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Abstract. In this paper, we will develop the convergence of the solution of

TV-regularization equations with regularized parameter ε −→ 0 in BV (Ω) for

practical purposes. Originated from the effects of regularized parameter ε, the

error rate of finite element approximation for TV-regularization equations will

be controlled by the regularized parameter ε−1 polynomially in the energy

norm when using linearization technique and duality argument. And in the

Lp−norm, the effect of regularized parameter ε will be more extremely.
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1. Introduction

We consider the following total variation(TV) regularization equations

div
( ∇uε

√
|∇uε|2 + ε2

)− λ(uε − g) = 0, in Ω,(1)

∂uε

∂n
= 0, on ∂Ω.(2)

Equation (1) is an Euler-Lagrange equation originated from the following un-
constraint minimization problem

(3) min
uε

Jλ,ε(uε) = min
uε
{
∫

Ω

√
|∇uε|2 + ε2dx +

λ

2

∫

Ω

|uε − g|2dx}.

Usually, equations (1)-(2) are the numerical regularized approximation of the
following equations, respectively

div
( ∇u

|∇u|
)− λ(u− g) = 0, in Ω,(4)

∂u

∂n
= 0, on ∂Ω.(5)

which corresponds to an unconstrained minimization problem

(6) min
u

Jλ(u) = min
u
{
∫

Ω

|∇u|dx +
λ

2

∫

Ω

|u− g|2dx}.

where, especially in image processing, λ > 0 is the penalization parameter which
controls the trade-off between goodness of fit-to the data and variability in u, u :
Ω ⊂ R2 −→ R denote the gray level of an image describing a real scene, and g
be the observed image of the same scene, which is a degradation of u. And (6) is
usually called the total variation (TV) model or ROF model duo to Rudin, Osher
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and Fatemi [20]. It is one of the best known and most successful noise removal and
image restoration model, too.

(1)-(2) can be taken as nonlinear elliptic problem and we will consider finite
element method approximation in this paper. The common nonlinear elliptic prob-
lem, with Dirichlet boundary conditions , Neumann boundary conditions or mixed
boundary conditions, have been studied theoretically and numerically in the past
thirty years, see [24, 19, 18, 12, 4, 11, 10, 2, 13, 14]. In [2], the authors proved the
existence and uniqueness of the solution of nonlinear elliptic equations of mono-
tone type and also derived error estimates for the finite element approximation
in the energy norm as well as assumption that u ∈ W 1

p , p > 1. In [10], they
presented Galerkin approximations of a quasi-linear non-potential elliptic problem
of a non-monotone type. For the u ∈ H1(Ω), uh converges to u weakly and for
the u ∈ W 1

p (Ω), p > 2, uh converges to u strongly in the H1−norm. In, [11],
the existence and uniqueness of the finite element solution of quasi-linear elliptic
equations with mixed Dirichlet-Neumann conditions are derived by developing a
one-parameter family of hp−version discontinuous Galerkin finite element methods
in the divergence form on a bounded open set Ω. If λ = 0, (4)-(5) or (1)(2) can be
regards as the mean curvature problems. In [12, 7], numerical approximation for
the mean curvature was also set up on finite element error estimations and adaptive
algorithm, respectively.

Interestingly, responding to (6), it is usually solved by formulating the steepest
descent gradient method, which motivates to consider its gradient flow as well as its
numerical form like (1)(2). In [5, 6], they considered the relations between u(t) and
uε(t), proved that uε(t) converged to u(t) in L1((0, T ); BV (Ω))

⋂
C0([0, T ], L2(Ω)).

Dramatically, the convergence rate of the finite element approximation is depend
on the parameter ε by the form C( 1

ε ). It is important for such a result when we
deal with the similar numerical problems because we have to select a proper mesh
size to keep the convergence by finite element method or finite difference method.

Numerically, some works have pointed out that the chose of regularized param-
eter ε is vital in image processing, see [3, 22, 23]. The selection of an appropriate
regularized parameter has been one of difficulties in image processing. Some others
have pointed out that ε will influence the convergence rate of level set function, for
example, in inverse problems, [16, 15, 17]. Therefore, one of the aims of this paper is
to construct and analyze a finite element method for approximating the solution of
equation (1)-(2) for each ε > 0 and approximating the solution of equation (4)-(5)
by taking ε −→ 0.

