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A POSTERIORI ERROR ESTIMATION FOR A DUAL MIXED
FINITE ELEMENT APPROXIMATION OF NON–NEWTONIAN

FLUID FLOW PROBLEMS

MOHAMED FARHLOUL AND ABDEL-MALEK ZINE

Abstract. A dual mixed finite element method, for quasi–Newtonian fluid

flow obeying to the power law, is constructed and analyzed in [8]. This mixed

formulation possesses local (i.e., at element level) conservation properties (con-

servation of the momentum and the mass) as in the finite volume methods. We

propose here an a posteriori error analysis for this mixed formulation.
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1. Introduction

Let Ω be a bounded domain of R2 with a Lipschitz boundary Γ. Given f , η0 > 0
and r a real constant verifying 1 < r < ∞, we consider the following boundary
value problem : Find (u, p) such that

(1)
−2η0 div

(
|d(u)|r−2

d(u)
)

+∇p = f in Ω
div u = 0 in Ω
u = 0 on Γ

where d(u) is the rate of strain tensor, d(u) = 1
2 (∇u + ∇ut), ∇u is the tensor

gradient of u.
Throughout |·| denotes the Euclidian matrix norm, that is for τ , a d × d real

matrix, |τ | :=
[∑d

i,j=1(τij)2
]1/2

. The above system models the steady isothermal
flow of an incompressible quasi-Newtonian fluid, f denotes the body force, u the
velocity and p the pressure.

The well–posedness of the above nonlinear problem and its standard finite ele-
ment approximation are well established in Baranger–Najib [1]. Extentions and im-
provements on the error bounds of [1] have appeared in Sandri [11] and in Barrett–
Liu [2, 3].

In the framework of standard finite element method, an a posteriori error analysis
is developed in Sandri [12]. A mixed finite element method has been introduced
and analyzed in Farhloul–Zine [8]. Due to the introduction of the Cauchy stress
tensor as a new variable, this new formulation possesses local (i.e., at element
level) conservation properties (conservation of the momentum and the mass) as in
the finite volume methods. Furthermore, it allows the approximations of all the
physical variables (stress, velocity and pressure).
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The aim of this work is to give an a posteriori error estimates for the mixed
formulation developed in [8]. In the next section we recall the mixed formulation
developed in [8] and then we give the a posteriori error estimates in section 3.

2. Mixed formulations

For the ease of the presentation, we take η0 = 1
2 . Introducing σ = |d(u)|r−2

d(u)
the extra–stress tensor, and using the fact that

|σ|r′−2
σ = d(u), where r′ is the conjugate of r, i.e.,

1
r

+
1
r′

= 1

problem (1) can be formulated as

(2)

−div(σ − pI) = f in Ω
div u = 0 in Ω
A(σ) := |σ|r′−2

σ = d(u) in Ω
u = 0 on Γ

where f ∈ [Lr′(Ω)]2, I is the identity tensor and for a given tensor τ = (τij)1≤i,j≤2,
(div τ )i =

∑2
j=1

∂τij

∂xj
.

Note that for all (τ , q) ∈ [Lr′(Ω)]2×2×Lr′
0 (Ω) such that div(τ − qI) ∈ [Lr′(Ω)]2,

as div u = 0, one has

(A(σ), τ ) = (d(u), τ ) = −(div(τ − qI),u)− (ω, τ ),

where ω = ω(u) = 1
2 (∇u−∇ut) ∈ [Lr(Ω)]2×2 is the vorticity tensor and

Lr′
0 (Ω) =

{
q ∈ Lr′(Ω);

∫

Ω

q = 0 dx

}
.

In order to derive the mixed formulation of problem (2), we define the following
spaces

Σ =
{

τ∼ = (τ , q) ∈ [Lr′(Ω)]2×2 × Lr′
0 (Ω); div(τ − qI) ∈ [Lr′(Ω)]2

}
,

M =
{

v∼ = (v,η) ∈ [Lr(Ω)]2 × [Lr(Ω)]2×2; η + ηt = 0
}

,

equipped with their respective norms:

‖ τ∼ ‖Σ =
(
‖τ‖r′

0,r′,Ω + ‖q‖r′

0,r′,Ω + ‖div(τ − qI)‖r′

0,r′,Ω

) 1
r′

, ‖ v∼ ‖M =
(
‖v‖r

0,r,Ω + ‖η‖r
0,r,Ω

) 1
r

.

