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A MIXED-INTEGER PROGRAMMING APPROACH TO
NETWORKED CONTROL SYSTEMS
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Abstract. This paper studies the problem of controller design for networked

control systems regulated by a network data transmission protocol proposed

in [50]. In this framework, the plant is first formulated as a mixed logical

dynamical (MLD) system, then model predictive control (MPC) based on the

mixed-integer programming is adopted to design a controller to guarantee cer-

tain control performance. It is shown that the solvability of the finite-horizon

MPC is not equivalent to that of the infinite-horizon MPC, which is normally

true for most existing MPC methods. The non-convexity feature of this type

of networked control systems rules out explicit piecewise affine controllers that

are designable for linear convex control systems. Notwithstanding these diffi-

culties, controller design is still feasible due to the special nature of the data

transmission strategy, i.e., only a small number of logic values are involved.

Furthermore, control of higher-order systems and tracking of more complicated

signals can be readily dealt with using this new approach. Two examples are

presented to illustrate the strength of the proposed approach.

Key Words. model predictive control, networked control systems, non-convexity,

mixed-integer programming, mixed logical dynamical systems, hybrid systems.

1. INTRODUCTION

The fast development of secure high-speed communication networks ([40, 29])
renders control over networks possible. The insertion of a communication chan-
nel into a control loop brings in many advantages, including wire reduction, low
cost and easy installation and maintenance, etc.. Thanks to these merits, networked
control systems have been built successfully in various fields like automotive control
([18, 28]), aircrafts manufacturing ([33, 36]), and robotic control ([20, 35]). Unfor-
tunately, since most types of signals, like the encoded system output, controller
output and other information, are transmitted through communication channels
shared by a lot of users, traffic congestion always occurs which of course degrades
control performance. Traffic congestion usually manifests itself in the form of time
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delays, packet loss, and other undesirable effects on the control systems. How to
tackle these adverse effects has become a major subject of research in the control
community and such closely related fields as communication and computing. A va-
riety of network protocols and lots of control techniques have already been proposed
and analyzed to tackle this issue. To classify very crudely, these considerations can
be categorized into three classes.

The first category contains simplest approximations where networked control
systems are modeled as feedback control systems having bounded deterministic
time delays. For instance, a so-called try-once-discard (TOD) protocol is recently
proposed and studied extensively by Walsh et al. ([41, 42, 43, 44, 45]). In this
protocol, it is assumed there is no network from controller to actuator, while an
upper bound of sensor-to-controller time delays induced by the network is obtained
based on the perturbation theory, for which the resulting closed-loop system is
exponentially stable. This protocol is further developed in [24], [25] to establish
a class of Lyapunov UGES (Uniformly Globally Exponentially Stable) protocols
in the Lp space framework. In reference [48], by assuming bounded time delays
and packet dropouts, the authors investigate a robust H∞ control problem for
networked control systems. However, all the above papers did not study the issue
of time delays or packet loss from controllers to actuators. A possible difficulty in
dealing with controller-to-actuator delays and packet loss may be: A pre-defined
controller is usually unable to predict and then compensate for time delays or packet
loss from controllers to actuators. Based on the above discussion, techniques in this
class usually are quite conservative because of their inherent limitations in system
modeling, as has been widely acknowledged.

The foregoing conservativeness has triggered the development of the second cate-
gory of methods, where network-induced time delays and packet loss are modeled as
random processes, typically Markov chains. Via this modeling, specific properties
of these stochastic processes can be deployed to facilitate the design of controllers
guaranteeing desirable control performance. For instance, in [18], by assuming
time delays as Markov chains, a jumped linear system is constructed via state
augmentation. Moreover, several necessary and sufficient conditions for zero-state
mean-square exponential stability have been established for this type of networked
control systems. A similar approach is adopted in [49] where sensor-to-controller
and controller-to-actuator time delays are assumed to behave according to two
Markov chains respectively. LMI techniques are then employed to address the sta-
bilization problem. In [26], both sensor-to-controller and controller-to-actuator time
delays are modeled as independent white-noise with zero mean and unit variance;
consequently, a (sub)optimal stochastic control problem is formulated and stud-
ied. Two Matlab toolboxes, Jitterbug and TrueTime, are proposed recently in [8]
based on the assumption that a networked control system can be approximated by
a sampled-data control system with signal quantization and time delays involved.
These two toolboxes can be readily adopted to determine how sensitive a control
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system is to delays, jitters, and lost samples, etc. As a result, they can be utilized
as testbed for designing and analyzing real-time networked control systems.

The above two classes of methodologies tackle adverse network effects passively,
i.e., they just deal with the adverse influence of network traffic on control systems,
while ignoring the interactions between communication channels and control sys-
tems. Clearly, interaction between networks and control systems are quite practical
and hence should be take into account. This consideration has inspired the third
category of methodologies that address the tradeoff between data transmission rate
and performance of control systems. Some interesting work has been done in this
direction. For instance, in order to minimize bandwidth utilization, Goodwin et
al. [15] propose to use quantization to reduce the size of the transmitted data and
solve the problem via a moving horizon technique. The adoption of moving horizon
techniques is natural as it can effectively deal with constraints caused by quantiza-
tion. The concept of containability is proposed in [47], which characterizes a certain
stability of networked control systems. Moreover, the effect of signal quantization
error, quantization time and propagation time on containability is investigated. In
[37], two classic control concepts, observability and stabilizability, are generalized
for networked control systems. Under finite data rate constraint, the lower bound
of data rates is obtained for the system to be asymptotically observable (or stabiliz-
able). The resultant lower bound turns out to be the summation of the logarithms
of modules of the unstable system poles. These fundamental results are further
generalized into the study of control problems over noisy channels in [38]. An LQG
optimal control problem of an unstable scalar system is studied in [11], where the
communication network is an additive white Gaussian noise (AWGN) channel. For
this case, it is shown that the achievable data transmission rate is governed by
the fundamental Bode sensitivity integral formula. This result is rather interesting
because it establishes the equivalence between feedback stabilization through an
analog communication channel and a communication scheme based on feedback,
thus unifying the design of control systems and communication channels.