Based on the above discussing, in this paper, our presentation follows the frame-
works established in [10, 11, 5, 6] in order to develop the convergence relation of
u, uε in the space BV (Ω), and error convergence rate of finite element approxima-
tion for uε. And we also try to demonstrate how ε affects the convergence rate of
finite element approximation uε.

This paper is organized in the following way. In section §2, we prove that the
solution uε of problem (1)-(2) will converge to the solution u of problem (4)-(5) in
BV (Ω) space when the regularized parameter ε −→ 0. In section §3, by introducing
the linearization of the nonlinear problem, we give coercion and duality operator
of the linearization operator, which are the foundation of studying the nonlinear
elliptic partial differential equation for finite element methods. In section §4, firstly,
we introduce an operator T which is contract proved by Lemma 3. Then, based
on fixed point theorem, we prove that the fixed point of operator T is the solution
of finite element approximating for the variation of problem (1)-(2) in the energy
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norm. Also, the convergence rate will be controlled by the regularization parameter
ε−1. In the second subsection, we give the Lp-norm estimation for the finite element
method by the duality argument on the linearization operator. And the convergence
rate depends on the the regularized parameter ε−4 polynomially. In section §5, we
conclude that we should pay more attentions to the chose of regularized parameter
to be used in the practices.

2. TV Convergence

In this section, we will present a proof that the solution uε of (1)-(2) will converge
to the solution u of (4)-(5) when ε −→ 0.

Before our discussion, we need recall that a function u ∈ L1(Ω) is called of
bounded variational if all of its first order partial derivatives are measures with
finite total variations in Ω. Hence, the gradient of such a function u, still denoted
by ∇u, is a bounded vector-valued measure, with the finite total variation

‖∇u‖ =
∫

Ω

|∇u|dx := sup{
∫

Ω

udiv vdx;v ∈ [C1
0 (Ω)]2, ‖v‖L∞ ≤ 1}.

The space of functions of bounded variation is denoted by BV (Ω), endowed with
norm

‖u‖BV := ‖u‖L1 + ‖∇u‖.
and we also refer to [8][9] for definitions of standard space notations.

Also, we want to give some notations of Sobleve spaces and norms used in this
paper. Let W k,p(Ω) be standard Sobolev space

W k,p(Ω) = {f : ‖f‖W k,p < ∞},
where

‖f‖W k,p = (
∑

|α|≤k

‖Dαf‖p
Lp)

1
p , k = 0, 1, · · · .

Also denote the dual space of W k,p(Ω) by W−k,p(Ω) with norm

‖f‖W−k,p = sup
ψ∈W k,p

′
(Ω),‖ψ‖6=0

|(f, ψ)|
‖φ‖W k,p

.

where p
′
is the dual number of p such that 1

p + 1
p′

= 1.
Theorem 1. For any ε > 0, the solution sequence {uε} of problem (1) (2) satisfy

(7) uε −→ u, in BV (Ω)
⋂

L2(Ω).

where u satisfies (4) (5).
Proof: For any ε > 0, test (1) by uε, we can get

∫

Ω

(∇uε)2√
|∇uε|2 + ε2

+
λ

2
‖uε‖2L2 ≤ λ

2
‖g‖2L2 .

which means

(8) ‖∇uε‖+ C(λ, |Ω|)‖uε‖L1(Ω) ≤
√

λ

2
‖g‖L2 .

Then there exists a function u ∈ BV (Ω)
⋂

L2(Ω) and a subsequence {uε} (denotes
the same notation) such that as ε −→ 0

(9) uε −→ u, in BV (Ω)
⋂

L2(Ω).
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Now we can proof that u is the weak solution of (4) (5). Let v is a test function
and g(v) =

∫
Ω

λgvdx, then

|
∫

Ω

∇u · ∇v

|∇u| dxdy +
∫

Ω

λuvdxdy − g(v)|

≤ |
∫

Ω

( ∇u

|∇u| −
∇uε

√
|∇uε|2 + ε2

) · ∇vdxdy|+ |
∫

Ω

λ(u− uε)vdxdy|

= |
∫

Ω

( ∇u(∇uε +∇u)(∇uε −∇u) + ε2∇u

(
√
|∇uε|2 + ε2 + |∇u|)

√
|∇uε|2 + ε2|∇u|(10)