The mixed formulation of (2) reads as follows: Find σ∼ = (σ, p) ∈ Σ and u ∈ M

such that
(A(σ), τ ) + (div(τ − qI),u) + (τ ,ω) = 0 ∀ τ∼ = (τ , q) ∈ Σ,

(div(σ − pI), v) + (σ, η) + (f , v) = 0 ∀ v∼ = (v, η) ∈ M.
(3)

The results concerning the existence, uniqueness and stability condition of the
solution of (3) are developed in Farhloul-Zine [8]. However, we recall some results
obtained in [8] that we need in the following section.

Proposition 1. There exists a positive constant β such that

(4) inf
v∼∈M

sup
τ∼∈Σ

(div(τ − qI),v) + (τ , η)
‖ v∼ ‖M‖ τ∼ ‖Σ

≥ β.
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Theorem 1. Problem (3) admits a unique solution satisfying

‖u∼ ‖M + ‖σ∼ ‖Σ ≤ C,

where C is a positive constant depending on f .

We assume that the boundary Γ of Ω is polygonal and we consider a regular
family of triangulations Th (triangulation of Ω into closed triangles K). We assume
that the triangulation Th is regular in the classical sense.

Let hK be the diameter of K and E any edge of K. Let Pk(K) denote the space
of polynomials of degree less than or equal to k on K. We set

χ =
[

0 −1
1 0

]
and R(K) = [P1(K)]2 + α curl bK ,

where α is a constant, and bK the “bubble function”, i.e. bK(x) = λ1(x)λ2(x)λ3(x)
with λ1, λ2 and λ3 the barycentric coordinates in K. We define the finite element
spaces (see Farhloul–Fortin [7])

Σh =
{

τh∼
= (τh, qh) ∈ Σ; qh|K ∈ P1(K) and τh|K ∈ [R(K)]2, ∀K ∈ Th

}

Mh =
{

vh∼
= (vh, ηh) ∈ M ; vh|K ∈ [P0(K)]2,ηh = θhχ with θh|K ∈ P1(K), ∀K ∈ Th

}
,

and our finite element approximation of problem (3): Find σh∼
= (σh, ph) ∈ Σh and

uh∼
= (uh,ωh) ∈ Mh such that

(5)
(A(σh), τh) + (div(τh − qhI),uh) + (τh,ωh) = 0 ∀ τh∼

= (τh, qh) ∈ Σh,

(div(σh − phI),vh) + (σh,ηh) + (f ,vh) = 0 ∀vh∼
= (vh,ηh) ∈ Mh.

The analysis of the problem (5) is performed in [8]. For the same reasons stated
above, we recall the following result.

Theorem 2. Problem (5) admits a unique solution,
(
σh∼

, uh∼

) ∈ Σh ×Mh, satis-

fying
‖uh∼

‖M + ‖σh∼
‖Σ ≤ C,

where C is a positive constant independent of h.

Finally, for the a priori error estimates, we refer to Theorem 3.4 and Theorem
3.5 in [8].

3. A posteriori error estimates

Let (σ∼ ,u∼ ) =
(
(σ, p); (u, ω)

)
and (σh∼

,uh∼
) =

(
(σh, ph); (uh,ωh)

)
be the solutions

of (3) and (5) respectively. On Σ and M , one define the residues R and S :

< R, τ∼ > = (A(σh), τ ) + (div(τ − qI), uh) + (τ ,ωh),∀ τ∼ = (τ , q) ∈ Σ,(6)

< S , v∼ > = (div(σh − phI),v) + (σh,η) + (f , v),∀ v∼ = (v, η) ∈ M.(7)

We denote by R∗ and S∗ the dual norms of R and S

R∗ = sup
τ∼∈Σ

| < R, τ∼ > |
‖ τ∼ ‖Σ

and S∗ = sup
v∼∈M

| < S , v∼ > |
‖ v∼ ‖M

.
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Our goal is to bound the errors ‖σ∼ −σh∼
‖Σ and ‖u∼ −uh∼

‖M by functions of two

error estimators whose expressions involve only the data of the problem and the
computed quantities. To this end, we firstly bound the errors in terms of R∗ and
S∗. Afterwards, we bound R∗ and S∗ in terms of the data of the problem and the
computed quantities. As we will see later, these results depend on the parameter
r. In fact, we have to distinguish two cases: r ≥ 2 and 1 < r < 2. However, we
have the following estimate of (A(σh)−A(σ),σh − σ) in terms of R∗ and S∗.

