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Abstract. The Cauchy problem for the parabolic equation

∂u

∂t
=

∂

∂x

(
k (x, t)

∂u

∂x

)
+ f(u, x, t), x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,

is considered. Under conditions u(x, t) = X(x)T1(t) + T2(t), ∂u
∂x

6= 0, k(x, t) =

k1(x)k2(t), f(u, x, t) = f1(x, t)f2(u), it is shown that the above problem is

equivalent to a system of two first-order ordinary differential equations for

which exact difference schemes with special Steklov averaging and difference

schemes with any order of approximation are constructed on the moving mesh.

On the basis of this approach, the exact difference schemes are constructed

also for boundary-value problems and multi-dimensional problems. Presented

numerical experiments confirm the theoretical results investigated in the paper.

Key Words. exact difference scheme, difference scheme with an arbitrary

order of accuracy, parabolic equation, system of ordinary differential equations.

1. Introduction

Various schemes have been constructed to approximate initial- and boundary-
value problems for parabolic equations [17]. One of the main questions in investi-
gating difference schemes is the approximation order, which is desired to be as high
as possible.

In the last few years, the exact difference schemes for some partial differential
equations have been constructed [3], [5], [6]. It is worth here to mention the papers
by R.E. Mickens [7] - [12], in which certain rules for construction of the nonstandard
finite difference schemes are given and several such schemes were introduced, for
example for the Burgers partial differential equation having no diffusion and a
nonlinear logistic reaction term [11]. S. Rucker [16] applied techniques initiated
by R. E. Mickens to obtain exact difference scheme for an advection – reaction
equation. In the paper [5], under natural conditions, the authors proved existence
of a two-point exact difference scheme for systems of first-order boundary value
problems. Difference schemes of high order of approximation were also constructed
in [15], [19].

The authors earlier established that for problems for parabolic equations with
solutions of the separated variables u(x, t) = X(x)T1(t)+T2(t) the exact difference
scheme may be constructed. The main feature of this paper is to apply the method
introduced in [6] for a wider classes of problems. The attention is mainly devoted
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to constructing a difference scheme of arbitrary order of approximation in the case
when the integral in special Steklov averaging cannot be evaluated exactly, as well
as developing the exact difference schemes in multi-dimensional case by using the
presented approach.

Consider the Cauchy problem for the one-dimensional parabolic equation

∂u

∂t
=

∂

∂x

(
k (x, t)

∂u

∂x

)
+ f(u, x, t), x ∈ R, t > 0,(1.1)

u(x, 0) = u0(x), x ∈ R.(1.2)

Under conditions u(x, t) = X(x)T1(t) + T2(t), ∂u
∂x 6= 0, k(x, t) = k1(x)k2(t),

f(u, x, t) = f1(x, t)f2(u), we show that problem (1.1) - (1.2) is equivalent to the
following system of two ordinary differential equations [6]:

dx

dt
= c1(x)k2(t),(1.3)

du

dt

∣∣∣∣
dx
dt =c1(x)k2(t)

= f1(x(t), t)f2(u), u(x(0), 0) = u0(x(0)),(1.4)

where c1(x) = − (k1(x)u′0(x))′
u′0(x) . ¿From (1.3) we find the curve x = x(t), along which

we get from (1.4) the solution u(x, t) = u(x(t), t) of problem (1.1) - (1.2). Here
x(0) = x0 ∈ R is the initial state of the curve x = x(t). Special Steklov averaging
[6], [17]

c(x(t)) ≈

 1
xn+1 − xn

xn+1∫
xn

dx

c(x)


−1

, tn ≤ t ≤ tn+1, x
n = x(tn), tn = nτ

is used to construct exact difference schemes only on the moving mesh. On the basis
of this approach, the exact difference schemes are constructed also for boundary-
value problems and for multi-dimensional problems. A difference scheme of ar-
bitrary order of approximation is proposed in the case when the integral in the
Steklov averaging cannot be evaluated exactly.

2. Exact difference schemes: the Cauchy problem for parabolic equa-
tions

In this Section, using the special Steklov averaging the exact difference scheme
for the Cauchy problem for parabolic equations is constructed.