+
|∇u|(∇u−∇uε)√
|∇uε|2 + ε2|∇u|

) · ∇vdxdy|+ |
∫

Ω

λ(u− uε)vdxdy|

Let

γ = sup
ξ∈(L2(Ω))2

|ξ|√
|ξ|2 + ε2

,

then

|
∫

Ω

∇u · ∇v

|∇u| dxdy +
∫

Ω

λuvdxdy − g(v)|

≤
∫

Ω

γ2 |∇u−∇uε|
|∇u| + γ

ε2

|∇u|(
√
|∇uε|2 + ε2 + |∇u|)

+ γ
|∇uε −∇u|

|∇u| + |
∫

Ω

λ(u− uε)vdxdy|

Altogether with (9) and ε −→ 0 we can get
∫

Ω

∇u · ∇v

|∇u| dxdy +
∫

Ω

λ(u− g)vdxdy = 0, ∀v ∈ BV (Ω)
⋂

L2(Ω).

We note that the above argumentation can be applied to any convergent subse-
quence in W 1

1 (Ω). And correspondingly, this argumentation can be applied to any
convergent subsequence in BV (Ω) by density argument. Therefore, Theorem 1
follows.
Remark: Theorem 1 shows that the regularization equation (1) is an reasonable
numerical approximation for the nonlinear equation (4) in the BV (Ω) space. Since
in image processing and inverse problems using level set methods, many theories
are set up in the BV (Ω) space, Theorem 1 gives the explanation why we can study
the regularization equations directly.

3. Linearization of the Nonlinear Differential Operator

We begin this section by studying the linearization of the nonlinear differential
operator resulted from equation (1). The property of this linearization will play an
important role for the error analysis in the following formulations.

Let Mε : W 1,2(Ω) −→ W−1,2(Ω) denote the differential operator,

(11) Mε(u) = −div
( ∇uε

√
|∇uε|2 + ε2

)
+ λuε.

The linearization of Mε at the solution of (1)-(2) is defined as

(12) Luε(φ) = −div
(
D2fε(∇uε)∇φ

)
+ λφ
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where fε(x) =
√
|x|2 + ε2 and D2fε(x) denote the Hession of fε(x) with respect to

x, that is

(13) D2fε(x) =
(|x|2 + ε2)I − xtx

(
√
|x|2 + ε2)3

, ∀x ∈ R2.

where xt denotes the transpose of x.
Since

(14) D2f(x)ξ · ξ =
ε2|ξ|2 + (|ξ|2|x|2 − |x · ξ|2)

(
√
|x|2 + ε2)3

≥ ε2|ξ|2
(
√
|x|2 + ε2)3

, ∀ ξ ∈ R2,

then Luε is elliptic for ε ≥ 0 and uniform elliptic for ε > 0. So is L∗uε , the adjoint
operator of Luε with respect to L2−inner product, that is

(15) L∗uε(φ) := −div(D2fε(∇uε)∇φ) + λφ.

It is easy to check that there holds the following inequality

(16) (Luε(φ), φ) ≥ c0ε
2‖∇φ‖2L2 + λ‖φ‖2L2 , ∀ φ ∈ V.

where

V = {v ∈ W 1,2(Ω),
∫

Ω

vdx = 0},
and some positive constant c0 independent of ε.

4. Finite Element Approximation

4.1. Formulations, and Error Estimations. Before discussing the finite ele-
ment method, we give the variational formulation for (1)-(2): Seek uε ∈ V such
that

(17)
∫

Ω

( ∇uε · ∇v√
|∇uε|2 + ε2

+ λuεv
)
dx =

∫

Ω

λgvdx, ∀v ∈ V.

The polygonal nature of ¯(Ω) enables us to establish a regular family of partition
{T h}, that is parameterized by h ∈ (0, 1). Thus Ω̄ =

⋃
e∈T h

e. With partition T h we

may construct a conforming finite element space Vh ⊂ V such that each element is
affine equivalent to some reference element which does not depend on the parameter
h. For examples, if the use of linear element is desired, we set

Vh = {vh ∈ V, vh

∣∣
e
∈ P1(e), ∀e ∈ T h}

where P1(e) is the space of all polynomials of degree one on e.
Denote Ih : C0(Ω̄) −→ Vh the standard Lagrangian interpolation operator.

Based on the variational equation (17), finite element method approximating for
(17) is defined as seeking uε

h ∈ Vh such that

(18)
∫

Ω

∇uε
h · ∇v√|∇uε
h|2 + ε2

+ λ(uε
h − g)vdx = 0, ∀v ∈ Vh.

