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L∞-ERROR ESTIMATES FOR GENERAL OPTIMAL CONTROL
PROBLEM BY MIXED FINITE ELEMENT METHODS

XIAOQING XING AND YANPING CHEN*

Abstract. In this paper, we investigate the L∞-error estimates for the so-

lutions of general optimal control problem by mixed finite element methods.

The state and co-state are approximated by the lowest order Raviart-Thomas

mixed finite element spaces and the control is approximated by piecewise con-

stant functions. We derive L∞-error estimates of optimal order both for the

state variables and the control variable.

Key Words. L∞-error estimates, mixed finite element, optimal control.

1. Introduction

Optimal control problems [17] have been extensively utilized in many aspects
of the modern life such as social, economic, scientific and eigineering numerical
simulation. Due to the wide applications of these problems, they must be solved
successfully with efficient numerical methods. Among these numerical methods,
finite element discretization of the state equation is widely applied though other
methods are also used. There have been extensive studies in convergence of finite
element approximation of optimal control problems, see, for example [1], [2], [7],
[11], [14], [15], [18], [19] and [28]. A systematic introduction of finite element method
for PDEs and optimal control can be found in, for example, [8], [13], [23] and [27].

Many contributions have been done to the L∞ convergence theory, see [3], [9],
[16], [20]. In [3], the authors studied L∞-error estimates for a semilinear elliptic
control problem with standard finite element methods. We also see the earlier work
[16] in which L∞ estimate was obtained for the solution of a semilinear second
order elliptic problem by mixed methods. But it didn’t focus on optimal control
problem. More recently, C. Meyer and A. Rösch have studied the superconvergence
property for linear-quadratic optimal control problem in [21], they also investigated
the L∞ estimates with standard finite element for this problem in [20]. Most
recently, in [10], the authors studied L∞-error estimates and superconvergence in
maximum norm of mixed finite element methods for NonFickian flows in porous
media. However, there doesn’t seem to exist much work on theoretical analysis of
mixed finite element approximation for optimal control problem in the literature.

In this paper, we will study the L∞-error estimates for general convex optimal
control problem with mixed methods. We have done some primary works on linear-
quadratic optimal control problem in which L∞ estimates for state variables and
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control variable were obtained with mixed methods. Here, in this paper, we will
show that also for general convex optimal control problem the similar results can
be obtained.

The problem that we will study is the following optimal control problem:

min
u∈K⊂L∞(Ω)

{ ∫

Ω

(g1(p(x)) + g2(y(x)) + h(u(x)))dx
}

(1)

subject to the state equation

−div(Agrady) = u, x ∈ Ω,(2)
y = 0, x ∈ ∂Ω.(3)

which can be written in the form of the first order system

divp = u, x ∈ Ω(4)
p = −Agrady, x ∈ Ω(5)
y = 0, x ∈ ∂Ω(6)

where Ω ⊂ R2 is a bounded domain with Lipschitz continuous boundary. Here,
g1 = g1(·, ·), g2 and h are strictly convex functionals which are continuously dif-
ferentiable. In the rest of the paper, we shall simply write g1(p(x)), g2(y(x)) and
h(u(x)) as g1(p), g2(y) and h(u). We further assume that h(u) → +∞ as ‖ u ‖→ ∞.
K denotes the admissible set of the control variable, defined by

K = {u ∈ L∞(Ω) : a ≤ u ≤ b a.e. in Ω},(7)

where a and b are real numbers.
In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω

with a norm ‖ · ‖m,p given by

‖ φ ‖p
m,p=

∑

|α|≤m

‖ Dαφ ‖p
Lp(Ω),

a semi-norm | · |m,p given by

| φ |pm,p=
∑

|α|=m

‖ Dαφ ‖p
Lp(Ω) .

We set Wm,p
0 (Ω) = {φ ∈ Wm,p(Ω) : φ |∂Ω= 0}. For p=2, we denote

Hm(Ω) = Wm,2(Ω),Hm
0 (Ω) = Wm,2

0 (Ω),

and
‖ · ‖m=‖ · ‖m,2, ‖ · ‖=‖ · ‖0,2 .

In addition we use ‖ · ‖0, ∞ to denote the maximum norm in L2(Ω).

2. Mixed finite element approximation of optimal control problems

In this section, we study the mixed finite element approximation of the problem
(1) and (4)-(6). First, we assume that A(x) = (aij(x)) is a symmetric matrix with
aij(x) ∈ W 1,∞(Ω) and for any vector X ∈ R2, there is a constant c > 0, such that

XtAX ≥ c ‖ X ‖2R2 .