In [50], a new data transmission strategy is proposed aiming at reducing net-
work traffic congestion. The basic idea is: By adding constant deadbands to both
a controller and a plant to be controlled, signals will be sent only when necessary.
By designing the deadbands carefully, a tradeoff between control performance and
reduction of network data transmission rate can be achieved. This network data
transmission protocol is able to fit a control network into an integrated commu-
nication network composed of control and data networks, so as to fulfill the need
for a new breed geared toward total networking. Seamless integration of control
systems into communication networks is clearly very appealing as well as promising
as depicted by Raji [31]; This kind of integration is so fundamentally important
that it is regarded as a fundamental future direction in control research in an
information-rich world [23]. Essentially speaking, under the network data trans-
mission strategy proposed in [50], in an integrated network consisting of data and
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control networks, it is requested that the network provide sufficient communication
bandwidth upon the request of control systems. As a payoff, control systems will
save network resources by deliberately dropping packets while without degrading
system performance severely. This is a crucial tradeoff. On the one hand, con-
trol signals are normally time critical, hence the priority should be given to them
whenever requested; on the other hand, due to one characteristic of control net-
works, namely, small packet size but frequent packet flows, they demands frequent
transmissions. The proposed scheme aims at relieving this burden on the whole
integrated communication network.

The dynamics of the above scheme are analyzed in [50, 51, 52], where it is found
that in contrast to its very simple appearance, it gives rise to many unexpected
and interesting dynamical phenomena and mathematical problems. For example,
suppose that the system G to be controlled is first-order, linear and time-invariant,
and a linear time-invariant controller C is designed without taking the network
traffic into account, the system behaves chaotically. In fact, it is shown by Theorem
6 in [50] that if either G or C is unstable, the closed-loop system can not be
asymptotically stable. A step signal tracking problem is discussed in [51], where
it is shown that for an unstable second-order system, by modifying the control
scheme carefully, tracking errors are reasonably small and simultaneously very low
transmission rate is demanded by the system. However, it is hard to extend that
method to higher-order systems and/or other tracking problems such as tracking a
sinusoidal signal.

In this paper we will attack these difficulties by means of some tools that are
fairly recent vintage. More specifically, we will transform the problem to a mixed-
integer programming problem. The block consisting of G and H1 (see Fig. 1) is
converted to a mixed logical dynamical (MLD) system which is a system involving
both real and integer variables as well as integer (in)equalities. Within this context,
a finite-horizon MPC problem is formulated. Note that the problem under study
is a problem of joint control and communication utilization reduction, besides the
control performance specification, one performance index for network utilization is
also included explicitly into the MPC performance specification. In general, such
an optimization problem is hard to solve. Fortunately, due to the characteristic
of the problem, the mixed logical dynamical (MLD) systems framework recently
developed by Bemporad et al. ([2], [39]) can be adopted to design controllers to
achieve satisfying control while at the same time reduce network traffic. Moreover,
control of higher-order systems as well as more complicated signal tracking can be
addressed readily via this approach. Two examples illustrate that the difficulty in
sinusoidal signal tracking posed above can be addressed neatly using this method.

This paper is organized as follows: The proposed network protocol is presented in
Section II. Stability of MPC is discussed in Section III. In Section IV, the networked
system is first converted into a mixed logical dynamical system, then a finite-horizon
MPC problem is formulated and investigated. Two examples are given in Section
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V to illustrate the effectiveness of this new configuration. Section VI concludes this
paper.

2. THE PROPOSED NETWORK TRANSMISSION STRATEGY

For completeness, the network data transmission strategy proposed in [50] is
briefly reviewed in this section. Consider the feedback control system as shown in
Fig. 1, where G is a plant in discrete time that is of the form:

r e

 -

u y
GC

Fig. 1. A typical feedback system

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),

with the state x ∈ Rn, the input u ∈ Rq, the output y ∈ Rp, and the reference
input r ∈ Rp, respectively; C is a stabilizing discrete-time controller:

xd(k + 1) = Adxd(k) + Bde(k),

u(k) = Cdxd(k) + Dde(k),

e (k) = r (k)− y (k) ,

with its state xd ∈ Rnc . Let ζ =

[
x

xd

]
. It is easy to show that the closed-loop

system from r to e can be formulated as

ζ (k + 1) =

[
A−BDdC BCd

−BdC Ad

]
ζ (k) +

[
BDd

Bd

]
r(k),

e(k) =
[
−C 0

]
ζ (k) + r(k).

Next, we add two logic blocks on both u and y. More concretely, consider the
system as shown in Fig. 2. The logic block H1 is defined as follows: For given δ > 0,

e
c
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Fig. 2. A constrained feedback system
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take v(−1) = 0; and for k ≥ 0, let

v(k) = H1 (uc (k) , v(k − 1)) =

{
uc(k), if ‖uc (k)− v (k − 1)‖∞ > δ,

v(k − 1), otherwise.

Similarly, H2 is defined as follows: for given δ2 > 0, take z(−1) = 0; for k ≥ 0, let

z(k) = H2 (yc (k) , z(k − 1)) =

{
yc(k), if ‖yc (k)− z (k − 1)‖∞ > δ2,

z(k − 1), otherwise.