Let us consider in the domain QT = R × [0,∞) the Cauchy problem for the
one-dimensional parabolic equation:

∂u

∂t
=

∂

∂x

(
k(x, t)

∂u

∂x

)
+ f(x, t, u), x ∈ R, t > 0,(2.5)

u(x, 0) = u0(x), x ∈ R.(2.6)

Assume that the problem (2.5) - (2.6) has an unique solution u(x, t) ∈ C2
1 (QT ),

u(x, t) = X(x)T1(t) + T2(t), ∂u
∂x 6= 0 and that the input data has the following

form k(x, t) = k1(x)k2(t), f(x, t, u) = f1(x, t)f2(u). The coefficient k is bounded
from above and below, i.e. 0 < k1 ≤ k(x, t) ≤ k2, for (x, t) ∈ R × (0,∞), where
k1, k2 = const, and k(x, t) ∈ C1

1 (QT ).
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Rewriting Equation (2.5) as

∂u

∂t
−

∂
∂x

(
k(x, t)∂u

∂x

)
∂u
∂x

∂u

∂x
= f(x, t, u)

and using the notation

dx

dt
= −

∂
∂x

(
k(x, t)∂u

∂x

)
∂u
∂x

yields the following form:

∂u

∂t
+
dx

dt

∂u

∂x
= f(x, t, u).

For dx
dt the following holds:

dx

dt
= −

∂
∂x

(
k(x, t)∂u

∂x

)
∂u
∂x

= −
∂
∂x (k(x, t)X ′(x)T1(t))

X ′(x)T1(t)

= −
∂
∂x (k(x, t)X ′(x))

X ′(x)
= −

∂
∂x (k(x, t)X ′(x)T1(0))

X ′(x)1T (0)
= −

∂
∂x (k1(x)k2(t)u′0(x))

u′0(x)

= −k2(t) (k1(x)u′0(x))
′

u′0(x)
= c1(x)k2(t),

where c1(x) = − (k1(x)u′0(x))′
u′0(x) . It follows that, instead of the differential problem

(2.5) - (2.6), we have

dx

dt
= c1(x)k2(t),(2.7)

du

dt

∣∣∣∣
dx
dt =c1(x)k2(t)

= f1(x(t), t)f2(u), u(x(0), 0) = u0(x(0)),(2.8)

where x(0) = x0 ∈ R is the initial state of the curve x = x(t). Solving this problem,
we obtain the following integral equations∫

dx

c1(x)
=
∫
k2(t)dt,(2.9) ∫

du

f2(u)
=
∫
f1(x(t), t)dt.(2.10)

Let

ω0
h =

{
x0

i = ih0
i , i = 0,±1,±2, . . .

}
,

ω0
hL =

{
x0

i = −L+ ih0
i , h

0
i =

2L
N
, i = 0, N

}
be uniform grids in space at t = 0 and

ωτ = {tn = nτ, n = 0, 1, 2, . . . } ,

ωτT =
{
tn = nτ, n = 0, N0, τ =

T

N0

}
be uniform grids in time. Here hn

i = xn
i+1 − xn

i is the space step at time t = tn.

Definition 2.1. A difference scheme is exact if the truncation error is equal to
zero, i.e., the exact solution agrees with the numerical solution at the grid nodes.
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Let us approximate Problem (2.7) - (2.8) by the difference scheme

xn+1
i − xn

i

τ
=

 1
xn+1

i − xn
i

xn+1
i∫

xn
i

dx

c1(x)


−1

1
τ

tn+1∫
tn

k2(t)dt,

x0
i ∈ ω0

h, i = 0,±1,±2, . . . , n = 0, 1, . . . ,

(2.11)

yn+1
i − yn

i

τ
=

 1
yn+1

i − yn
i

yn+1
i∫

yn
i

du

f2(u)


−1

1
τ

tn+1∫
tn

f1(x(t), t)dt,

y0
i = u0(x0

i ), i = 0,±1,±2, . . . , n = 0, 1, . . . .

(2.12)

Here, Equation (2.11) represents the space-grid as a moving mesh, where x0
i ∈ ω0

h

is the initial partitioning. Then, the following theorem holds:

Theorem 2.1. The difference scheme (2.11) - (2.12) is exact.

Proof. We show that the difference scheme (2.11) approximates the differential
problem (2.7) exactly [6]. The truncation error ψ = ψn

i is

ψn
i =

xn+1
i − xn

i

τ
−

 1
xn+1

i − xn
i

xn+1
i∫

xn
i

dx

c1(x)


−1

1
τ

tn+1∫
tn

k2(t)dt

=
xn+1

i − xn
i

xn+1
i∫
xn

i

dx
c1(x)


xn+1

i∫
x0

dx
c1(x) −

xn
i∫

x0

dx
c1(x)

τ
− 1
τ

tn+1∫
tn

k2(t)dt

 .(2.13)

On the basis of (2.7), we obtain

dx

dt
= c1(x)k2(t),

d

dt

 x∫
x0

dx

c1(x)