Next, we introduce the co-state elliptic equation

−div(A(x)(gradz + g′1(p))) = g′2(y), x ∈ Ω,(8)

with the boundary condition

z = 0, x ∈ ∂Ω.(9)
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It is assumed that both the elliptic equations (2) and (8) have sufficient regularity.
Let

V = H(div; Ω) = {v ∈ (L2(Ω))2, divv ∈ L2(Ω)}, W = L2(Ω).
In order to consider the finite element approximation of the above optimal control

problem, we need a weak formulation of the problem (1)and (4)-(6): find (p, y, u) ∈
V ×W ×K such that

min
u∈K

{ ∫

Ω

(g1(p(x)) + g2(y(x)) + h(u(x)))dx
}

(10)

(A−1p,v)− (y, divv) = 0, ∀v ∈ V ,(11)
(divp, w) = (u,w), ∀w ∈ W,(12)

where ( · ) denotes the inner product in L2(Ω) or (L2(Ω))2. Under the assumption
on g1(·, ·), g2 and h, it is well known that the convex control problem (10)-(12) has
a unique solution (p, y, u) , and that a triplet (p, y, u) is the solution of (10)-(12) if
and only if there exists a co-state (q, z) ∈ V ×W such that (p, y, q, z, u) satisfies
the following optimality conditions:

(A−1p,v)− (y, divv) = 0, ∀v ∈ V ,(13)
(divp, w) = (u,w), ∀w ∈ W,(14)
(A−1q, v)− (z, divv) = −(g′1(p),v), ∀v ∈ V ,(15)
(divq, w) = (g′2(y), w), ∀w ∈ W,(16)
(h′(u) + z, ũ− u) ≥ 0, ∀ũ ∈ K,(17)

where g′1 is the gradient of g1, g′2, h
′ are the derivatives of g2 and h, respectively.

Moreover, we require:
• A1 –g′1, g

′
2 and h′ are locally Lipschitz continuous, that is

|h′(ũ(x1))− h′(ũ(x2))| ≤ C|x1 − x2|, ∀ũ ∈ K, x1, x2 ∈ Ω̄;
|g′1(q1)− g′1(q2)| ≤ C|q1 − q2|, ∀q1, q2 ∈ H(div; Ω);
|g′2(y1)− g′2(y2)| ≤ C|y1 − y2|, ∀y1, y2 ∈ L2(Ω),

and we also assume that for all x ∈ Ω̄ and ỹ ∈ L∞(Ω), ũ ∈ L∞(Ω), the
following estimates hold

|g′2(ỹ)| ≤ g(x), |g′′2 (ỹ)| ≤ M, h′(ũ) ≤ M,

where g(x) ∈ L∞(Ω), M > 0 is a constant.

• A2 – There exists a positive constant m such that the following estimate
holds

h′′(ũ) ≥ m, ∀ũ ∈ K.

• A3 – There exists a constant c > 0 such that

(h′(u1)− h′(u2), u1 − u2) ≥ c ‖ u1 − u2 ‖2, ∀u1, u2 ∈ K.

Then, we recall some results from Bonnans and Casas [4].

Lemma 2.1. [4] For every ψ ∈ Lp(Ω), the solution ϕ of

−div(A(x)gradϕ) = ψ, x ∈ Ω,(18)
ϕ = 0, x ∈ ∂Ω,(19)

belongs to H1
0 (Ω) ∩ W 2,p(Ω) for every p ≥ 2. Moreover, there exists a positive

constant C, such that

‖ ϕ ‖2,p≤ C ‖ ψ ‖0,p .(20)
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Due to Lemma 2.1, the state equation (2) and the co-state equation (8) admit
unique solutions in H1

0 (Ω) ∩ W 2,p(Ω) if g′2(y) ∈ Lp(Ω) for p ≥ 2. This space is
embedded in C0,1(Ω̄).

By a detailed discussion of the variational inequality (17), we are able to derive
a useful characterization of the optimal control. First, We introduce the projection
[21]:

Π[a,b](f(x)) = max(a,min(b, f(x))),(21)

Similar as [3], we can prove the following Lemma.

Lemma 2.2. Suppose that assumptions A1-A3 are satisfied. Then, for all x ∈
Ω̄,the equation

h′(s(x)) + z(x) = 0,(22)

has a unique solution s(x). Moreover, s(x) ∈ C0,1(Ω̄).

Proof. Existence and uniqueness of a solution s(x) is obvious thanks to the assump-
tion h′′(u) ≥ m > 0. Let us prove that s(x) ∈ C0,1(Ω̄). We observe that, due to
the Lipschitz continuity of z(x), by A2 and (22), we have

m|s(x)− s(x0)|

≤
∣∣∣
∫ 1

0

h′′(θs(x) + (1− θ)s(x0))dθ · (s(x)− s(x0))
∣∣∣

= |h′(s(x))− h′(s(x0))| = | − z(x) + z(x0)|
≤ C|x− x0|.

¤

Now, we are able to formulate our characterization theorem, which is fundamen-
tal for our work. By means of Lemma 2.2, it can be proved in the same way as in
[3].

Theorem 2.1. Suppose that assumptions A1-A3 are satisfied. Let u be the optimal
solution of (13)-(17), and let s(x) be the associated solution of equation (22). Then

u(x) = Π[a,b](s(x)) = max(a,min(b, s(x))).

and u belongs to C0,1(Ω̄).

The results of Theorem 2.1 can be easily extended to the case where a and b are
functions of x. Then the Lipschitz continuity of the optimal control u is obtained
under the assumption that a and b are Lipschitz continuous.