Lemma 1. Let φ ∈ W 2,p(Ω) denote the unique solution of the following equations

LIhuε(φ) = g, in Ω,(19)
∂φ

∂n
= 0, in ∂Ω.(20)

Then, there exists a unique solution φh ∈ Vh to the problem

(21) (LIhuε(φh), vh) = (g, vh), ∀vh ∈ Vh.
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Moreover,

‖φ− φh‖L2 + h‖∇(φ− φh)‖L2 ≤ C1h
2‖φ‖W 2,2 .(22)

‖φ− φh‖W 1,p ≤ Ch(‖g‖W−1,p + ‖φ‖W 2,p), ∀1 < p ≤ ∞.(23)

Proof: The existence and uniqueness, as well as estimate (22) immediately from
(14)-(16), and an application of [1], whose proof is known as the Schatz argument
[21]. And (23) is a general result of [21].

In order to demonstrate the property of the solution uε
h of problem (18) approx-

imating to the solution uε of problem (1)-(2), and also to show the effects of the
regularized parameter ε, we need a new technique different from the traditional
method. For a given wh ∈ Vh, we define T (wh) ∈ Vh by

(24) (LIhuε(wh−T (wh)), ψh) = (
∇wh√

|∇wh|2 + ε2
,∇ψh)+(λ(wh−g), ψh), ∀ψh ∈ Vh.

Clearly, T is a mapping from Vh into itself, and from Lemma 1 we can make a
conclusion that T (wh) is well defined and one-to-one.

Also, it is easy to find that the right-hand side of (24) is the left-hand side of
(18) with (wh, ψh) in the position of (uε

h, v), and it is obvious to see that any fixed
point uh of the mapping T (i.e., uh = T (uh)) is the solution of problems (18). In
the following we will show that the mapping T has a unique fixed point, hence (18)
has a unique solution, in a small neighborhood of Ihuε. To this end, we need to
define such a neighborhood

Bh(ρ) = B(Ihuε, ρ) := {vh ∈ Vh : ‖vh − Ihuε‖W 1,p ≤ ρ}.
Then, we have

Lemma 2. There exists a positive constant C2 = C2(ε) and a sufficiently small
number h1 such that h ≤ h1 , there holds

(25) ‖Ihuε − T (Ihuε)‖W 1,p ≤ C2h‖uε‖W 1,p , ∀1 < p ≤ ∞.

Proof: Based on the definition of the T (Ihuε) we know that Ihuε − T (Ihuε) is the
unique solution of (21) with zero value of Neumann boundary and

g = − 1
1 + λ

div
∇Ihuε

√
|Ihuε|2 + ε2

+
λ

1 + λ
Ihuε.

And by the regularization of the solution of problem (19), it is easy to establish

(26) ‖Ihuε − T (Ihuε)‖W 1,p ≤ C3‖g‖W−1,p .

Now, let ηε
h = Ihuε − uε and using (17) we can then get

(g, ψh) = (
1

1 + λ

∇Ihuε

√
|Ihuε|2 + ε2

,∇ψh) +
λ

1 + λ
(Ihuε, ψh)

=
1

1 + λ
(

∇Ihuε

√
|Ihuε|2 + ε2

− ∇uε

√
|uε|2 + ε2

,∇ψh)

+
λ

1 + λ
(Ihuε − uε, ψh) +

λ

1 + λ
(g, ψh).
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Therefore,

(g, ψh) = (
∇Ihuε

√
|Ihuε|2 + ε2

− ∇uε

√
|uε|2 + ε2

,∇ψh) + λ(Ihuε − uε, ψh).

= (Aε
h∇ηε

h,∇ψh)) + λ(Ihuε − uε, ψh).

where

Aε
h :=

∫ 1

0

D2fε(∇uε + t∇(Ihuε− uε))dt.

Since
|Aε

h| ≤ 2ε−1,

a density augment for Vh ⊂ H1 yields that there exists a sufficiently small number
h1 > 0 such that for h ≤ h1

‖g‖W−1,p ≤ 2 sup
ψh∈W 1,p

′
(Ω)

⋂
Vh,‖ψh‖

W1,p
′ ≤1

|(g, ψh)| ≤ 6ε−1‖ηε
h‖Lp ≤ Cε−1h|u|W 2,p .