 = k2(t),

x∫
x0

dx

c1(x)
=

t∫
0

k2(t)dt,

1
τ

 xn+1
i∫

x0

dx

c1(x)
−

xn
i∫

x0

dx

c1(x)

 =
1
τ

tn+1∫
tn

k2(t)dt.(2.14)

Substituting (2.14) into (2.13), we obtain ψn
i = 0, for n = 0, 1, . . . and i =

0,±1,±2, . . . . Similarly, we can show that the difference scheme (2.12) approx-
imates the differential problem (2.8) exactly. Hence, Scheme (2.11) - (2.12) is
exact. �

Example 2.1. Let us consider the following Cauchy problem:

∂u

∂t
=
∂2u

∂x2
−An1(n1 − 1)xn1−2 +Bn2t

n2−1, t > 0, u(x, 0) = Axn1 , x ∈ R,

(2.15)

where n1, n2 > 2. The solution of this problem exists and equals u(x, t) = Axn1 +
Btn2 , where A, B = const. Using the above technique, Equation (2.15) is replaced
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by the problem
dx

dt
= −u

′′
0(x)
u′0(x)

= −n1 − 1
x

,(2.16)

du

dt

∣∣∣∣
dx
dt =−n1−1

x

=
∂u

∂t
+
dx

dt

∂u

∂x
= f(x(t), t), u(x(0), 0) = u0(x(0)) = A

(
x0
)n1

,

(2.17)

where x(t) is the solution of Equation (2.16) and f(x, t) = −An1(n1 − 1)xn1−2 +
Bn2t

n2−1.
Solving problem (2.16) - (2.17) analytically, we obtain

x(t) =


√
−2(n1 − 1)t+ (x0)2, if x0 ≥ 0,

−
√
−2(n1 − 1)t+ (x0)2, if x0 < 0,

u(x(t), t) =

 Btn2 +A
((
x0
)2 − 2(n1 − 1)t

)n1
2
, if x0 ≥ 0,

Btn2 + (−1)n1−2A
((
x0
)2 − 2(n1 − 1)t

)n1
2
, if x0 < 0,

where x0 ∈ R and 0 < t < (x0)2

2(n1−1) . Substituting
(
x0
)2 = x2 + 2 (n1 − 1) t in the

above equation, we find the solution of the Cauchy problem (2.15) in the explicit
form:

u(x(t), t) =
{

Btn2 +A |x|n1 , if x ≥ 0,
Btn2 + (−1)n1−2A |x|n1 , if x < 0,

= Btn2 +Axn1 .

Applying the exact difference scheme (2.11) - (2.12) and evaluating exactly the
integrals in it, we get the following formulas (See Fig. 2.1 and Fig. 2.2):

xn+1
i =


√

(xn
i )2 − 2τ(n1 − 1), if xn

i ≥ 0,

−
√

(xn
i )2 − 2τ(n1 − 1), if xn

i < 0,
, x0

i ∈ ω0
h, n = 0, 1, . . . ,(2.18)

yn+1
i =



yn
i + B

(
tn2
n+1 − tn2

n

)
+A

((
x0

i

)2 − 2(n1 − 1)tn+1

) n1
2 −A

((
x0

i

)2 − 2(n1 − 1)tn
) n1

2
, if x0

i ≥ 0,

yn
i + B

(
tn2
n+1 − tn2

n

)
+(−1)n1−2A

[((
x0

i

)2 − 2(n1 − 1)tn+1

) n1
2 −

((
x0

i

)2 − 2(n1 − 1)tn
) n1

2
]

, if x0
i < 0,

y0
i = u0(x0

i ), i = 0,±1,±2, . . . , n = 0, 1, . . . ,(2.19)

where tn = nτ and 0 < tn < (x0)2

2(n1−1) . From the above equations we obtain the
formulas:

xn+1
i =

{ √
(x0

i )2 − 2tn+1(n1 − 1), if x0
i ≥ 0,

−
√

(x0
i )2 − 2tn+1(n1 − 1), if x0

i < 0,
, x0

i ∈ ω0
h, n = 0, 1, . . . ,

yn+1
i =

 Btn2
n+1 +A

((
x0

i

)2 − 2(n1 − 1)tn+1

)n1
2
, if x0

i ≥ 0,

Btn2
n+1 + (−1)n1−2A

((
x0

i

)2 − 2(n1 − 1)tn+1

)n1
2
, if x0

i < 0,

(2.20)

which coincide with the analytical solution of System (2.16) - (2.17).
Tables 2.1, 2.2, display the results of numerical experiments for different param-

eter values and confirm the theoretical results stated in Theorem 2.1.
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Fig. 2.1: Moving mesh given by (2.18) Fig. 2.2: Exact and approximate
solution given by (2.19) with
parameters n1 = 5, n2 = 4, A = 1,
B = 1.