Proposition 2. There exists a constant C independent of h such that
(8)
(A(σh)−A(σ),σh − σ) ≤ C

{
R∗

(‖σh − σ‖0,r′,Ω + ‖f − P 0
hf‖0,r′,Ω

)
+ S∗R∗

+S∗ sup
τ∼∈Σ

(A(σ)−A(σh), τ )
‖ τ∼ ‖Σ

}
,

where P 0
hf is the L2–projection of f onto

[ ∏

K∈Th

P0(K)
]2

.

Proof. Using (3), (6) and (7), we obtain

(9) (A(σh)−A(σ), τ )+ (div(τ − qI),uh−u)+ (τ , ωh−ω) =< R, τ∼ >, ∀ τ∼ ∈ Σ,

(10) (div
[
(σh − phI)− (σ − pI)

]
, v) + (σh − σ,η) =< S , v∼ >, ∀ v∼ ∈ M.

Taking τ∼ = (σh − σ, ph − p) in (9) and v∼ = (uh − u,ωh − ω) in (10), we get

(11) (A(σh)−A(σ),σh − σ) =< R, σh∼
−σ∼ > − < S ,uh∼

−u∼ > .

By the inf–sup condition (4) and (9) it follows

β‖uh∼
−u∼ ‖M ≤ sup

τ∼∈Σ

(div(τ − qI), uh − u) + (τ ,ωh − ω)
‖ τ∼ ‖Σ

≤ sup
τ∼∈Σ

< R, τ∼ >

‖ τ∼ ‖Σ
+ sup

τ∼∈Σ

(A(σ)−A(σh), τ )
‖ τ∼ ‖Σ

.

Thus,

‖uh∼
−u∼ ‖M ≤ C

(
R∗+ sup

τ∼∈Σ

(A(σ)−A(σh), τ )
‖ τ∼ ‖Σ

)
.(12)

Using (11) and (12), we get
(13)

(A(σh)−A(σ), σh−σ) ≤ C



R∗ ‖σh∼

−σ∼ ‖Σ + S∗R∗+S∗ sup
τ∼∈Σ

(A(σ)−A(σh), τ )
‖ τ∼ ‖Σ



 .

Now, from (3) and (5), we have

(14) (div
[
(σ − pI)− (σh − phI)

]
,v) + (f − P 0

hf , v) = 0, ∀v ∈ [Lr(Ω)]2.

On the other hand, since f − P 0
hf ∈ [Lr′

0 (Ω)]2, there exists (see Galdi [9])

ξ ∈ {τ ∈ [Lr′(Ω)]2×2; div τ ∈ [Lr′(Ω)]2}
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such that

div ξ = f − P 0
hf in Ω, and ‖ξ‖0,r′,Ω + ‖div ξ‖0,r′,Ω ≤ C‖f − P 0

hf |0,r′,Ω.

Thus, from these last relations and (14), we get
(

div
[
(σ − σh) + ξ − (p− ph)I

]
, v

)
= 0, ∀v ∈ [Lr(Ω)]2,

and (by Lemma 4 in [10])

‖p− ph‖0,r′,Ω ≤ C‖σ − σh + ξ‖0,r′,Ω,

which implies

(15) ‖p− ph‖0,r′,Ω ≤ C
(‖σ − σh‖0,r′,Ω + ‖f − P 0

hf‖0,r′,Ω
)
.

Owing to (14), we also have

(16) ‖div
[
(σ − pI)− (σh − phI)

]‖0,r′,Ω = ‖f − P 0
hf‖0,r′,Ω.

Therefore, the estimate (8) follows from (13), (15) and (16). ¤
Our purpose now is to bound ‖σ∼ −σh∼

‖Σ and ‖u∼ −uh∼
‖M in terms of R∗ and

S∗. We will have to distinguish two cases: r ≥ 2 and 1 < r < 2. We begin with
the case r ≥ 2.

Theorem 3. Let (σ∼ ,u∼ ) and (σh∼
,uh∼

) be the solutions of problems (3) and (5),

respectively. Suppose that r ≥ 2, then there exists a constant C independent of h
such that

(17) ‖σ∼ −σh∼
‖Σ ≤ C

(
R∗+S∗+S∗r′/2 + ‖f − P 0

hf‖0,r′,Ω

)
,

(18) ‖u∼ −uh∼
‖M ≤ C

(
R∗+R∗2/r + S∗r′/r + R∗1/r

(
S∗+‖f − P 0

hf‖0,r′,Ω
)1/r

)
.