Now, we consider the finite element approximation of the control problem. Let
T h denotes a quasi-uniform (in the sense of [12])family of partition of Ω into trian-
gles or rectangles, with boundary elements allowed to have one curved side. Here h
is the maximum diameter of the element T in T h. Let V h ×Wh ⊂ V ×W denote
the Raviart-Thomas space [25] of the lowest order associated with the triangula-
tions or rectangulations T h of Ω. Pk denotes polynomials of total degree at most
k, Qm,n indicates the space of polynomials of degree no more than m and n in x1

and x2 variables respectively, where x = (x1, x2). If T ∈ T h is a triangle, Let

V (T ) = P 0(T )⊕ span(xP0(T )), W (T ) = P0(T ).

Similarly, if T ∈ T h is a rectangle, let

V (T ) = Q1,0(T )×Q0,1(T ), W (T ) = P0(T ).
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where P 0(T ) = (P0(T ))2 . Then we can define the finite dimensional spaces as
follows

Vh = {vh ∈ V : vh|T ∈ V(T ), T ∈ T h},(23)

Wh = {wh ∈ W : wh|T ∈ W (T ), T ∈ T h},(24)

Kh = {ũh ∈ K : ũh|T = constant, T ∈ T h}.(25)

Then the finite element approximation of the problem (10)-(12) is to find (ph, yh, uh) ∈
Vh ×Wh ×Kh such that

min
uh∈Kh

{ ∫

Ω

(g1(ph(x)) + g2(yh(x)) + h(uh(x)))dx
}

(26)

(A−1ph,vh)− (yh, divvh) = 0, ∀vh ∈ V h,(27)
(divph, wh) = (uh, wh), ∀wh ∈ Wh.(28)

The control problem (26)-(28) again has a unique solution (ph, yh, uh) and that
a triplet (ph, yh, uh) is the solution of (26)-(28) if and only if there exists a co-state
(qh, zh) ∈ V h ×Wh such that (ph, yh, qh, zh, uh) satisfies the following optimality
conditions:

(A−1ph, vh)− (yh, divvh) = 0, ∀vh ∈ V h,(29)
(divph, wh) = (uh, wh), ∀wh ∈ Wh,(30)
(A−1qh,vh)− (zh, divvh) = −(g′1(ph), vh), ∀vh ∈ V h,(31)
(divqh, wh) = (g′2(yh), wh), ∀wh ∈ Wh,(32)
(h′(uh) + zh, ũh − uh)U ≥ 0, ∀ũh ∈ Kh.(33)

Now, we can prove the following lemma which is the discrete counterpart of
Lemma 2.1

Lemma 2.3. Suppose that assumptions A1-A3 are satisfied. Let uh be the optimal
solution of (29)-(33), then there exists a unique function sh(x) such that sh(x) = sT

is a constant on each triangle T ∈ T h, and the equation
∫

T

(h′(sT ) + zh(x))dx = 0(34)

is satisfied.

Then, for the approximate problem, Theorem 2.1 reads as follows:

Theorem 2.2. Suppose that assumptions A1-A3 are satisfied. Let uh is the optimal
solution of (29)-(33), and let sh be the solution of (34) corresponding to uh. Then
uh is given by

uh(x) = Π[a,b](sh(x)) = max(a,min(b, sh(x))), for a.e. x ∈ Ω.(35)

For the details, we can refer to [3].
In the rest of the paper, we shall use some intermediate variables. For any control

function ũ ∈ K, we first define the state solution (p(ũ), y(ũ), q(ũ), z(ũ)) associated
with ũ that satisfies

(A−1p(ũ), v)− (y(ũ), divv) = 0, ∀v ∈ V ,(36)
(divp(ũ), w) = (ũ, w), ∀w ∈ W,(37)
(A−1q(ũ),v)− (z(ũ), divv) = −(g′1(p(ũ)), v), ∀v ∈ V ,(38)
(divq(ũ), w) = (g′2(y(ũ)), w), ∀w ∈ W.(39)
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Remark 2.1. Obviously, if we chose ũ = uh in (36)-(39), then by the regular-
ity of (18)-(19) and the uniqueness of the solution for (36)-(39), we can get that
y(uh), z(uh) ∈ H1

0 (Ω) ∩W 2,p(Ω) satisfy the following relations:

−div(A(x)grady(uh)) = uh,(40)
−div(A(x)(gradz(uh) + g′1(p(uh)))) = g′2(y(uh)),(41)

and

‖ y(uh) ‖2,p ≤ ‖ uh ‖0,p,(42)
‖ z(uh) ‖2,p ≤ ‖ g′2(y(uh)) ‖0,p .(43)

Then, we define the discrete state solution (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) associated
with ũ that satisfies

(A−1ph(ũ), vh)− (yh(ũ), divvh) = 0, ∀vh ∈ V h,(44)
(divph(ũ), wh) = (ũ, wh), ∀wh ∈ Wh,(45)
(A−1qh(ũ), vh)− (zh(ũ),divvh) = −(g′1(ph(ũ)),vh), ∀vh ∈ V h,(46)
(divqh(ũ), wh) = (g′2(yh(ũ)), wh), ∀wh ∈ Wh.(47)

Thus, as we defined, the exact solution and its approximation can be written in
the following way:

(p, y, q, z) = (p(u), y(u), q(u), z(u)),
(ph, yh, qh, zh) = (ph(uh), yh(uh), qh(uh), zh(uh)).