It is provable that ‖H1‖, the `∞ induced norm of H1, equals 2, and so is ‖H2‖.
In [27] adjustable deadbands are proposed to reduce network traffics, where the

closed-loop system with deadbands is modeled as a perturbed system, and its ex-
ponential stability follows that of the original system [17]. The constraints, δ and
δ2 proposed here, are fixed. We have observed ([50, 51, 52]) that the stability prob-
lem of the system shown in Fig. 2 is fairly complicated and only local stability can
possibly be obtained. However, the main advantage of fixed deadbands is that it
will reduce network traffics more effectively. Furthermore, the stability region can
be scaled as large as desired (at least for low order systems).

The effect of adding deadbands into the network is different from quantization.
A one-dimensional quantizer with a quantization size ∆ is a map from R to a
countable subset L = {lj}j∈Z of R. Such a quantizer can be constructed in the
following manner: Given a scalar ∆ > 0, partition continuously R into countably
many subintervals Γ := {Γj}j∈Z satisfying 1)

⋃
j∈Z Γj = R, 2) Γj

⋂
Γi = φ, ∀i 6= j,

3) 0 ∈ Γ0. One choice of the partition methods is: Γj = [(j − 1/2)∆, (j + 1/2)∆),
j ∈ Z. Choose a countable subset L = {j}j∈Z of R. Then the quantization is a
map from R→ L defined as x 7−→ j, ∀x ∈ Γj . If ∆ is fixed, then the quantization
is called time-invariant, otherwise time-varying. Given a time-invariant quantizer,
two signals arbitrarily close to one another may be mapped to two different values.
For example, consider the quantizer given above with ∆ = 1. Let j = 0. Then
−1/2−ε and −1/2+ε are mapped to −1 and 0 respectively, no matter how small ε

is. Clearly this is undesirable. Our scheme does not assume a fixed partition of the
space; instead, the partition is regulated by the time-varying v(k− 1) and z(k− 1),
therefore it is more flexible.

3. STABILITY OF MPC

Model predictive control (MPC) has been accepted as a standard technique in
controlling multivariable systems under various output/input/state constraints. At
each sampling instant, assuming that the current state is available, an open-loop
(sub)optimal control law is calculated over a finite-horizon by solving a quadratic
optimal control problem, thus obtaining a sequence of future input, and the first
one is then sent to the actuator. At the next sampling instant, this procedure
is repeated using the new measured state and over a finite-horizon. So we can
see that the finite-horizon optimization eases the solvability of the optimization
problem involved while at the cost of the difficulty in ensuring closed-loop stability.
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Of course on-line computation is also a serious problem in MPC. Here we will review
some standard methods in the literature that address closed-loop stability. We find
that the stability problem of a finite-horizon MPC is usually transformed to that
of an infinite-horizon MPC, either explicitly or implicitly.

Consider the following linear discrete-time system

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),(1)

where the state x ∈ Rn, the input u ∈ Rm, and the output y ∈ Rp. u and y satisfy
the following constraints

(2) umin ≤ u(k) ≤ umax,

(3) ymin ≤ y(k) ≤ ymax,

for all k ∈ Z+, the set of non-negative integers; “≤” is element-wise. Clearly the
constraints on u and y are convex.

Assume the current state x(k) is available at the current sampling instant k,
MPC solves the following quadratic optimization problem:

P (M,N, x (k)) : min
U={uk|k,uk+1|k,··· ,uk+M−1|k}

∥∥xk+N |k
∥∥

P
+

N−1∑

i=0

(∥∥xk+i|k
∥∥

Q
+

∥∥uk+i|k
∥∥

R

)

Subject to: xk+i+1|k = Axk+i|k + Buk+i|k, i = 0, 1, · · · , N − 1,(4)

yk+i|k = Cxk+i|k , i = 0, 1, · · · , N − 1,(5)

umin ≤ uk+j|k ≤ umax, j = 0, 1, · · · ,M − 1,(6)

ymin ≤ yk+i|k ≤ ymax, i = 0, 1, · · · , N − 1,(7)

where xk|k = x(k) is the current state, and xk+i|k (1 < i ≤ N) can be determined
by Eq. (4) with U being the input.

∥∥xk+N |k
∥∥

P
:= xT

k+N |kPxk+N |k;
∥∥xk+i|k

∥∥
Q

and∥∥xk+i|k
∥∥

R
are defined similarly, where P , Q and R are all non-negative matrices of

compatible sizes. Note that when M < N , uk+j|k (j = M, · · · , N−1) are undefined
in the optimization problem P (M,N, x (k)). There are two choices adopted in the
literature. One is simply to let them be 0, and the other is to assume that they
equal Kxk+j|k (j = M, · · · , N − 1) where K is a constant gain and xk+j|k are
calculated states. At each sampling instant k, assuming that the current state x(k)
is available, the above optimization problem P (M, N, x (k)) is solved, bringing in
a predicted input sequence {uk, uk+1, · · · , uk+M−1}, then the first, namely uk, is
applied to system (1) while the others are discarded. This procedure is repeated
at the next sampling instant k + 1, and so on. Hence one can see that when M

and N are finite, the finite-horizon nature of this optimization problem allows the
constraints on input and output to be satisfied, however this is at the cost of huge
computation effort because at each sampling instant an optimization problem has
to be solved online, which limits its application to systems whose dynamics are
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relatively slow. Therefore, quite remarkably, if the feasible sets of state and input
are polytopes, it is proved in [3] that the optimization problem P (M, N, x (k)) in
effect admits a convex and piecewise affine solution, thus the control law can be
determined off-line, therefore moving the computation burden off-line. Clearly this
greatly enlarges the applicability of MPC. For convenience, from now on we denote
the optimization problem with N = ∞ by P (M,∞, x (k)) and with M = N = ∞
by P (∞,∞, x (k)) respectively.