Proof. Following Sandri [11], we have

(
A(σh)−A(σ), σh−σ

) ≥ C

{
‖σh − σ‖20,r′,Ω

‖σh‖2−r′
0,r′,Ω + ‖σ‖2−r′

0,r′,Ω

+
∫

Ω

|A(σh)−A(σ)| |σh − σ| dx

}
,

and, ∀τ ∈ [
Lr′(Ω)

]2×2,

(19)
(
A(σh)−A(σ), τ

) ≤ C

[∫

Ω

|A(σh)−A(σ)| |σh − σ| dx

]1/r

‖τ‖0,r′,Ω.

Then, from (8), we get

‖σh − σ‖20,r′,Ω

‖σh‖2−r′
0,r′,Ω + ‖σ‖2−r′

0,r′,Ω

+
∫

Ω

|A(σh)−A(σ)| |σh − σ| dx

≤ C
{
R∗

(
‖σh − σ‖0,r′,Ω + ‖f − P 0

hf‖0,r′,Ω

)

+S∗R∗+S∗

[∫

Ω

|A(σh)−A(σ)| |σh − σ| dx

]1/r
}

.
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Using the Young inequality, i.e. ∀a ≥ 0, ∀b ≥ 0, ab ≤ 1
r
ar +

1
r′

br′ , we obtain
∀ ε > 0 and ∀ ε > 0,

‖σh − σ‖20,r′,Ω

‖σh‖2−r′
0,r′,Ω + ‖σ‖2−r′

0,r′,Ω

+
∫

Ω

|A(σh)−A(σ)| |σh − σ| dx

≤ C
[
ε−1

(
‖σh‖2−r′

0,r′,Ω + ‖σ‖2−r′
0,r′,Ω

)
R2
∗

+ε
‖σh − σ‖20,r′,Ω

‖σh‖2−r′
0,r′,Ω + ‖σ‖2−r′

0,r′,Ω

+ R∗ ‖f − P 0
hf‖0,r′,Ω + S∗R∗+(ε)−r′ S r′

∗

+(ε)r

∫

Ω

|A(σh)−A(σ)| |σh − σ| dx
]
.

To simplify the notations, we set

Λ =
(
‖σh‖2−r′

0,r′,Ω + ‖σ‖2−r′
0,r′,Ω

)
R2
∗+R∗ ‖f − P 0

hf‖0,r′,Ω + S∗R∗+S r′
∗ .

We then have

‖σh − σ‖20,r′,Ω ≤ C
(
‖σh‖2−r′

0,r′,Ω + ‖σ‖2−r′
0,r′,Ω

)
Λ

and ∫

Ω

|A(σh)−A(σ)| |σh − σ| dx ≤ CΛ

Using the fact that ‖σ‖0,r′,Ω and ‖σh‖0,r′,Ω are bounded, (see Theorem 1 and
Theorem 2), it follows from the previous inequalities :

‖σh − σ‖20,r′,Ω ≤ C
(
R2
∗+R∗ ‖f − P 0

hf‖0,r′,Ω + S∗R∗+S r′
∗

)
,∫

Ω

|A(σh)−A(σ)| |σh − σ| dx ≤ C
(
R2
∗+R∗ ‖f − P 0

hf‖0,r′,Ω + S∗R∗+S r′
∗

)
,

which implies

(20) ‖σ − σh‖0,r′,Ω ≤ C
(
R∗+‖f − P 0

hf‖0,r′,Ω + S∗+S r′/2
∗

)

and
(21)∫

Ω

|A(σh)−A(σ)| |σh − σ| dx ≤ C
(
R2
∗+S r′

∗ +R∗
(
S∗+‖f − P 0

hf‖0,r′,Ω
))

.

Thus, the estimate (17) is a consequence of (20), (15) and (16). On the other hand,
from (12) and (19) we have

‖u∼ −uh∼
‖M ≤ C

(
R∗+

[ ∫

Ω

|A(σh)−A(σ)| |σh − σ| dx
]1/r)

.

Therefore, the estimate (18) follows from this last one and (21). ¤
We now turn to the case 1 < r < 2.