3. Error estimates for the intermediate error

In this section, we will give some error estimates for the intermediate error. First
of all, we define the standard L2(Ω)-orthogonal projection Ph : W → Wh which
satisfies: for any w ∈ W

(48) (w − Phw,wh) = 0, ∀wh ∈ Wh.

We also consider the Fortin projection ([5] and [9])Πh : V → V h, which satisfies:
for any q ∈ V ,

(49) (div(q −Πhq), wh) = 0, ∀wh ∈ Wh.

For the projection defined above, we have the following relations(see [5], [9] and
[16]):

div ◦Πh = Ph ◦ div,(50)
‖ q −Πhq ‖0,r≤ Ch|q|1,r, for q ∈ (H1(Ω))2, r > 1,(51)

‖ div(q −Πhq) ‖−s≤ Ch1+s|divq|1, s = 0, 1, for all divq ∈ H1(Ω),(52)
‖ φ− Phφ ‖−s≤ Ch1+s | φ |1, s = 0, 1, for φ ∈ H1(Ω).(53)

Then, we recall the following existed result (see [6] and [9]) which is very useful
for our work:

Lemma 3.1. Suppose that assumptions A1-A3 are satisfied. Let (p, y, q, z, u) ∈
(V ×W )2×K and (ph, yh, qh, zh, uh) ∈ (V h×Wh)2×Kh be the solution of (13)-(17)
and (29)-(33) respectively. Then we have

‖ u− uh ‖≤ Ch.(54)
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Lemma 3.2. Suppose that assumptions A1-A3 are satisfied. For any ũ ∈ K, let
(p(ũ), y(ũ), q(ũ), z(ũ)) and (ph(ũ), yh(ũ), qh(ũ), zh(ũ)) be the solution of (36)-(39)
and (44)-(47) respectively, then

‖ p(ũ)− ph(ũ) ‖ + ‖ y(ũ)− yh(ũ) ‖ ≤ Ch ‖ y(ũ) ‖2,(55)
‖ q(ũ)− qh(ũ) ‖ + ‖ z(ũ)− zh(ũ) ‖ ≤ Ch ‖ y(ũ) ‖2 .(56)

Now, we will give the following lemma.

Lemma 3.3. Assume that the regularity condition (42) and (43) hold , then for
sufficiently small h,

‖ Phy(uh)− yh ‖ ≤ Ch2,(57)
‖ Phz(uh)− zh ‖ ≤ Ch2.(58)

Proof. From equation (36)-(39) and (44)-(47) with the choice ũ = uh we can easily
obtain the following error equations

(A−1(p(uh)− ph), vh)− (y(uh)− yh,divvh) = 0,(59)
(div(p(uh)− ph), wh) = 0,(60)

(A−1(q(uh)− qh), vh)− (z(uh)− zh,divvh) = −(g′1(p(uh))− g′1(ph),vh),(61)
(div(q(uh)− qh), wh) = (g′2(y(uh))− g′2(yh), wh),(62)

for any vh ∈ V h, wh ∈ Wh.
As a result of (48), we can rewrite (59)-(62) as

(A−1(p(uh)− ph), vh)− (Phy(uh)− yh, divvh) = 0,

(div(p(uh)− ph), wh) = 0,

(A−1(q(uh)− qh), vh)− (Phz(uh)− zh, divvh) = −(g′1(p(uh))− g′1(ph), vh),
(div(q(uh)− qh), wh) = (g′2(y(uh))− g′2(yh), wh),

for any vh ∈ V h, wh ∈ Wh.
For sake of simplicity, we now denote

τ = Phy(uh)− yh, e = Phz(uh)− zh.(63)

Then, we estimate (57) and (58) in Part I and Part II respectively.
Part I. As we can see,

‖ τ ‖= sup
ψ∈L2(Ω)

ψ 6=0

(τ, ψ)
‖ ψ ‖ ,(64)

we then need to bound (τ, ψ) for ψ ∈ L2(Ω). Let ϕ ∈ H2(Ω)∩H1
0 (Ω) be the unique

solution of (18)-(19). We can see from (49) and (63)

(τ, ψ) = (τ,−div(Agradϕ))
= −(τ, div(Πh(Agradϕ)))
= −(A−1(p(uh)− ph), Πh(Agradϕ)).(65)

Note that

(div(p(uh)− ph), ϕ) + (A−1(p(uh)− ph), Agradϕ) = 0,(66)

so if we add the two equations (65)-(66) we can obtain

(τ, ψ) = (A−1(p(uh)− ph), Agradϕ−Πh(Agradϕ))
+(div(p(uh)− ph), ϕ− Phϕ),(67)

where we have used (63).
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We then estimate the two terms on the right side of (67). First, from Lemma
3.2, (51) and (42), it follows that

(A−1(p(uh)− ph), Agradϕ−Πh(Agradϕ))
≤ C ‖ p(uh)− ph ‖ · ‖ Agradϕ−Πh(Agradϕ) ‖
≤ Ch2 ‖ y(uh) ‖2 · ‖ ϕ ‖2
≤ Ch2 ‖ uh ‖ · ‖ ψ ‖
≤ Ch2 ‖ ψ ‖ .(68)

Next, from equation (63) we can deduce that

Ph(divp(uh)) = divph,(69)

then,

div(p(uh)− ph) = divp(uh)− Ph(divp(uh)) = uh − Phuh = 0.(70)

Here we have used the relation

divp(uh) = uh.