h0
i τ max

0≤n≤N0
‖yn − u(tn)‖C

1.0 1.0 6.66E − 16
0.2 0.2 1.55E − 15
0.1 0.1 2.11E − 15
0.02 0.02 6.61E − 15
0.01 0.01 7.99E − 15

Table 2.1: L = 5, T = 10

h0
i τ max

0≤n≤N0
‖yn − u(tn)‖C

0.2 0.02 1.90E − 19
0.04 0.004 3.79E − 19
0.02 0.002 6.51E − 19
0.004 0.0004 2.33E − 18
0.002 0.0002 8.10E − 18

Table 2.2: L = 1, T = 0.2

The boundary-value problem for parabolic equation was investigated in [6] by
using the same approach. Interested readers are referred to this work for studying
examples of the exact difference schemes in this case.

3. Arbitrary-order difference schemes: the boundary-value problem for
parabolic equations

In this Section, the difference scheme of arbitrary order of approximation is
considered in the case when the integral in it can not be evaluated exactly. The
trapezoid rule is applied to approximate the integral and an iteration method is
used for finding the solution of the difference scheme.

Consider the boundary-value problem:

∂u

∂t
=

∂

∂x

(
k(x)

∂u

∂x

)
, 0 < x < L, 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ L, u(0, t) = µ1(t), u(L, t) = µ2(t), 0 < t ≤ T,
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where 0 < k1 ≤ k(x) ≤ k2 for 0 < x < L. This problem may be rewritten in the
form:

dx

dt
= − (k(x)u′0(x))

′

u′0(x)
= c(x),(3.21)

du

dt

∣∣∣∣
dx
dt =c(x)

= 0, u(x(0), 0) = u0(x(0)),(3.22)

where c(x) is some function of the spatial variable x. We assume that c(x) 6= 0 for
x ∈ [0, L] and c(x) ∈ C2[0, L]. Applying the trapezoid rule

xn+1
i∫

xn
i

dx

c(x)
≈ xn+1

i − xn
i

m

 1
2c
(
xn+1

i

) +
m−1∑
j=1

1

c
(
xn

i + j
xn+1

i −xn
i

m

) +
1

2c (xn
i )

 ,

(3.23)

Equation (3.21) is approximated by the difference scheme

xn+1
hi − xn

hi

τ
=

 1
2m

(
1

c(xn
hi)

+
1

c
(
xn+1

hi

))+
1
m

m−1∑
j=1

1

c
(
xn

hi + j
xn+1

hi −xn
hi

m

)

−1

,

x0
hi = x0

i ∈ ω0
h, i = 0, N, n = 0, N0 − 1,

xi−N
hi = L, i = N + 1, N +N0 − 1, n = i−N,N0 − 1,

(3.24)

where ω0
h =

{
x0

i = ih0
i , h

0
i = L

N , i = 0, N
}
. The error of the approximation equals

O(( h
m )2), where h = max

0≤i≤N+N0−1
0≤n≤N0

∣∣xn+1
hi − xn

hi

∣∣.
However, Equation (3.24) is nonlinear, so we use the iteration method

s+1
x

n+1

hi − xn
hi

τ
=

 1
2m

 1
c(xn

hi)
+

1

c
(

s
x

n+1

hi

)
+

1
m

m−1∑
j=1

1

c

(
xn

hi + j
s
x

n+1
hi −xn

hi

m

)

−1

,

(3.25)

where the initial approximation
0
x

n+1

hi is calculated from the equation

0
x

n+1

hi − xn
hi

τ
= c(xn

hi).

The stopping criterion in the iteration method is max
0≤i≤N+N0−1

∣∣∣∣s+1
x

n+1

hi − s
x

n+1

hi

∣∣∣∣ ≤ ε,

where ε is a previously given tolerance. When the above condition is satisfied, we

advance to the next level with xn+1
hi =

s+1
x

n+1

hi . Thus, Problem (3.21) - (3.22) is
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approximated by the difference scheme:

s+1
x

n+1

hi − xn
hi

τ
=

 1
2m

 1
c(xn

hi)
+

1

c
(

s
x

n+1

hi

)
+

1
m

m−1∑
j=1

1

c

(
xn

hi + j
s
x

n+1
hi −xn

hi

m

)

−1

,

x0
hi = x0

i ∈ ω0
h, i = 0, N, n = 0, N0 − 1,

xi−N
hi = L, i = N + 1, N +N0 − 1, n = i−N,N0 − 1,

(3.26)

yn+1
i = yn

i , y
0
i = u0(x0

hi), i = 0, N, n = 0, N0 − 1,

yi−N
i = µ2(ti−N ), i = N + 1, N +N0 − 1, n = i−N,N0 − 1.