Theorem 4. Let (σ∼ ,u∼ ) and (σh∼
,uh∼

) be the solutions of problems (3) and (5),

respectively. Suppose that 1 < r < 2, then there exists a constant C independent of
h such that

‖σ∼ −σh∼
‖Σ ≤ C

(
Rr/r′
∗ +S∗+S2/r′

∗ +‖f − P 0
hf‖0,r′,Ω

)
,(22)

‖u∼ −uh∼
‖M ≤ C

(
R∗+Rr/2

∗ +S∗+‖f − P 0
hf‖0,r′,Ω

)
.(23)
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Proof. As in the proof of Theorem 3, we have, by using the fact that (cf. Sandri
[11])
(
A(σh)−A(σ), σh−σ

) ≥ C

{
‖σh − σ‖r′

0,r′,Ω +
∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

}
,

‖A(σh)−A(σ)‖0,r,Ω ≤ C

[∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

]1/2

[‖σh‖0,r′,Ω + ‖σ‖0,r′,Ω](r
′−2)/2

,(24)

and (8)

‖σh − σ‖r′
0,r′,Ω +

∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

≤ C
{

R∗
(
‖σh − σ‖0,r′,Ω + ‖f − P 0

hf‖0,r′,Ω

)

+S∗R∗+S∗

[∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

]1/2

[‖σh‖0,r′,Ω + ‖σ‖0,r′,Ω](r
′−2)/2

}
.

Thus, using this last relation and the Young inequality, we get

‖σh − σ‖r′
0,r′,Ω +

∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

≤ C
{

εr′‖σh − σ‖r′
0,r′,Ω + ε−r Rr

∗+R∗ ‖f − P 0
hf‖0,r′,Ω + S∗R∗

}

+C

{
ε

∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx + (ε)−1 [‖σh‖0,r′,Ω + ‖σ‖0,r′,Ω](r
′−2)

S2
∗

}
,

and then (using the fact that ‖σ‖0,r′,Ω and ‖σh‖0,r′,Ω are bounded)

‖σh − σ‖r′
0,r′,Ω +

∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

≤ C
{
Rr
∗+R∗ ‖f − P 0

hf‖0,r′,Ω + S∗R∗+S2
∗
}

≤ C
{
Rr
∗+‖f − P 0

hf‖r′
0,r′,Ω + S r′

∗ +S2
∗
}

.

Thus

(25) ‖σh − σ‖0,r′,Ω ≤ C
{
Rr/r

′

∗ +S∗+S2/r′
∗ +‖f − P 0

hf‖0,r′,Ω

}

and

(26)
∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx ≤ C
{
Rr
∗+R2

∗+‖f − P 0
hf‖20,r′,Ω + S2

∗
}

.

Thus the estimate (22) is a consequence of (25), (15) and (16).
On the other hand from (12), (24) and the fact that ‖σ‖0,r′,Ω and ‖σh‖0,r′,Ω are

bounded, we have

‖u∼ −uh∼
‖M ≤ C

(
R∗+

[∫

Ω

(|σh|+ |σ|)r′−2 |σh − σ|2 dx

]1/2
)

.

Therefore, the estimate (23) follows from this last one and (26) ¤
Owing to the results of Theorem 3 and Theorem 4 it is sufficient to estimate R∗

and S∗. To this end, we first precise some notations: for a tensor field τ , and for
a vector field v = (v1, v2),

tr(τ ) = τ11 + τ22, as(τ ) = τ21 − τ12, rot(τ ) =
(

∂τ12

∂x1
− ∂τ11

∂x2
,
∂τ22

∂x1
− ∂τ21

∂x2

)
,
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Curl(v) =




∂v1

∂x2
− ∂v1

∂x1
∂v2

∂x2
− ∂v2

∂x1


 ,

and
[[
g
]]

E
is the jump of g across an edge E.

The key for the estimation of R∗ is the following Helmholtz decomposition of a
tensor field in Σ.

Proposition 3. Let τ∼ ∈ Σ. Then there exist z ∈ [
W 2,r′(Ω)

]2 and ψ ∈ [
W 1,r′(Ω)

]2

such that

(27) τ − qI = ∇z + Curlψ,

with the estimate

(28) ‖z‖2,r′,Ω + ‖ψ‖1,r′,Ω ≤ C ‖ τ∼ ‖Σ.

Proof. To prove this result it is sufficient to apply Theorem 1.1 of [6] to each row
of the tensor τ − qI, i.e. the two vector fields (τ11 − q, τ12) and (τ21, τ22 − q). ¤

We then have the following result.

