiring any iterative procedures. Use of consistent
interpolations between the particle material volumes and the background grid and
parallel implementation of the algorithm facilitates accurate and efficient simula-
tions of large number of particles. Implementation of this approach in finite-volume
based, conservative numerical solvers is presented. The numerical approach is vali-
dated for flow over a fixed sphere at various Reynolds numbers and flow generated
by a freely falling sphere under gravity to show good predictive capability. Fi-
nally, simulation of 125 cubical particles in a decaying isotropic turbulent flow is
performed to study the feasibility of simulations of turbulent flows in the presence
of freely moving, arbitrary-shaped rigid particles. The overhead due to presence
of particles and computing their motion is small and the computational speed is
governed by the pressure Poisson equation used to impose the incompressibility
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(d) (e) (f)

Figure 4. Temporal evolution of cubical particles in a decaying
isotropic turbulent flow. The simulations are performed on a 1283

grid and contains 125 cubical particles initially uniformly spaced.
A planar cut in the z = 0 plane is shown, the contours indicate
out-of-plane vorticity and red lines show particle shapes. Due to
the planar cuts, the particle shapes appear different as the cubi-
cal particles move in and out of plane in this turbulent flow. The
simulation was performed on 64 processors at San Diego Super-
computing Center.

constraint, making this approach attractive for large-scale simulations resolving
the multiscale interactions between particles and turbulent flow.
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