(3.27)

Example 3.1. Consider the boundary-value problem:

∂u

∂t
=

∂

∂x

(
1
6
(x+ 1)2

∂u

∂x

)
, 0 < x < 1, 0 < t ≤ 1,

u(x, 0) = (x+ 1)2, 0 ≤ x ≤ 1, u(0, t) = et, u(l, t) = 4et, 0 < t ≤ 1,

with an exact solution u(x, t) = et(x+ 1)2. The corresponding difference scheme is

s+1
x

n+1

hi − xn
hi

τ
=

 1
2m

(
−2

xn
hi + 1

+
−2

s
x

n+1

hi + 1

)
+

1
m

m−1∑
j=1

−2

xn
hi + j

s
x

n+1
hi −xn

hi

m + 1

−1

,

0
x

n+1

hi = xn
hi − τ

xn
hi + 1

2
, x0

hi = x0
i ∈ ω0

h, i = 0, N, n = 0, N0 − 1,

xi−N
hi = L, i = N + 1, N +N0 − 1, n = i−N,N0 − 1,

yn+1
i = yn

i , y
0
i = (x0

i + 1)2, i = 0, N, n = 0, N0 − 1,(3.28)

yi−N
i = µ2(ti−N ), i = N + 1, N +N0 − 1, n = i−N,N0 − 1.

Here, we use an iteration scheme, despite the fact that the integral in special Steklov
averaging can be easily evaluated, since we want to compare the exact solution x(t)
of the equation dx

dt = −x+1
2 with its numerical approximation (See Fig. 4.5).

The following table presents the numerical results obtained by our simulation,
where S is the number of iterations. We can easily observe that the error of the
difference approximation of parabolic equation have nearly the same order as the
error of the approximation of moving mesh x(t).

m τ max
0≤n≤N0

‖xn
h − x(tn)‖C max

0≤n≤N0
‖yn − u(tn)‖C S

10 0.1 2.53E − 06 1.67E − 05 9
100 0.1 2.53E − 08 1.67E − 07 9
1000 0.1 2.53E − 10 1.67E − 09 9
10000 0.1 2.53E − 12 1.67E − 11 9
10 0.01 2.53E − 08 1.67E − 07 5
100 0.01 2.53E − 10 1.67E − 09 5
1000 0.01 2.53E − 12 1.67E − 11 5
10000 0.01 2.54E − 14 1.68E − 13 5

Table 3.3: ε = 1.0E − 15, h0
i = 0.1.
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Fig. 3.3: The exact solution and its numerical approximation of the equation
dx
dt = −x+1

2 for h0
i = 0.2, τ = 0.1 and m = 10

Next, we compare our scheme (3.26) - (3.27) with the following well known
scheme with weights [17]:

yn
t = (ayx)σ

x,i , i = 1, N − 1, n = 0, N0 − 1,(3.29)

y0
i = u0(xi), i = 0, N,(3.30)

yn+1
0 = µ1(tn+1), yn+1

N = µ2(tn+1), n = 0, N0 − 1,(3.31)

where the functional stencil is equal ai = k(xi−1)+k(xi)
2 . Scheme (3.29) - (3.31) is

considered on the product ω0
h × ωτ , while scheme (3.26) - (3.27) is on the moving

mesh. Numerical comparison results are presented in the table below, where Q is
the number of arithmetic operations.

scheme (3.29) -(3.31) scheme (3.26) -(3.27)

max
tn∈ωτ

‖yn − un‖C h τ Q max
tn∈ωτ

‖yn − un‖C h0
i τ m S Q

2.52E − 03 0.1 0.1 3315 1.67E − 03 0.1 0.1 1 9 11193

1.01E − 04 0.02 0.02 88555 1.04E − 04 0.1 0.1 4 9 36465

2.53E − 05 0.01 0.01 357105 2.61E − 05 0.1 0.1 8 9 70161

1.01E − 06 0.002 0.002 8985505 1.36E − 06 0.1 0.1 35 9 297609

2.53E − 07 0.001 0.001 35971005 2.61E − 07 0.1 0.1 80 9 676689

Table 3.4: σ = 0.5, ε = 1.0E − 15.