Stability is the most fundamental issue in all control systems. For simplicity,
suppose that the stability problem is to steer the initial state x (0) to the origin.
To that end, almost all existing methods assume either explicitly or implicitly
that the optimization problem P (∞,∞, x (0)) is solvable when x (0) is in a small
neighborhood of the origin, say, Ω. This is indeed quite intuitive: when the system
starts somewhere close to the origin, small input effort is sufficient to drive the
state to the origin asymptotically while the input constraint as well as the output
constraint are satisfied automatically. In other words, the problem reduces to a
traditional LQR problem. Based on this idea, the stability problem boils down
to the feasibility of either the optimization problem P (M, N, x (k)) with finite M

and N or P (M,∞, x (k)). As far as P (M,∞, x (k)) is concerned, by supposing
that the input and the state are bounded, an input-horizon M is sought which
steers an initial state into an invariant subset Λ of Ω. Due to the boundedness
of the state, such M always exists. Then the state will enter Λ and stay there
forever due to the invariance of Λ. As commented before, starting from a state
x ∈ Ω the LQR problem with the input constraint and the output constraint is
solvable; moreover, because Λ is an invariant subset of Ω, P (M,∞, x (k)) is also
solvable, i.e., a stabilizing law always exists ([12], Theorem 1 in [3] and the references
therein). This idea is also used in [32] and [1] and has been the driving force
behind much of the recent development. On the other hand, for P (M, N, x (k)),
assuming M = N , Keerthi and Gilbert [16] prove that as N → ∞, the finite-
horizon optimization problem P (N, N, x (k)) is equivalent to the infinite-horizon
optimization problem P (∞,∞, x (0)). Hence the solvability of P (∞,∞, x (0)) is
assumed implicitly. This result has inspired much subsequent research (see, e.g.,
[22],[6],[55],[3]). So Mayne, et al. comment presciently in [21], “In some cases the
finite-horizon optimal control problem solved on-line is exactly equivalent to the
same problem with an infinite-horizon; in other cases it is equivalent to a modified
infinite-horizon optimal control problem.” Unfortunately we will show that due to
the special characteristic of the problem being studied here, the solvability of the
optimization problem P (∞,∞, x (0)) is not available. This leads to virtually no
tools available for its stability analysis. Nevertheless, the prediction control problem
can still be solved efficiently to address stability as well as tracking problem.
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Fig. 3. Networked-based MPC control system

4. MAIN RESULTS

In this section, we study the network-based control problem raised in Section 2.
Essentially speaking, this is a joint control and communication problem, where both
control performance and network resource utilization are considered simultaneously.
We first convert the system to be controlled under the network data transmission
strategy into a mixed logical dynamical (MLD) system. Then for a performance
specification consisting of both control performance and network traffic rate, a
model predictive controller is designed. This re-configuration enables us to adopt
optimization techniques recently developed for predictive control of hybrid systems
to design a controller taking into account both control performance and reduction
of network data transmission rate.

4.1. System Reformulation. In this subsection, we convert the compound block
consisting of G and H1 into a mixed logical dynamical system. For the sake of
simplicity, we only consider the network traffic from control to actuator. More
concretely, consider the configuration in Fig. 3, where the system G is given by

x (k + 1) = Ax (k) + Bv (k) ,

y(k) = Cx(k),(8)

in which

(9) v (k) = H1 (u(k), v(k − 1)) =

{
u (k) if |u(k)− v(k − 1)| > δ,

v(k − 1) otherwise.

For ease of presentation, define

z(k) := v(k − 1).

Then the system composed of Eqs. (8)-(9) becomes
[

x (k + 1)
z(k + 1)

]
=

[
Ax(k) + Bu(k)

u(k)

]
=

[
A 0
0 0

][
x(k)
z(k)

]
+

[
B

I

]
u(k),

y(k) = Cx(k),(10)

if |u(k)− z(k)| > δ; otherwise,
[

x (k + 1)
z(k + 1)

]
=

[
Ax(k) + Bz(k)

z(k)

]
=

[
A 0
0 0

][
x(k)
z(k)

]
+

[
B

I

]
z(k),

y(k) = Cx(k).(11)
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Denote

Ā =

[
A 0
0 0

]
, B̄ =

[
B

I

]
, C̄ = [C 0],

and define

ξ (k) := u(k)− z(k),

X =
[
xT zT

]T
,(12)

where the superscript “T” stands for the matrix transpose operator. Then the
system composed of Eqs. (10)-(11) is equivalent to

X(k + 1) =

{
ĀX(k) + B̄u(k) if |ξ| > δ,

ĀX(k) + B̄u(k)− B̄ξ(k) otherwise.

y(k) = C̄X(k)(13)

Remark 1. Note that the constraint |ξ| > δ in Eq. (13) is nonconvex. This feature
distinguishes system (13) from all the systems studied by Bemporad et al. ([2], [39],
[3], [4], [9], [10], [19]). In fact, due to this characteristic, the newly developed hybrid
system toolbox HYSDEL ([5]) is unable to convert system (13) from the form of a
mixed logical dynamical system into that of an equivalent piece-wise affine system.