Now, it is easy to see that

(div(p(uh)− ph), ϕ− Phϕ) = 0.(71)

Inserting (68) and (71) into (67) and we can deduce that

‖ τ ‖≤ Ch2.(72)

Part II. Since

‖ e ‖= sup
ψ∈L2(Ω)

ψ 6=0

(e, ψ)
‖ ψ ‖ ,(73)

we then need to bound (e, ψ) for ψ ∈ L2(Ω). Let ϕ ∈ H2(Ω)∩H1
0 (Ω) be the unique

solution of (18)-(19). We can see from (49) and (63)

(e, ψ) = (e,−div(Agradϕ))
= −(e, div(Πh(Agradϕ)))
= −(A−1(q(uh)− qh), Πh(Agradϕ))

−(g′1(p(uh))− g′1(ph),Πh(Agradϕ)).(74)

Note that

(div(q(uh)− qh), ϕ) + (A−1(q(uh)− qh), Agradϕ) = 0,(75)

so if we add the two equations (74) and (75) we can obtain

(e, ψ) = (A−1(q(uh)− qh), Agradϕ−Πh(Agradϕ))
−(g′1(p(uh))− g′1(ph), Πh(Agradϕ))
+(g′2(y(uh))− g′2(yh), Phϕ) + (div(q(uh)− qh), ϕ− Phϕ),(76)

where we used (63).
Then, if we estimate each term on the right side of (76) in the same way as in

Part I and apply the result in it, the following result can be easily obtained

‖ e ‖≤ Ch2.

Thus, the Lemma has been proved. ¤
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Lemma 3.4. Assume that the regularity condition (42) and (43) hold , then for h
sufficiently small,

‖ div(p(uh)− ph) ‖0,∞ = 0,(77)
‖ div(q(uh)− qh) ‖0,∞ ≤ Ch.(78)

Proof. First, from equation (70), (77) is obvious.
Then, we estimate (78). The error equation (62) can be written as

(div(q(uh)− qh), wh)− (g′2(y(uh))− g′2(yh), wh) = 0, ∀wh ∈ Wh.

It then follows that

Ph[div(q(uh)− qh)− (g′2(y(uh))− g′2(yh))] = 0,(79)

then, using (49), (50) and (79), we can see that

div(Πhq(uh)− qh) = div ◦Πh(q(uh)− qh)
= Ph ◦ div(q(uh)− qh)
= Ph(g′2(y(uh))− g′2(yh)).(80)

Therefor, using (80), (52), Lemma 3.3 and (42)

‖ div(q(uh)− qh) ‖0,∞
≤‖ div(Πhq(uh)− qh) ‖0,∞ + ‖ div(Πhq(uh)− q(uh)) ‖0,∞
≤ C{‖ y(uh)− yh ‖0,∞ + ‖ Ph ◦ divq(uh)− divq(uh) ‖0,∞}
≤ C{‖ y(uh)− Phy(uh) ‖0,∞ + ‖ Phy(uh)− yh ‖0,∞

+ ‖ Phg′2(y(uh))− g′2(y(uh)) ‖0,∞}
≤ Ch.(81)

¤

Then, we introduce the weighted L2-norms (see [22] and [24]) which will play an
important role in our work to derive L∞-error estimates. Let x0 ∈ Ω̄ and ρ > 0.
We define the weight function

µ = |x− x0|2 + ρ2, x ∈ Ω̄.(82)

And then for any r ∈ R we define the r-weighted norm by

‖ v ‖r, µ=‖ µ−
r
2 v ‖, v ∈ L2(Ω) or (L2(Ω))2.(83)

In the following, we shall need some technical results which can be the special
case of Lem 3.1 and Lem 3.2 in [16].

Lemma 3.5. Let µ be given by (82), if w ∈ (L2(Ω))2, then

‖ gradµ−1 · w ‖≤ Cρ−2 ‖ w ‖1, µ .(84)

Lemma 3.6. If w ∈ (L∞(Ω))2, then

‖ w ‖≤ C ‖ w ‖1, µ .(85)

We will also make use of the following relations between weighted L2-norms and
L∞-norms [26]:

‖ w ‖1, µ≤ C| ln h| 12 ‖ w ‖0, ∞, w ∈ L∞(Ω);(86)

also, if ω ∈ Wh is a fixed element and x0 ∈ Ω̄ is chosen so that ‖ ω ‖0, ∞= |ω(x0)|,
then

‖ ω ‖0, ∞≤ Cκh−1ρ ‖ ω ‖1, µ, for h−1ρ ≤ κ.(87)
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These results (86)-(87) can be extended to v ∈ (L2(Ω))2.
Furthermore, we need the following “super-approximability” result [26]: If η is

an element of V h, then

‖ µ−1η −Πh(µ−1η) ‖−1, µ≤ Chρ−1 ‖ η ‖1, µ,(88)

where C is independent of η and h.