Table 4.5 demonstrates numerically that usual scheme with weight requires sig-
nificantly smaller time and space steps and more arithmetic operations then our
scheme to obtain the same error of the method.
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To obtain better numerical results, under condition c(x) ∈ C2M+2[0, L], where
M = const, we use the Euler-MacLaurin formula in place of the trapezoid rule [4]:

xn+1
i∫

xn
i

dx

c(x)
≈ xn+1

i − xn
i

m

 1
2c
(
xn+1

i

) +
m−1∑
j=1

1

c
(
xn

i + j
xn+1

i −xn
i

m

) +
1

2c (xn
i )


+

M∑
j=1

(−1)jaj

(
xn+1

i − xn
i

m

)2j
( 1

c
(
xn+1

i

))(2j−1)

−
(

1
c (xn

i )

)(2j−1)
 ,

(3.32)

where aj is calculated from 1
2M+1 = 1

2 +
M∑

j=1

(−1)j (2M)!
(2M−2j+1)!aj . For M = 0 Formula

(3.32) equals the trapezoid rule. Here
(

1
c(x)

)(j)

is the j − th derivative of 1
c(x)

with respect to x. In this case the error of the integral approximation is equal
O(( h

m )2M+2), where h = max
0≤i≤N+N0−1

0≤n≤N0

∣∣xn+1
hi − xn

hi

∣∣. The following table presents

the obtained numerical results and confirms our theoretical results.

m M τ max
0≤n≤N0

‖xn
h − x(tn)‖C max

0≤n≤N0
‖yn − u(tn)‖C S

10 0 0.1 2.53E − 06 1.67E − 05 12
10 1 0.1 1.27E − 11 8.35E − 11 12
10 2 0.1 2.27E − 16 1.49E − 15 12
10 3 0.1 1.22E − 19 1.73E − 18 12
100 0 0.1 2.53E − 08 1.67E − 07 12
100 1 0.1 1.27E − 15 8.35E − 15 12
100 2 0.1 1.22E − 19 1.73E − 18 12
100 3 0.1 1.22E − 19 1.73E − 18 12

Table 3.5: Numerical comparison of the trapezoid rule (M = 0) and the
Euler-MacLaurin formula with parameters ε = 1.0E − 19, h0

i = 0.1

4. Exact difference schemes: the boundary-value problem for parabolic
equations with small parameter

In the paper [6], the boundary-value problem for parabolic equations with small
parameter is considered on a coarse mesh. However, in practice nonuniform grids,
for example Shiskin meshes, Bakhvalov meshes, etc., are used in the domain, where
solution has singularities. In this Section, the exact difference scheme is constructed
on an arbitrary nonuniform grid.

Consider the following boundary-value problem [2]

∂u

∂t
+
∂u

∂x
= ε

∂2u

∂x2
, 0 < x < L, 0 < t ≤ T,(4.33)

u(x, 0) =
1− exp{ 1−x

ε }
1− exp{ 1

ε }
, 0 ≤ x ≤ L,(4.34)

u(0, t) = 1, u(l, t) =
1− exp{ 1−l+2t

ε }
1− exp{ 1

ε }
, 0 < t ≤ T.(4.35)
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Assume that the solution of the problem (4.33) - (4.35) exists and has the form
u(x, t) = X(x)T (t) + C, where C = const. Rewrite problem (4.33) - (4.35) in the
form:

dx

dt
= 1−

ε∂2u
∂x2

∂u
∂x

= 2,(4.36)

du

dt

∣∣∣∣
dx
dt =2

=
∂u

∂t
+
dx

dt

∂u

∂x
= 0, u(x(0), 0) =

1− exp{ 1−x0

ε }
1− exp{ 1

ε }
.(4.37)

For equations (4.36) - (4.37) we obtain the analytical results:

x(t) = 2t+ x0,

u(x(t), t) =
1− exp{ 1−x0

ε }
1− exp{ 1

ε }
,

and the explicit form of the solution:

u(x(t), t) =
1− exp{ 1−x+2t

ε }
1− exp{ 1

ε }
.

Consider a nonuniform grid ω̂
0

h =
{
x0

i = x0
i−1 + h0

i , i = 1, N, x0
0 = 0,

N∑
i=1

h0
i = L

}
,

where h0
i is the space step. Problem (4.36) - (4.37) is approximated by the following

scheme:

xn+1
i − xn

i

τ
=

 1
xn+1

i − xn
i

xn+1
i∫
xn

i

dx

2


−1

, x0
i ∈ ω̂

0

h, i = 0, N, n = 0, 1, . . . ,

yn+1
i − yn

i

τ
= 0, y0

i =
1− exp{ 1−x0

i

ε }
1− exp{ 1

ε }
, i = 0, N, n = 0, 1, . . . .