Lemma 1. For every τ∼ ∈ Σ, we have

(29)
< R, τ∼ > =

∑
K∈Th

(A(σh) + ωh,∇z −Πh(∇z)) +
∑

K∈Th
(tr(A(σh)), q)

+
∑

K∈Th
(rot(A(σh) + ωh),ψ − Icl(ψ))

− ∑
E∈Eh

<
[[
(A(σh) + ωh)t

]]
E

, ψ − Icl(ψ) >E

where
• (z,ψ) ∈ [W 2,r′(Ω)]2 × [W 1,r′(Ω)]2 denotes the Helmholtz decomposition of

τ∼ ∈ Σ,

• Icl(ψ) is the Clément interpolate of ψ (see [5]),
• Eh denotes the set of all edges of the triangulation Th,
• [[

(A(σh) + ωh)t
]]

E
denotes the tangential jump of A(σh) + ωh,

• Πh(∇z) is the Brezzi-Douglas-Marini interpolate of the lowest degree of ∇z
(see [4]).

Proof. By (6) for every τ∼ ∈ Σ,

< R, τ∼ >= (A(σh) + ωh, τ ) + (div(τ − qI),uh).

Then, using the Helmholtz decomposition (27), we get

(30)
< R, τ∼ > = (A(σh) + ωh,∇z) + (A(σh) + ωh, qI)

+ (A(σh) + ωh, Curlψ) + (div(∇z), uh).

Let Πh(∇z) denote the Brezzi-Douglas-Marini interpolate of the lowest degree of
∇z. We have (see [4])

(div(Πh(∇z)), vh) = (div(∇z), vh), ∀vh ∈
[ ∏

K∈Th

P0(K)

]2

.

Thus, using this last relation and the fact that tr(ωh) = 0, (30) may be rewritten:

(31)
< R, τ∼ > = (A(σh) + ωh,∇z) + (tr(A(σh)), q)

+ (A(σh) + ωh, Curlψ) + (div(Πh(∇z)),uh).
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Taking successively τh∼
= (Πh(∇z), 0) ∈ Σh and τh∼

= (Curl(Icl(ψ)), 0) ∈ Σh in

the first equation of the discrete problem (5), we obtain

(A(σh) + ωh, Πh(∇z)) + (div(Πh(∇z)),uh) = 0

and
(A(σh) + ωh, Curl(Icl(ψ))) = 0.

Injecting these two last relations in the right-hand side of (31), we get

< R, τ∼ > = (A(σh) + ωh,∇z −Πh(∇z)) + (tr(A(σh)), q)

+ (A(σh) + ωh, Curl(ψ − Icl(ψ))).

Thus, using Green’s formula, we obtain

< R, τ∼ > = (A(σh) + ωh,∇z −Πh(∇z)) + (tr(A(σh)), q)

+
∑

K∈Th

{(rot(A(σh) + ωh),ψ − Icl(ψ))

− < (A(σh) + ωh)t, ψ − Icl(ψ) >∂K}
=

∑

K∈Th

(A(σh) + ωh,∇z −Πh(∇z)) +
∑

K∈Th

(tr(A(σh)), q)

+
∑

K∈Th

(rot(A(σh) + ωh),ψ − Icl(ψ))

−
∑

E∈Eh

<
[[
(A(σh) + ωh)t

]]
E

, ψ − Icl(ψ) >E .

¤
We are now in a position to bound R∗ and S∗ by two error estimators η1 and

η2.

Theorem 5. There exists a constant C independent of h such that

R∗ ≤ C R1, where R1 is given by R1 =
( ∑

K∈Th

η1(K)r
)1/r

,(32)

S∗ ≤ C S1, where S1 is given by S1 =
( ∑

K∈Th

η2(K)r′
)1/r′

,(33)

where η1(K) and η2(K) are the local estimators given by

η1(K)r = hr
K‖A(σh) + ωh‖r

0,r,K + ‖tr(A(σh))‖r
0,r,K

+ hr
K‖ rot(A(σh) + ωh)‖r

0,r,K +
∑

E∈∂K

hE‖
[[
(A(σh) + ωh)t

]]
E
‖r
0,r,E

η2(K)r′ = ‖f − P 0
hf‖r′

0,r′,K + ‖as(σh)‖r′
0,r′,K .