Lemma 3.7. Assume that the regularity condition (42) and (43) hold , then for h
sufficiently small,

‖ Πhp(uh)− ph ‖0,∞ ≤ C| ln h| 12 h
1
2 ,(89)

‖ Πhq(uh)− qh ‖0,∞ ≤ C| ln h| 12 h
1
2 .(90)

Proof. Here, we only prove (89), (90) can be estimated in the same way.
For sake of simplicity, let us denote

φ = Πhp(uh)− ph.

Note that

‖ φ ‖21,µ ≤ C(A−1φ, µ−1φ)

≤ C{(A−1φ, µ−1φ−Πh(µ−1φ)) + (A−1(p(uh)− ph), Πh(µ−1φ))
+(A−1(Πhp(uh)− p(uh)),Πh(µ−1φ))},(91)

for the first term of the right hand of (91), we can see that

(A−1φ, µ−1φ−Πh(µ−1φ)) = (A−1µ−
1
2 φ, µ

1
2 (µ−1φ−Πh(µ−1φ)))

≤ C ‖ µ−
1
2 φ ‖ · ‖ µ

1
2 (µ−1φ−Πh(µ−1φ)) ‖

= C ‖ φ ‖1,µ · ‖ µ−1φ−Πh(µ−1φ) ‖−1,µ

≤ Chρ−1 ‖ φ ‖21,µ,(92)

where it comes from (83) and (88). For the third term of the right side of (91), it
is easy to obtain that

(A−1(Πhp(uh)− p(uh)), Πh(µ−1φ))
= (A−1(Πhp(uh)− p(uh)),Πh(µ−1φ)− µ−1φ)

+(A−1(Πhp(uh)− p(uh)), µ−1φ)
≤ C(‖ Πhp(uh)− p(uh) ‖1,µ · ‖ Πh(µ−1φ)− µ−1φ ‖−1,µ

+ ‖ Πhp(uh)− p(uh) ‖1,µ · ‖ φ ‖1,µ)

≤ C(1 + hρ−1) ‖ Πhp(uh)− p(uh) ‖1,µ · ‖ φ ‖1,µ .(93)

Combining (91)-(93) and then obtain

‖ φ ‖21,µ ≤ C{hρ−1 ‖ φ ‖21,µ +(A−1(p(uh)− ph), Πh(µ−1φ))

+(1 + hρ−1) ‖ Πhp(uh)− p(uh) ‖1,µ · ‖ φ ‖1,µ},(94)

using ε-Cauchy inequality and for h < γρ, γ sufficiently small, we then obtain

‖ φ ‖21,µ≤ C{‖ Πhp(uh)− p(uh) ‖21,µ +(A−1(p(uh)− ph), Πh(µ−1φ))}.(95)
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Now, we estimate the two terms on the right side of (95) respectively. First,
using (86) and (51), it follows that

‖ Πhp(uh)− p(uh) ‖21,µ ≤ C| ln h| ‖ Πhp(uh)− p(uh) ‖20,∞
≤ C| ln h|h2 ‖ p(uh) ‖21,∞
≤ C| ln h|h2 ‖ y(uh) ‖22,∞
≤ C| ln h|h2.(96)

For the second term, using equation (59), (50) and (48)

(A−1(p(uh)− ph),Πh(µ−1φ)) = (y(uh)− yh, div(Πh(µ−1φ)))
= (y(uh)− yh, Ph ◦ div(µ−1φ))
= (Phy(uh)− yh,div(µ−1φ))
= (Phy(uh)− yh,gradµ−1 · φ)

+(Phy(uh)− yh, µ−1divφ).(97)

Note that

divφ = div(Πhp(uh)− ph) = div ◦Πh(p(uh)− ph) = Ph ◦ div(p(uh)− ph) = 0.

Thus, it comes from Lemma 3.5 and ε-Cauchy inequality that

(A−1(p(uh)− ph), Πh(µ−1φ)) ≤ ‖ Phy(uh)− yh ‖ · ‖ gradµ−1 · φ ‖
≤ C(ρ−2 ‖ φ ‖1,µ · ‖ Phy(uh)− yh ‖)
≤ ε ‖ φ ‖21,µ +C(ε)(ρ−4 ‖ Phy(uh)− yh ‖2).(98)

Combing (95), (96) and (98), we see that,

‖ φ ‖1,µ≤ C{| ln h| 12 h + ρ−2 ‖ Phy(uh)− yh ‖}.(99)

Note that Lemma 3.3 implies that

‖ Phy(uh)− yh ‖ ≤ Ch ‖ p(uh)− ph ‖
≤ Ch(‖ Πhp(uh)− ph ‖ + ‖ p(uh)−Πhp(uh) ‖)
≤ Ch(‖ φ ‖ +h)
≤ Ch(‖ φ ‖1,µ +h).(100)

In the last step, we used Lemma 3.6. Then, inserting (100) into (99) yields the
bound

‖ φ ‖1,µ ≤ C{| ln h| 12 h + h2ρ−2 + hρ−2 ‖ φ ‖1,µ}
≤ C{(| ln h| 12 + hρ−2)h + hρ−2 ‖ φ ‖1,µ},

now, let

hρ−2 =
1

2C
,

that is to say

h =
ρ2

2C
.