(27)

where p
′

is the dual number of p such that 1
p + 1

p′
= 1. The proof is completed

after setting C2 = C3Cε−1.

Next lemma establishes the contracting property of the mapping T .
Lemma 3. Let h1 be the same as in Lemma 2, then for h ≤ h1, let ρ0 =
1
18C−1

2 h
2
p ε2, the mapping T is a contracting mapping in the ball Bh(ρ0) with the

contracting factor 1
2 , that is, for any vh, wh ∈ Bh(ρ0)

(28) ‖T (vh)− T (wh)‖W 1,p ≤ 1
2
‖vh − wh‖W 1,p , ∀p ∈ (2,∞].

Proof: For any vh, wh ∈ Bh(ρ0), let ηh = vh − wh, subtracting the two copies of
equation (24) which define T (vh) and T (wh) and using the Mean Value Theorem
of integration yield that for any ψh ∈ Vh

(LIhuε(T (vh)− T (wh)), ψh) = ([D2fε(Ihuε)−Aε
h]∇ξh,∇ψh) + λ(ξh, ψh),(29)

where

Aε
h =

∫ 1

0

D2fε(∇wh + t∇(vh − wh))dt.

And here we have abused the notation Aε
h to denote the different expression in the

different proof.
For h ≤ h0, (29) implies that T (vh) − T (wh) is the solution to (21) with zero

value of Neumann boundary and

g = −div · ([D2fε(∇Ihuε)−Aε
h]∇ηh) + ληh.

Then, by the regularization of the solution to (21), it follows that

(30) ‖T (vh)− T (wh)‖1 ≤ C2‖g‖−1.

From

(31)
∂(D2(fε(x)))ij

∂xk
= −xkδij + xjδik + xiδjk

(
√
|x|2 + ε2)3

+
3xixjxk

(
√
|x|2 + ε2)4

and the Mean Value Theorem we get

|D2f(Ihuε)−Aε
h| ≤ 9ε−2(|∇(Ihuε − vh)|+ |∇(Ihuε − wh)|)
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which together with the Schwarz inequality and an inverse inequality imply that

|(g, ψh)| ≤ 9ε−2(‖∇(Ihuε − vh)‖L∞ + ‖∇(Ihuε − wh)‖L∞)‖∇ηh‖Lp‖∇ψh‖Lp
′

(32)

+ λ‖ηh‖Lp‖ψh‖Lp
′ .

≤ 9ε−2ρ0h
− 2

p ‖ηh‖W 1,p‖ψh‖Lp
′

Hence, for h ≤ h1

(33) ‖g‖W−1,p ≤ 9ε−2ρ0h
− 2

p ‖ηh‖W 1,p .

It follows from (30)(33), and the definition of ρ0 that

‖T (vh)− T (wh)‖W 1,p ≤ 9C2ε
−2ρ0h

− 2
p ‖vh − wg‖W 1,p =

1
2
‖vh − wh‖W 1,p .

The proof is completed.
Theorem 2. Let uε denote the solution to problem (1)-(2) and let h1 be same as in
Lemma 2. For h ≤ h1, let ρ1 = 2C2h ≤ ρ0 , then the finite element approximation
(18) has a unique solution uε

h in the ball Bh, Moreover, there hold the estimates

‖uε − uε
h‖W 1,p ≤ C4h, ∀p ∈ (2,∞].(34)

where C4 is some positive constant which depends on ε−1 polynomially.
Proof: Since Bh(ρ1) ⊂ Bh(ρ0) , Lemma 3 implies that the mapping T is also a
contracting mapping in Bh(ρ1) with the contraction factor 1

2 . We shall show that
T also maps Bh(ρ1).

For any vh ∈ Bh(ρ1), it follows from Lemma 2,3 and the triangle inequality that

‖Ihuε − T (vh)‖W 1,p ≤ ‖Ihuε − T (Ihuε)‖W 1,p + ‖T (Ihuε)− T (vh)‖W 1,p

≤ C2h +
1
2
‖Ihuε − vh‖1

≤ ρ1

2
+

ρ1

2
= ρ1.

Hence, T (vh) ∈ Bh(ρ1). Consequently, T has a unique fixed point in uε
h ∈ Bh(ρ1).

With the estimation
‖uε − Ihuε‖W 1,p ≤ C5h

for some positive constant C5 = C5(ε). The proof is completed.