¿From the above equations we obtain

xn+1
i = xn

i + 2τ, x0
i ∈ ω̂

0

h, i = 0, N, n = 0, 1, . . . ,(4.38)

yn+1
i = yn

i , y
0
i =

1− exp{ 1−x0
i

ε }
1− exp{ 1

ε }
, i = 0, N, n = 0, 1, . . . .(4.39)

Fig. 4.4: Initial condition u0(x)
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In our experiments, based on the function u0(x) (See Fig. 4.4), for the initial
partitioning we use an almost uniform grid, i.e. hi = h1 for 0 < x0

i ≤ 4ε and
hi = h2 for 4ε < x0

i ≤ L. The exact solution of the problem equals:

u(x, t) =

{
1, 0 ≤ x ≤ 2t,

1−exp{ 1−x+2t
ε }

1−exp{ 1
ε }

, 2t < x ≤ L.

Figures 5.7, 5.8 present the numerical results with ε = 0.05, L = 1, T = 0.2,
τ = 0.02, while Tables 5.7, 5.8 present the obtained results for different time and
space steps, which confirms that the difference scheme (4.38) - (4.39) is exact.

Fig. 4.5: Moving mesh given by (4.38) Fig. 4.6: Exact and approximate
solution given by (4.39).

h1 h2 τ max
0≤n≤N0

‖yn − u(tn)‖C

0.02 0.16 0.02 8.13E − 19

0.01 0.08 0.01 1.95E − 18

0.004 0.032 0.004 3.58E − 18

0.002 0.016 0.002 3.58E − 18

0.0004 0.0032 0.0004 3.29E − 17

Table 4.6: ε = 0.05, L = 1, T = 0.2

h1 h2 τ max
0≤n≤N0

‖yn − u(tn)‖C

0.0004 0.1992 0.02 3.46E − 17

0.0002 0.0996 0.01 1.26E − 16

0.00008 0.03984 0.004 1.54E − 16

0.00004 0.01992 0.002 1.97E − 16

0.000008 0.003984 0.0004 1.62E − 15

Table 4.7: ε = 0.001, L = 1, T = 0.2
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5. Exact difference schemes: the Cauchy problem for multi-dimensional
parabolic equations

In this Section, on the basis of the previous method, the Cauchy problem for two-
dimensional parabolic equations is investigated. Analytical and numerical results
are derived similar to those for the one dimensional case.

Consider the Cauchy problem for the following two-dimensional parabolic equa-
tion [18]:

∂u

∂t
=
∂2u

∂x2
1

+
∂2u

∂x2
2

+ u lnu, x1, x2 ∈ R, t > 0,(5.40)

u(x1, x2, 0) = exp{β0 + 1− x2
1

4
− x2

2

4
}, x1 ∈ R, x2 ∈ R.(5.41)

Assume that the solution of the above problem exists and has the form u(x, t) =
X1(x1)X2(x2)T (t). Rewrite Equations (5.40) - (5.41) as

dx1

dt
= −

∂2u
∂x2

1

∂u
∂x1

= −X
′′
1 (x1)

X ′
1(x1)

=
x2

1 − 2
2x1

,(5.42)

dx2

dt
= −

∂2u
∂x2

2

∂u
∂x2

= −X
′′
2 (x2)

X ′
2(x2)

=
x2

2 − 2
2x2

,(5.43)

du

dt

∣∣∣∣
dx1
dt =

x2
1−2
2x1

,
dx2
dt =

x2
2−2
2x2

=
∂u

∂t
+
dx1

dt

∂u

∂x1
+
dx2

dt

∂u

∂x2
= u lnu,

u(x1(0), x2(0), 0) = exp{β0 + 1−
(
x0

1

)2
4

−
(
x0

2

)2
4

},

(5.44)

where x1(0) = x0
1, x2(0) = x0

2 ∈ R are the initial states of the curves x1 = x1(t)
and x2 = x2(t), respectively. ¿From the analytical results for Equations (5.42) -
(5.44):

x1(t) =


√

2 + et((x0
1)

2 − 2), if x0
1 ≥ 0,

−
√

2 + et((x0
1)

2 − 2), if x0
1 < 0,

x2(t) =


√

2 + et((x0
2)

2 − 2), if x0
2 ≥ 0,

−
√

2 + et((x0
2)

2 − 2), if x0
2 < 0,

u(x(t), t) =
(
u0(x0)