We then have

‖ φ ‖1,µ≤ C| ln h| 12 h.(101)

Using (87) and (101) we can obtain the bound

‖ φ ‖0,∞≤ Ch−
1
2 ‖ φ ‖1,µ≤ C| ln h| 12 h

1
2 .(102)

Thus, we completed the proof. ¤
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4. L∞-error estimates

In this section, we will give the L∞-error estimates both for the control variable
and the state, co-state variables.

First, we give the L∞-error estimate for the scalar variables.

Theorem 4.1. Assume that the regularity condition (42) and (43) hold , then for
sufficiently small h,

‖ y − yh ‖0,∞ ≤ Ch,(103)
‖ z − zh ‖0,∞ ≤ Ch.(104)

Proof. Part I. For (103), note that

‖ y − yh ‖0,∞ ≤ ‖ y − y(uh) ‖0,∞ + ‖ y(uh)− yh ‖0,∞ .(105)

From equation (2) and (40), we have the following error equation

−div(Agrad(y − y(uh))) = u− uh,

with the regularity result (20), Lemma 3.1 and the classical imbedding theorem,
we can see that

‖ y − y(uh) ‖0,∞ = ‖ y − y(uh) ‖C(Ω̄)

≤ C ‖ y − y(uh) ‖2
≤ C ‖ u− uh ‖
≤ Ch.(106)

Then, for the second term of (105), using Lemma 3.3 and (53), it follows that

‖ y(uh)− yh ‖0,∞ ≤ ‖ y(uh)− Phy(uh) ‖0,∞ + ‖ Phy(uh)− yh ‖0,∞
≤ C{h ‖ y(uh) ‖1,∞ +h−1 ‖ Phy(uh)− yh ‖}
≤ Ch,(107)

where we used the inverse inequality in finite dimensional space. Combing (106)
and (107) we can obtain the (103).
Part II. For (104), also we have

‖ z − zh ‖0,∞ ≤ ‖ z − z(uh) ‖0,∞ + ‖ z(uh)− zh ‖0,∞ .(108)

From equation (8) and (41), we can obtain that

−div(Agrad(z − z(uh)) + g′1(p)− g′1(p(uh))) = g′2(y)− g′2(y(uh)),

with the regularity result (20), Lemma 3.1 and the classical imbedding theorem,
we can see that

‖ z − z(uh) ‖0,∞ = ‖ z − z(uh) ‖C(Ω̄)

≤ C ‖ z − z(uh) ‖2
≤ C ‖ y − y(uh) ‖
≤ C ‖ u− uh ‖
≤ Ch.(109)

For the second term of (108), using Lemma 3.3 and (53), it follows that

‖ z(uh)− zh ‖0,∞ ≤ ‖ z(uh)− Phz(uh) ‖0,∞ + ‖ Phz(uh)− zh ‖0,∞
≤ C{h ‖ z(uh) ‖1,∞ +h−1 ‖ Phz(uh)− zh ‖}
≤ Ch,(110)
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where we used the inverse inequality. Combing (109) and (110) we can obtain the
(104).

Thus, we have completed the proof. ¤

In the following, we will give the L∞-error estimate for the control variable.

Theorem 4.2. Let u and uh be the optimal control of (13)-(17) and (29)-(33)
respectively, then for h sufficiently small

‖ u− uh ‖0,∞≤ Ch.(111)

Proof. Due to Lemma 2.2 and Lemma 2.3, there exist s(x) ∈ C0,1(Ω̄) and sh(x) ∈
L∞(Ω) such that for ∀T ∈ T h

h′(s(x)) + z(x) = 0, ∀x ∈ T,(112)

sh(x) = sT ,

∫

T

(h′(sT ) + zh(x))dx = 0, ∀x ∈ T.(113)

From (113), we deduce that for every T ∈ T h, every x ∈ T ,

h′(sT ) + zh(x) = 0.(114)

Suppose that T ∈ T h is given fixed, and select an arbitrary x ∈ T . Note that the
projection Π[a,b] defined in (21) is Lipschitz continuous, and due to the assumption
on h′′(u), it then follows from (112) and (114) that

m|u(x)− uh(x)| = m|Π[a,b](s(x))−Π[a,b](sh(x))|
≤ m|s(x)− sh(x)|
= m|s(x)− sT |
≤ |h′(s(x))− h′(sT )|
= |z(x)− zh(x)|.

Hence

m|u(x)− uh(x)| ≤ ‖ z − zh ‖0,∞,T ,

along with the result of (104), we can easily deduce that

‖ u− uh ‖0,∞,Ω = sup
T∈T h

‖ u− uh ‖0,∞,T

≤ C ‖ z − zh ‖0,∞,Ω

≤ Ch.