Proof. It follows from (29) that for every τ∼ ∈ Σ

(34)

| < R, τ∼ > | ≤ ∑
K∈Th

‖A(σh) + ωh‖0,r,K‖∇z −Πh(∇z)‖0,r′,K

+
∑

K∈Th
‖tr(A(σh))‖0,r,K‖q‖0,r′,K

+
∑

K∈Th
‖ rot(A(σh) + ωh)‖0,r,K‖ψ − Icl(ψ)‖0,r′,K

+
∑

E∈Eh
‖[[(A(σh) + ωh)t

]]
E
‖0,r,E‖ψ − Icl(ψ)‖0,r′,E .

Now, by Lemma 3.1 of [13], we have

‖ψ − Icl(ψ)‖0,r′,K ≤ ChK |ψ|1,r′,ωK
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and
‖ψ − Icl(ψ)‖0,r′,E ≤ Ch

1/r
E |ψ|1,r′,ωE

where ωK denotes the union of K with all the triangles from the triangulation Th

adjacent to the triangle K and ωE denotes the union of at most two triangles of
Th admitting E as an edge. Thus, using these two last estimates and the fact that
‖∇z −Πh(∇z)‖0,r′,K ≤ ChK |∇z|1,r′,K , (34) yield

| < R, τ∼ > | ≤ C
∑

K∈Th

hK‖A(σh) + ωh‖0,r,K |∇z|1,r′,K

+ C
∑

K∈Th

‖tr(A(σh))‖0,r,K‖q‖0,r′,K

+ C
∑

K∈Th

hK‖ rot(A(σh) + ωh)‖0,r,K |ψ|1,r′,ωK

+ C
∑

E∈Eh

h
1/r
E ‖[[(A(σh) + ωh)t

]]
E
‖0,r,E |ψ|1,r′,ωE

≤ C(
∑

K∈Th

hr
K‖A(σh) + ωh‖r

0,r,K)1/r|∇z|1,r′,Ω

+ C(
∑

K∈Th

‖tr(A(σh))‖r
0,r,K)1/r‖q‖0,r′,Ω

+ C(
∑

K∈Th

hr
K‖ rot(A(σh) + ωh)‖r

0,r,K)1/r|ψ|1,r′,Ω

+ C(
∑

E∈Eh

hE‖
[[
(A(σh) + ωh)t

]]
E
‖r
0,r,E)1/r|ψ|1,r′,Ω

and so

| < R, τ∼ > | ≤ C

{ ∑

K∈Th

(hr
K‖A(σh) + ωh‖r

0,r,K + ‖tr(A(σh))‖r
0,r,K

+ hr
K‖ rot(A(σh) + ωh)‖r

0,r,K +
∑

E⊂∂K

hE‖
[[
(A(σh) + ωh)t

]]
E
‖r
0,r,E)

}1/r

×
{
|∇z|r′1,r′,Ω + ‖q‖r′

0,r′,Ω + |ψ|r′1,r′,Ω

}1/r′

.

Therefore, using (28), we obtain

| < R, τ∼ > | ≤ C(
∑

K∈Th

η1(K)r)1/r‖ τ∼ ‖Σ ≤ C R1 ‖ τ∼ ‖Σ

and (32) follows immediately.
It remains to prove (33). By (7), we have for every v∼ ∈ M

| < S , v∼ > | ≤ (
∑

K∈Th

‖div(σh − phI) + f‖r′
0,r′,K)1/r′‖v‖0,r,Ω

+ C(
∑

K∈Th

‖as(σh)‖r′
0,r′,K)1/r′‖η‖0,r,Ω

≤ C(
∑

K∈Th

‖div(σh − phI) + f‖r′
0,r′,K + ‖as(σh)‖r′

0,r′,K)1/r′

×(‖v‖r
0,r,Ω + ‖η‖r

0,r,Ω)1/r.
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But by the second equation of the discrete problem (5), we have div(σh − phI) =
−P 0

hf . Therefore, for every v∼ ∈ M ,

| < S , v∼ > | ≤ C(
∑

K∈Th

‖f − P 0
hf‖r′

0,r′,K + ‖as(σh)‖r′
0,r′,K)1/r′‖ v∼ ‖M

which implies S∗ ≤ C S1. ¤
4. Conclusion

A new a posteriori error estimator for a mixed finite element approximation
of non-Newtonian fluid flow problems is introduced and analyzed. The estimator
justifies an adaptive finite element scheme which refines a given grid only in regions
where the error is relatively large. Finally, the technique developed to establish this
estimator can be extended to the three dimensional case.
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