System (13) is a switched system under a logical law. In general, it is not easy
to control such systems even if the consideration of network traffic rate reduction
is neglected. Next we convert this logical law to a logical value. To do that, let
us first recall some Boolean connectives as listed in Table 1. By means of these

Table 1. Boolean algebra connectives

∧ and
∨ or
∼ not
→ implies
↔ if and only if
⊕ exclusive or

Boolean connectives, the literal |ξ(k)| > δ can be associated with a logical value
γ(k) via

(14) [|ξ(k)| > δ] ↔ [γ(k) = 1] .

(For a comprehensive treatment of propositional calculus and integer programming,
interested readers may refer to [46, 7].) In terms of Eq. (14), system (13) can be
transformed to

X(k + 1) =
(
ĀX(k) + B̄u(k)

)
γ(k) +

(
ĀX(k) + B̄u(k)− B̄ξ(k)

)
(1− γ(k))

= ĀX(k) + B̄u(k)− B̄ξ(k) (1− γ(k)) ,

y(k) = C̄X(k).(15)
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Define

(16) η(k) := ξ(k) (1− γ(k))

to remove the nonlinearity, system (15) is then equivalent to

X(k + 1) = ĀX(k) + B̄u(k)− B̄η(k),

y(k) = C̄X(k).(17)

Define an upper and a lower bound of ξ to be

(18) M = max {ξ} , m = min{ξ}.
These bounds are usually specified by the practical consideration, and they facilitate
the derivation of linear inequalities that will serve as constraints in the optimization
problem. It is easy to show that
(19)
η(k) ≤ M (1− γ(k)) , η(k) ≥ m (1− γ(k)) , η(k) ≤ ξ(k)−mγ(k), η(k) ≥ ξ(k)−Mγ(k).

Furthermore, define

[ξ(k) > δ] ↔ [α(k) = 1] , [ξ(k) < −δ] ↔ [β(k) = 1] .

Consequently,

{[α(k) = 1] ∨ [β(k) = 1]} ↔ [γ(k) = 1] ,

which is equivalent to

(20) α(k) ≤ γ(k), β(k) ≤ γ(k), γ(k) ≤ α(k) + β(k).

Also, it is easy to verify that

[ξ(k) > δ] ↔ [ξ(k)− δ > 0] ↔ [α(k) = 1]

if and only if

(21) ξ (k)− δ < (M − δ)α(k), ξ (k)− δ > ε + (m− δ − ε)(1− α(k)).

where ε is a positive number which is sufficiently small. Similarly,

[ξ(k) < −δ] ↔ [ξ(k) + δ < 0] ↔ [β(k) = 1]

if and only if

(22) ξ (k) + δ < (M + δ)(1− β(k)), ξ (k) + δ > ε + (m + δ − ε)β(k)).

Via the above procedure, the system consisting of G and H1 has become a mixed
logical dynamical (MLD) system (17) with (in)equality constraints (12), (16) and
(19)-(22). For convenience, we hereafter denote it by Σ. It is clear that the state
of Σ is X, the input is u, and the output is y. ξ, η, α, β and γ are all auxiliary
variables. Given an MLD system, the first thing to check is if it is well-posed. It
can be verified that, once the initial condition x(0) and z(0) (which is v(−1)) and
a control sequence are given, all other variables are uniquely determined, hence
Σ is well-posed. It is worthwhile to notice that, due to the nonconvexity of the
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constraint (see Remark 1), system Σ is different from those MLD systems defined
in [2], and thus make the derivation of explicit control laws impossible.

Keeping in mind that we are now studying a network-based control problem,
hence in addition to stability and performance of the control systems, network
resource utilization must also be taken into account. In light of this, we define a
new integer variable

(23) ω(k) = 1− γ(k).

Note that when ω(k) = 0, there is one network data transmission; otherwise, no
data transmission.

4.2. MPC Control. In this subsection we study the following problem: How to
design a controller for system Σ such that the closed-loop system has satisfactory
control performance and meanwhile network traffic is reduced reasonably. Observe
that the logic law has been converted to linear (in)equalities constraints, hence we
are motivated to seek a desirable control law using MPC techniques. In general, it
is not easy to find an appropriate prediction control law for an MLD system because
the system is essentially nonlinear and integer variables are involved. Fortunately
some effective tools have been developed recently ([2], [3], [39], [4]) based on mixed-
integer algorithms ([14]). Hereafter we will borrow this idea to reduce our controller
design problem to a problem of predictive control.

Suppose the objective of control is to force the output y to track a reference signal
yr. Also let Xr, ur be desired references of the state and input respectively. Then
at the current sampling instant k, the predictive control problem can be formulated
as:

P(N, X(k)) : min
U

{
‖Qx (X(k + N |k)−Xr)‖p +

N−1∑

i=0

‖Qy (y(k + i|k)− yr)‖p

+ ‖Qx (X(k + i|k)−Xr)‖p + ‖Qu (u(k + i|k)− ur)‖p + |Qω(ω(k + i|k)− 1)|
}

subject to X(k|k) = X(k), Eq. (12), and Eqs. (16)-(23), where the positive integer
N is the prediction (as well as control) horizon, and

U = {u(k|k), u(k + 1|k), ..., u(k + N − 1|k)},

is a future input sequence to be determined by solving the above optimization
problem. Furthermore,

‖Qx (X(k + N |k)−Xr(k + N |k))‖p

:=

{
(X(k + N |k)−Xr(k + N |k))T

Qx (X(k + N |k)−Xr(k + N |k)) if p = 2,

‖Qx (X(k + N |k)−Xr(k + N |k))‖∞ if p = ∞.