¤

Now, we give our third theorem.

Theorem 4.3. Assume that the regularity condition (42) and (43) hold , then for
h sufficiently small,

‖ div(p− ph) ‖0,∞ ≤ Ch,(115)
‖ div(q − qh) ‖0,∞ ≤ Ch.(116)

Proof. Part I. For (115) , it is easy to see that

‖ div(p− ph) ‖0,∞≤‖ div(p− p(uh)) ‖0,∞ + ‖ div(p(uh)− ph) ‖0,∞,(117)

so we only need to bound the first term. Note the following error equation which
comes from (37) with ũ = u and ũ = uh respectively

(divp− p(uh), w) = (u− uh, w), ∀w ∈ L2(Ω),(118)
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then we have

‖ div(p− p(uh)) ‖0,∞=‖ u− uh ‖0,∞ .(119)

Combining (119) and (77) we can get that

‖ div(p− p(uh)) ‖0,∞ + ‖ div(p(uh)− ph) ‖0,∞≤ Ch,(120)

where we used Theorem 4.2.
Part II. We now estimate (116). First, note that

‖ div(q − qh) ‖0,∞≤‖ div(q − q(uh)) ‖0,∞ + ‖ div(q(uh)− qh) ‖0,∞ .(121)

For the first term of the right hand of (121), note the following error equation
which comes from (39) with ũ = u and ũ = uh respectively

(divq − q(uh), w) = (g′2(y)− g′2(y(uh)), w), ∀w ∈ L2(Ω),(122)

then it is easy to know that

‖ div(q − q(uh)) ‖0,∞=‖ g′2(y)− g′2(y(uh)) ‖0,∞≤ Ch,(123)

where we used (106). Then combining (123) and (78) it follows that

‖ div(q − q(uh)) ‖0,∞ + ‖ div(q(uh)− qh) ‖0,∞≤ Ch.(124)

Thus, we completed the proof of the theorem. ¤

At last, we give the error estimate for the flux variables.

Theorem 4.4. Assume that the regularity condition (42) and (43) hold , then for
h sufficiently small,

‖ p− ph ‖0,∞ ≤ Ch
1
2 | ln h|,(125)

‖ q − qh ‖0,∞ ≤ Ch
1
2 | ln h|.(126)

Proof. Part I. By triangular inequality

‖ p− ph ‖0,∞ ≤ ‖ p− p(uh) ‖0,∞ + ‖ p(uh)− ph ‖0,∞ .(127)

For the first term of the right side of (127), note that

‖ p− p(uh) ‖0,∞ = ‖ A(grady − grady(uh)) ‖0,∞
≤ C ‖ y − y(uh) ‖1,∞
≤ C ‖ u− uh ‖0,∞
≤ Ch,(128)

where we used (20) and Theorem 4.2.
For the second term, it is easy to see that

‖ p(uh)− ph ‖0,∞ ≤ ‖ p(uh)−Πhp(uh) ‖0,∞ + ‖ Πhp(uh)− ph ‖0,∞

≤ C{h ‖ p(uh) ‖1,∞ +| ln h| 12 h
1
2 }

≤ Ch
1
2 {h 1

2 ‖ y(uh) ‖2,∞ +| ln h| 12 }
≤ Ch

1
2 | ln h|,(129)

where we used (51), (89) and (20). Thus, combing (127), (128) and (129), we obtain
that

‖ p− ph ‖0,∞≤ Ch
1
2 | ln h|.(130)
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Part II. Now, we estimate (126). Using (51), (128) , (90), (20) and Theorem 4.2,
we can get that

‖ q − qh ‖0,∞ ≤ ‖ q − q(uh) ‖0,∞ + ‖ q(uh)− qh ‖0,∞
≤ ‖ A(gradz + g′1(p))−A(gradz(uh) + g′1(p(uh)) ‖0,∞

+ ‖ q(uh)−Πhq(uh) ‖0,∞ + ‖ Πhq(uh)− qh ‖0,∞
≤ C{‖ z − z(uh) ‖1,∞ + ‖ p− p(uh) ‖0,∞

+h ‖ q(uh) ‖1,∞ +| ln h| 12 h
1
2 }

≤ C{‖ u− uh ‖0,∞ +h + | ln h| 12 h
1
2 }

≤ Ch
1
2 | ln h|.(131)

Thus, we completed the proof. ¤

5. Conclusion and future works

In this paper, we give a complete estimate for control variable, state variables
and co-state variables of optimal control problem (1.1) and (1.3)-(1.4) using mixed
finite element methods. Our L∞-error estimates for the co-state variables by mixed
methods seem to be new. We have used piecewise constant functions to approximate
the control variable. In our future work, we shall use the standard linear element
space to approximate the control function. Furthermore, we shall consider the
optimal boundary control problem.
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[21] C. Meyer and A. Rösch, Superconvergence properties of optimal control problems, SIAM
Journal on Control and Optimization, 43 (2004), pp.970-985.
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