)et

,

we can determined the explicit form of the solution (See Fig. 5.8):

u(x(t), t) = exp
{
β0e

t + 1− x2
1 + x2

2

4

}
,

where t ≤ ln 2
2−(x0

1)
2 for 0 < x0

1 <
√

2 and t ≤ ln 2
2−(x0

2)
2 for 0 < x0

2 <
√

2.
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Next, let us approximate Problem (5.42) - (5.44) by the scheme:

xn+1
1i − xn

1i

τ
=

 1
xn+1

1i − xn
1i

xn+1
1i∫
xn
1i

2xdx
x2 − 2


−1

, x0
1i ∈ ω0

h1
, i = 0, N1, n = 0, 1, . . . ,

xn+1
2j − xn

2j

τ
=

 1
xn+1

2j − xn
2j

xn+1
2j∫
xn
2j

2xdx
x2 − 2


−1

, x0
2j ∈ ω0

h2
, j = 0, N2, n = 0, 1, . . . ,

yn+1
ij − yn

ij

τ
=

 1
yn+1

ij − yn
ij

yn+1
ij∫
yn

ij

du

u lnu


−1

,

y0
ij = u(x0

1i, x
0
2j , 0), i = 0, N1, j = 0, N2, n = 0, 1, . . . ,

where

ω0
h1

=
{
x0

1,i = −L1 + ih0
1i, h

0
1i =

2L1

N1
, i = 0, N1

}
,

ω0
h2

=
{
x0

2,j = −L2 + jh0
2j , h

0
2j =

2L2

N2
, j = 0, N2

}
,

ωτ =
{
tn = nτ, n = 0, N0, τ =

T

N0

}
are the uniform grids in space and time, respectively. After evaluating the integrals,
we obtain (See Fig. 5.7):

xn+1
1i =

{ √
2 + eτ ((xn

1i)2 − 2), if xn
1i ≥ 0,

−
√

2 + eτ ((xn
1i)2 − 2), if xn

1i < 0,
x0

1i ∈ ω0
h1
, i = 0, N1, n = 0, 1, . . . ,

(5.45)

xn+1
2j =


√

2 + eτ ((xn
2j)2 − 2), if xn

2i ≥ 0,

−
√

2 + eτ ((xn
2j)2 − 2), if xn

2i < 0,
x0

2j ∈ ω0
h2
, j = 0, N2, n = 0, 1, . . . ,

(5.46)

yn+1
ij = (yn

ij)
exp{τ}, y0

ij = u(x0
1i, x

0
2j , 0), i = 0, N1, j = 0, N2, n = 0, 1, . . . .(5.47)

Tables 6.9, 6.10 present the numerical results for different time and space steps,
where ‖y‖C = max

0≤i≤N1
0≤j≤N2

|yi,j |, and demonstrate that the difference scheme (5.45) -

(5.47) is exact.

h0
1i h0

2j τ max
0≤n≤N0

‖yn − u(tn)‖C

1 1 0.1 1.39E − 16

0.5 0.5 0.05 6.38E − 16

0.2 0.2 0.02 3.25E − 15

0.1 0.1 0.01 1.04E − 14

Table 5.8: β0 = 2, L1 = 5, L2 = 5, T = 1

h0
1i h0

2j τ max
0≤n≤N0

‖yn − u(tn)‖C

0.1 0.1 0.1 4.34E − 19

0.05 0.05 0.05 8.67E − 19

0.02 0.02 0.02 1.52E − 18

0.01 0.01 0.01 2.60E − 18

Table 5.9: β0 = 0.1, L1 = 0.5, L2 = 0.5,
T = 1
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Fig. 5.7: Moving mesh given by formulas (5.45) - (5.46)

Fig. 5.8: Exact solution of problem (5.40) - (5.41) for t = 2 and β0 = 2

The technique for numerically solving multi-dimensional parabolic problems (in
space Rp, p = 2, 3, . . . ) is a natural extension of the above technique for solving
two-dimensional problems.
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6. Conclusions

In this paper, under condition u(x, t) = X(x)T1(t) + T2(t), using the special
Steklov averaging we have constructed on the moving mesh the exact difference
schemes for the Cauchy problem for parabolic equations. The multi-dimensional
problems and boundary-value problems also have been considered. The difference
scheme of arbitrary order of approximation have been constructed in the case when
interval in it cannot be evaluated exactly.

Numerical results have been presented to confirm theoretical results stated in
the paper.

Future research will focus on two-dimensional nonlinear problems for parabolic
equations with wave propagation solution u(x1, x2, t) = f1(x1−at)+ f2(x2−at) as
well as on nonlinear problems for hyperbolic equations of the second order. Finally,
to generalize presented idea in the case when no explicit solution is available remains
to be a very challenging task.
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