Other matrix norms are defined in a similar way. Weighting matrices satisfy

Qx ≥ 0, Qy ≥ 0, Qu ≥ 0, Qω > 0.
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Because ω reflects the transmission rate, it is separated from state variables. More-
over, Qω must be a strictly positive number. The bigger Qω is, the more severe
the demand is on the network transmission reduction. So consideration of network
traffic is integrated into the above optimization explicitly.

Here the control and prediction horizon are set equal. As is known in the lit-
erature of MPC, an infinite prediction horizon MPC problem is always assumed
to be solvable when a finite-horizon MPC problem is to be dealt with. This key
observation has enabled many effective approaches to solving various MPC prob-
lems (see, e.g., [21], [3]). in fact, If the system involved is of linear structure and
its constraints are convex, explicit piece-wise affine MPC controllers can be con-
structed ([3]). Unfortunately, due to the very nature of the problem studied here,
i.e., control performance with transmission rate reduction, the corresponding infi-
nite prediction horizon MPC problem (i.e., N = ∞ in P(N, X(k))) is not solvable.
This is stated as the following theorem.

Theorem 1. If G is unstable, the set of X(k) such that the optimization problem
P(N, X(k)) with N = ∞ admits finite solutions is of zero Lebesgue measure.

Proof. For a given X(k), suppose that the optimization problem P(N,X(k)) with
N = ∞ has a solution. Then it has finite cost. Therefore, there is a time K0 such
that v(k) = v(K0) for all k ≥ K0, i.e., there will be no more new input update.
Consequently,

x(k + 1) = Ax(k) + Bv(k),

y(k) = Cx(k), (∀k ≥ K0),(24)

which yields

(25) x(K0 + L) = ALx(K0) +
L−1∑

i=K0

AL−iBv(K0),

for any integer L > 0. Suppose the problem under consideration is to regulate the
state to the origin, namely, drive x(K0 + L) → 0 as L → ∞. Since G is unstable,
i.e., the matrix A is unstable. Denote by EK0 the set of x(K0) such that x(K0 +L),
governed by Eq. (25), tends to zero as L goes to ∞. Then the Lebesgue measure,
m(EK0), is zero. Note that K0 is a non-negative integer. For convenience, denote
EK0 by Ei when K0 = i. Thus the union of Ei for i from 0 to ∞ contains all x(K0)
such that P(N, X(k)) with N = ∞ is solvable. Observe that m(Ei) = 0 for each
non-negative integer i, thus

m(∪(Ei)) ≤
∞∑

i=0

m(Ei) = 0,

which indicates that the set of all X(K) such that P(N, X(k)) with N = ∞ is
solvable has Lebesgue measure 0. ¤

Remark 2. Tracking problems can be treated similarly.
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Remark 3. Suppose a linear time-invariant controller C is designed for the system
G in Fig. 1, it is proved by Theorem 6 in [50] that if either G or C is unstable, the
closed-loop system is not asymptotically stable. Theorem 1 shows that asymptotic
stability is not possible either even if a time-varying controller is adopted.

Theorem 1 tells us that, as far as the optimization problem at hand is concerned,
the finite-horizon and infinite-horizon problems are not “equivalent” in the sense of
solvability. This causes much difficulty in proving the stability of the closed-loop
system in Fig. 3. Nevertheless, the finite-horizon optimization problem P(N, X(k))
is always feasible for any given X(k). For a given horizon length N , each element
u(k + i|k) (i = 0, ..., N − 1) in the future input sequence U either satisfies |u(k +
i|k) − z(k + i|k)| > δ (when δ=1) or |u(k + i|k) − z(k + i|k)| ≤ δ (when δ=0).
Hence there are together 2N optimization problems to be solved at each sampling
instant k. The solution of these optimization problems will produce the future
input sequence U , the first of which will be sent to the system while the others
are to be discarded. This procedure repeats at the next sampling instant k + 1.
However, one can not hope that an optimal input sequence U can be found, one
reason being the nonconvexity of the the constraint |u(k + i|k) − z(k + i|k)| > δ.
Moreover, this nonconvexity rules out the existence of piece-wise affine controllers.
Nonetheless, in the next section we demonstrate that the method proposed here
can be used to design controllers which provide satisfactory control performance
and simultaneously reduce network transmission rate to a certain degree.

5. EXAMPLES

In this section, two examples are given to illustrate the effectiveness of the ap-
proach presented in Section 4. The first example is used in [51]. It will be shown
that better control can be achieved via the propose method. The second example is
a double integrator which is an unstable second-order system. The problem of sinu-
soidal signal tracking is addressed, which can not be addressed using the approach
proposed in [51].
Example 1. Consider the following system:

Σ1 : x(k + 1) = ax(k) + bv(k),

y(k) = x(k),

with v(−1) ∈ R without loss of generality, and for k ≥ 0,

v(k) =

{
u(k), if |u (k)− v (k − 1)| > δ,

v(k − 1), otherwise,

The chaotic dynamics of system Σ1 have been analyzed in detail in [50, 51, 52].
Now we discuss its control problem. Specifically, we address the following tracking
problem.
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According to the development in Section 4, we define the following optimization
index:

X̃ (k) =
[

x (k) v (k − 1) ω(k)
]T

.

min
U

N∑

i=0

|Qy (y(k + i|k)− yr(k + i))|+ ‖Qx (x(k + i|k)− xr(k + i))‖∞
where

yr ≡ 1, xr =
[

1 1 1
]T

.

Qy = 110, Qx =




100 0 0
0 0 0
0 0 1


 .