4.2. Lp−norm estimation. In this section, we will derive an error estimation for
finite element method (18) in the Lp-norm. One of the main techniques is to use
duality argument on the linearization operator Luε to handle the nonlinearity.
Theorem 3. Let uε and uε

h denote the solution of (1)-(2) and (18), respectively.
Let h1 be same as in Lemma 2, then for h ≤ h1, there holds

(35) ‖uε − uε
h‖Lp ≤ C6h

2.

where C6 = C6(ε) is a positive constant depending on ε−4 polynomially.
Proof: Subtracting (18) from (17) yields the error equation

∫

Ω

( ∇uε

√
|∇uε|2 + ε2

− ∇uε
h√|∇uε

h|2 + ε2

) · ∇φh + λ(uε − uε
h) · φhdx = 0, ∀φh ∈ Vh.

(36)

Using the Mean Value Theorem we get∫

Ω

Aε
h∇(uε − uε

h) · ∇φhdx +
∫

Ω

λ(uε − uε
h)φhdx = 0,(37)
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where

Aε
h =

∫ 1

0

D2fε(∇uε + t∇(uε
h − uε))dt.

Let eε
h := uε − uε

h, it follows Lemma 1 that there exists a unique φ ∈ W 2,∞(Ω)
such that

−div(D2fε(∇uε)∇φ) + λφ = sign(eε
h)|eε

h|p−1, in Ω,

∂uε

∂n
= 0, on ∂Ω.

and by the regularization of the solution,

(38) ‖φ‖
W 2,p

′ ≤ C7‖eε
h‖p−1

Lp
′ .

Testing the above equation with eε
h and using (37) with φh = Ihφ we have

‖eε
h‖p

Lp =
∫

Ω

D2fε(∇uε)∇eε
h · ∇φdx +

∫

Ω

λeε
h · φdx

=
∫

Ω

D2fε(∇uε)∇eε
h · ∇(φ− Ihφ)dx +

∫

Ω

λeε
h(φ− Ihφ)dx

+
∫

Ω

[D2fε(∇uε)−Aε
h]∇eε

h · ∇Ihφdx +
∫

Ω

λeε
h · Ihφdx.

Also we need notice that D2fε(∇uε) is controlled by

|D2fε(∇uε)| ≤ ε−1.

So it can be easy to bound the above equation as following

|
∫

Ω

D2fε(∇uε)∇eε
h · ∇(φ− Ihφ)dx| ≤ ε−1‖∇eε

h‖Lp‖∇(φ− Ihφ)‖
Lp
′

≤ Cε−1h‖∇eε
h‖Lp‖φ‖

W 2,p
′ ,

|
∫

Ω

λeε
h(φ− Ihφ)dx| ≤ Ch2‖eε

h‖Lp‖φ‖
W 2,p

′ .

With the Mean Value Theorem, we can get

|D2fε(∇uε)−Aε
h| ≤ 9ε−2|∇eε

h|
Using approximation properties of Ih we get

|
∫

Ω

[D2fε(∇uε)−Aε
h]∇eε

h · ∇Ihφdx| ≤ 9ε−2

∫

Ω

|∇eε
h|2|∇Ihφ|dx(39)

≤ Cε−2‖∇eε
h‖2Lp‖φ‖

W 2,p
′ .

|
∫

Ω

λeε
h · Ihφdx| ≤ λ‖eε

h‖Lp‖φ‖
Lp
′ ≤ λ‖eε

h‖Lp‖φ‖
W 2,p

′ .

With (38), we can get

(40) ‖eε
h‖Lp ≤ C7C(ε−1h‖∇eε

h‖Lp + ε−2‖∇eε
h‖2Lp).

Which together with Theorem 2 leads to the desired estimation. The proof is
completed.
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5. Conclusion

We derive rates of convergence for regularization procedures(characterized by
parameter ε) and finite element approximations of the TV regularization equation,
which arises in image processing, geometric analysis and material science. We try
to end this paper with some suggestion when we use finite element method approx-
imation of TV-regularization equations. In this paper, we only give the controlling
upper bound of the influence of regularized parameter ε. Therefore, for practi-
cal proposes, for example in image segmentation, the selection of regularization
parameter ε can be taken by the measurement of mesh size.
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[10] Ivan Hlaváček, Michal Kř́ıžek, and Jan Malý. On Galerkin approximations of a quasilinear
nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl., 184(1):168–189,
1994.
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