Note that p in Eq. (24) is chosen to be∞. In terms of propositional logic, system
Σ1 can be written into a HYSDEL (Hybrid System DEscription Language) code [5].
Then by running this code a mixed logical dynamical model is obtained (However
it can not be converted to a piece-wise affine form, due to the nonconvexity of the
constraints). Choose δ = 0.04 and N = 3. Take an initial condition (x(0), v(−1)) =
(0.5,−10). Now we study two cases. Case 1 is with a = 0.9 and b = −0.3 and case
2 is with a = 1.2 and b = −0.3. Hence, the original system in case 1 is stable
while that in case 2 is not. If we desire that the output y tracks a sinusoidal
signal, 0.2 ∗ sin((0 : Tstop)′/5), where Tstop is the simulation time (it is set to be
150 in this example), then Figs. 4-7 are obtained. In case 1, the transmission
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0

0.1

0.2

0.3

0.4

0.5
case 1: a = 0.9  

y: blue points
r:  red  stars

Fig. 4. Tracking of a sinusoidal signal: Output

rate is 66.67% while that of case 2 is 72%. We conclude that tracking is achieved
while the network transmission rate is also reduced to a certain degree. When the
system is excessively unstable, for example, a = 20, the optimization process with
a prediction horizon N = 2 generates a sequence of input u(k + i|k) which makes
all ω(k + i + 1|k) equal to 0. Note that the zero value of ω indicates the successful
network transmission. By using a longer prediction horizon, say, N = 8, some
values of ω are 1, i.e., the controller based on the prediction control can still reduce
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Fig. 5. Tracking of a sinusoidal signal: Input
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Fig. 6. Tracking of a sinusoidal signal: Output
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Fig. 7. Tracking of a sinusoidal signal: Input

network traffic to some extent. However, when a = 50, the prediction horizon N

will have to be extremely big.
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Example 2. Consider the double integrator

y (s) =
1
s2

u (s) .

Application of the Euler method to it with the sampling period h = 1s yields the
following discrete-time system:

Σ2 : x (k + 1) =

[
1 1
0 1

]
x (k) +

[
0
1

]
u(k),

y(k) = [ 1 0 ]x(k).

According to the development in Section 4, we define the following optimization
index:

min
U

N∑

i=0

|Qy (y(k + i|k)− yr(k + i))|+ ‖Qx (x(k + i|k)− xr(k + i))‖∞

where

Qy = 100, Qx =




10 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

Following the procedure in Example1, choose δ = 0.04 and N = 12. Take an initial
condition (x1(0), x2(0), v(−1)) = (1, 1, 0). The control objective is to force the
output y to track a sinusoidal signal, 0.5 ∗ sin((0 : Tstop)′/5) where the simulation
time Tstop is 400s. Simulation result is shown in Figs. 8-9. Here only the first 360
iterations are plotted. The network transmission rate is 81.75%.
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Fig. 8. Tracking of a sinusoidal signal: Output

Some comments may be appropriate.
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Fig. 9. Tracking of a sinusoidal signal: Input

Remark 4. Notice that the input y is one step behind the reference input because
the sinusoidal signals are not known advance. Hence each trajectory y in Fig. 8 are
shifted one step to the left when plotted.

Remark 5. In Example 2, if there are no uncertainties, no matter whether asymp-
totic stability or step tracking is concerned, it is found that there is always a time
K0 such that x(K0 + 1) = 0 (in asymptotic stability) or y(K0 + 1) = d (in tracking
a step of magnitude d), and there are no more transmission anymore. So deadbeat
control is achieved.

Remark 6. In Example 2, the choice of the prediction horizon N is crucial. For
example, if the problem involved is to track a sinusoidal signal, a small N , say,
N = 2, leads to no solution (note that N = 12 in Example 2). However, a larger
N will demand more computation time.

6. CONCLUSIONS

We have studied a network-based control problem for a newly proposed network
data transmission scheme. By re-formulating the system into a mixed logical dy-
namical system, we are able to use some recently developed optimization tools to
achieve desired control performance while reducing network traffic simultaneously.
Two examples have demonstrated the effectiveness of this treatment. Clearly, many
open problems remain to be addressed. Here we collect three of them.

(1) In this paper, systems studied in the examples are low dimensional and
SISO. Given a multi-input-multi-output (MIMO) system, the choice of δ

in the switching law and the prediction horizon N will have to be designed
carefully.

(2) In the two examples in Section 5, it is found that when p = 2 in Eq. (24),
there exist no solutions to the pertinent optimization problem. The reason
is still unknown at this stage of this research.
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(3) How to extend the method proposed here to the networked control problem
with the presence of both H1 and H2? If H2 is added, there will be time
delays from sensor to controller. To make good use of the MPC method, a
suitable estimation of the state of the plant becomes very important.

These constitute our future research.

APPENDIX
The mixed logical dynamical system model of Example 1 in Section 5.

/* x1 is the real state x, and x2 is v(k-1). Each time x2 and u are

compared to determine the value of x3. If x3=0, there is one

transmission, otherwise, there is no transmission. */

SYSTEM ncs {

INTERFACE {

STATE { /* States can only be REAL or BOOL, not INTEGER,

the same holds for input and output. */

REAL x1 [-100,100];

REAL x2 [-100,100];

BOOL x3; }

INPUT { REAL u [-100,100]; }

OUTPUT { REAL y; }

PARAMETER { REAL a = 1.2, b = -0.3, delta = 0.04;

}

}

IMPLEMENTATION {

AUX { REAL z1, z2;

BOOL alpha, beta;

}

AD {alpha = u-x2>=delta; /* delta has a very significant effect

on the transmission rate. */

beta = u-x2<=-delta;}

DA { z1 = {IF alpha|beta THEN a*x1+b*u ELSE a*x1+b*x2};

z2 = {IF alpha|beta THEN u ELSE x2};

}
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CONTINUOUS { x1 = z1;

x2 = z2; }

AUTOMATA {

x3 = ~(alpha|beta); }

OUTPUT { y = x1; }

}

}
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[28] U. Özgüner, H. Goktas, and H. Chan, Automotive suspension control through a computer

communication network, Proc. IEEE, conf. Control Applications, (1992) 895-900.

[29] L. Peterson and B. Davie, Computer Networks: A Systems Approach, Morgan Kaufmann

Publishers (2nd Edition), 2000.

[30] Z. Qiu, Q. Zhang, X. Zhang and L. Yang, Robust stability for a class of networked control

systems based on state observer, International Journal of Information and Systems Sciences,

3 (2007) 594-603.

[31] R. Raji, Smart networks for control, IEEE Spectrum, 31 (1994) 49-53.

[32] J.B. Rawlings, and K.R. Muske, Stability of constrained receding horizon control, IEEE

Trans. Automat. Contr., 38 (1993) 1512-1516.

[33] A. Ray, Performance evaluation of medium access control protocols for distributed digital

avionics, ASME Journal of Dynamic Systems, Measurement and Control, 109 (1987) 370-

377.

[34] D. Rao, M. Murthy, S. Rao and D. Harshal, Neural generalized predictive control for real

time applications, International Journal of Information and Systems Sciences, 3 (2007) 1-15.

[35] R. Safaric, K. Jezernik, D. Calkin, and R. Parkin, Telerobot control via internet, Proceedings

of IEEE sympo. Indus. Elect., 1 (1999) 298-303.

[36] J. Sparks, Low-cost technologies for aerospace applications, Microprocessors and Microsys-

tems, 20 (1997) 449-454.

[37] S. Tatikonda and S. Mitter, Control under communication constraints, IEEE Trans. Automat.

Contr., 49 (2004) 1056-1068.

[38] S. Tatikonda, A. Sahai, and S. Mitter, Stochastic linear control over a communication channel,

IEEE Trans. Automat. Contr., 49 (2004) 1549-1561.

[39] F.D. Torrisi and A. Bemporad, HYSDEL - A tool for generating computational hybrid models,

IEEE Trans. Contr. Syst. Techno., 12 (2004) 235-249.



A MIXED-INTEGER PROGRAMMING APPROACH TO NCS 611

[40] J. Walrand and P. Varaiya, High Performance Communication Networks, Morgan Kaufmann

Publishers, 1996.

[41] G. Walsh, O. Beldiman, and L. Bushnell, Error encoding algorithms for networked control

systems, Proc. IEEE, conf. Decision and Control, (1999) 4933-4938.

[42] G. Walsh, O. Beldiman, and L. Bushnell, Asymptotic behavior of nonlinear networked control

systems, IEEE, Trans. Automat. Contr., 46 (2001) 1093 -1097.

[43] G. Walsh and H. Ye, Scheduling of networked control systems, IEEE Control Systems Mag-

azine, 21 (2001) 57-65.

[44] G. Walsh, Y. Hong, and L. Bushnell, Stability analysis of networked control systems, IEEE

Trans. Contr. Syst. Techno., 10 (2002) 438-446.

[45] G. Walsh, Y. Hong, and L. Bushnell, Error encoding algorithms for networked control systems,

Automatica, 38 (2002) 261-267.

[46] H.P. Williams, Model Building In Mathematical Programming (3rd ed.), New York: Wiley,

1993.

[47] W. Wong and R. Brockett, Systems with finite communication bandwidth constraints, part

II: stabilization with limited information feedback, IEEE Trans. Automat. Contr., 44 (1999)

1049-1053.

[48] D. Yue, Q. Han, and J. Lam, Network-based robust H∞ control of systems with uncertainty,

Automatica, 41 (2005) 999-1007.

[49] L. Zhang, Y. Shi, T. Chen and B. Huang, A new method for stabilization of networked control

systems with random delays, IEEE Trans. Automat. Contr., 50 (2005) 1177-1181.

[50] G. Zhang and T. Chen, Networked control systems: a perspective from chaos, Int. J. of

Bifurcation and Chaos, 15 (2005) 3075-3101.

[51] G. Zhang, G. Chen, T. Chen, and M. D’Amico, Dynamical analysis of a networked control

system, Int. J. of Bifurcation and Chaos, 17 (2007) 61-83.

[52] G. Zhang, G. Chen, T. Chen, and Y. Lin, Analysis of a type of nonsmooth dynamical systems,

Chaos, Solitons & Fractals, 30 (2006) 1153-1164.

[53] G. Zhang, Dynamical analysis and synchronization of a chaotic networked system, the 3rd

National Conference on Complex Dynamical Networks, Beijing, (2006) 119-134.

[54] G. Zhang, X. Chen, and T. Chen, Performance comparison of digital implementation of

analog systems, to appear at the 46th Conference on Decision and Control, New Orleans,

December 12-14, 2007.

[55] Y. J. Zhai, D. Yu and K. Wang, Comparison of single-dimensional and multi-dimensional

optimization approaches in adaptive model predictive control for air-fuel ratio of SI engines,

International Journal of Information and Systems Sciences, 3 (2007) 129-149.

College of Electronic Engineering, University of Electronic Science and Technology of China,

Chengdu, Sichuan, China 610054.

E-mail : gfzhang@ee.uestc.edu.cn

Department of Electrical and Computer Engineering, University of Windsor, Windsor, Ontario,

Canada N9B 3P4.

E-mail : xchen@uwindsor.ca

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Al-

berta, Canada T6G 2V4.

E-mail : tchen@ece.ualberta.ca


