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A UNIFORMLY OPTIMAL-ORDER ERROR ESTIMATE OF
AN ELLAM SCHEME FOR UNSTEADY-STATE
ADVECTION-DIFFUSION EQUATIONS

KAIXIN WANG

Abstract. We prove an optimal-order error estimate in a weighted energy
norm for the Eulerian-Lagrangian localized adjoint method (ELLAM) for unsteady-
state advection-diffusion equations with general inflow and outflow boundary
conditions. It is well known that these problems admit dynamic fronts with
interior and boundary layers. The estimate holds uniformly with respect to the

vanishing diffusion coefficient.

Key Words. characteristic methods, Eulerian-Lagrangian methods, interpo-

lation of spaces, uniform error estimates

1. Introduction

We consider unsteady-state advection-diffusion equations with general inflow and
outflow boundary conditions, which arise in mathematical modeling of petroleum
reservoir simulation, environmental modeling, and other applications [1, 7]. It is
well known that these problems admit solutions with dynamic fronts and complex
structures including interior and boundary layers, and present serious mathematical
and numerical difficulties. Classical finite difference or finite element methods tend
to generate numerical solutions with nonphysical oscillations, while upwind methods
often produce excessive numerical diffusion that smears out fronts and generates
spurious grid orientation effects [7].

Eulerian-Lagrangian methods combine the advection and capacity terms in the
governing equations to carry out the temporal discretization in a Lagrangian co-
ordinate, and discretize the diffusion term on a fixed mesh in an Eulerian manner
[4, 5, 11]. These methods symmetrize the governing equation and stabilize their
numerical approximations. They generate accurate numerical solutions and signifi-
cantly reduce the numerical diffusion and grid-orientation effect present in upwind
methods, even if large time steps and coarse spatial meshes are used. Eulerian-
Lagrangian methods were shown to be very competitive in terms of accuracy and ef-
ficiency [4, 12]. Mathematically, A priori optimal-order error estimates were derived
for the modified method of characteristics (MMOC) [5] and the modified method
of characteristics with adjusted advection [4] for unsteady-state advection-diffusion
equations with periodic or noflow boundary conditions and the Eulerian-Lagrangian
localized adjoint method (ELLAM) for unsteady-state advection-diffusion equa-
tions with general boundary conditions [13, 10]. However, the general constant in
this type of estimates may depend inversely on the vanishing diffusion parameter.
Consequently, these estimates could blow up as the diffusion coefficient tends to
zero. To our best knowledge, there is no a priori optimal-order error estimate in a
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weighted energy norm for an Eulerian-Lagrangian method with uniform partition
for unsteady-state advection-diffusion equations with general inflow and outflow
boundary conditions, which holds uniformly with respect to the vanishing diffusion
parameter.

In contrast to the steady-state analogue where a uniform L error estimate was
derived for numerical methods with a Shishkin mesh [9], unsteady-state advection-
diffusion equations admit dynamic interior and boundary layers and complicated
structures. These boundary and interior layers are dynamic and do not always coin-
cide with the spatial mesh. Consequently, a uniform error estimate in the L*°-norm
is generally impossible, since the true solution could exhibit shock discontinuity in
the limiting case of the diffusion parameter vanishes. This is why L° norm is not
used in the numerical analysis for hyperbolic conservation laws [8]. The goal of
the present paper is to derive an optimal-order error estimate in a weighted en-
ergy norm for the ELLAM scheme for unsteady-state advection-diffusion equations
with general inflow and outflow boundary conditions. Thus, these results theoreti-
cally justify the numerical advantages of Eulerian-Lagrangian methods, which were
observed numerically [11, 12, 13].

This paper is organized as follows. Sections 2 and 3 recall preliminary results on
Sobolev and interpolation results and revisit the ELLAM scheme, respectively. In
this section 4, we prove an e-uniform optimal-order error estimate in a weighted-
energy norm for the ELLAM scheme for unsteady-state advection-diffusion equa-
tions with an inflow total flux and an outflow diffusive flux boundary conditions,
which admit both interior and boundary layers. In section 5, we prove auxiliary
estimates that were used in the proof in section 4.

2. Model Problem and Preliminaries

We consider the unsteady-state advection-diffusion equation in one space dimen-
sion with a representative combination of an inflow total flux boundary condition
and an outflow diffusive flux boundary condition. The analysis in this paper applies
to any combinations of boundary conditions. For the sake of exposition, we restrict
ourselves to this representative combination of boundary conditions, which is well
known to present mathematical and numerical difficulties in the theoretical analysis
of Eulerian-Lagrangian methods [13]

ug + (V(z,t)u —eD(z,t)uz)e. = f(z,t), (z,t) € (a,b)x(0,T)
) Vu(a,t) —eDuz(a,t) = g(t), t e (0,7]
—eDu,(b,t) = h(t), t e (0,7]
u(z,0) = wu,(z), r € [a,b].

Here V (z,t) is a velocity field, f(z,t) accounts for external sources and sinks, g(t)
and h(t) are the prescribed inflow and outflow boundary data, respectively, u,(x)
is the prescribed initial data, and u(z,t) is the e-dependent unknown function.
D(x,t) is a diffusion coefficient with 0 < Din < D(2,t) < Djpae < +0o for any
(x,t) € [a,b] x [0,T] and 0 < € << 1 is a parameter that scales the diffusion and
characterizes the advection-dominance of Eq. (1).

Let sz(a, b) consist of functions whose weak derivatives up to order-k are p-th
Lebesgue integrable in (a,b). Let H*(a,b) := W¥(a,b). For any Banach space X,



288 KAIXIN WANG

we introduce Sobolev spaces involving time [6]

W) = {1 s g,

z/”

max ess sup H H
0<a<k (4 t9) 8t0‘ Hlx

1/p
H dt) , 1 <p<oo,

1w (e i) 1= ot

When it is clear from the context, we use || - ||z, || - gz and || - [[wz to denote
I lz2(ap) |- 12 ap) and [ - [lwk (a,p), Tespectively.
We doﬁnc a umforrn space-time partition on [a,b] x [0,T): z; := a + ih for

0 <i<Iwithh:=(b—a)/I and ¢, := nAt for 0 <n < N with At :=T/N. Then
we introduce the following e-weighted energy norms

1<n<N

n 2/ eAth(x)D(x,tn)fz(x,tn)dx)m.
1 a

T
1oy = (max It + [ Vb

Let Sp(a,b) C H'(a,b) be the finite element space that consists of continuous
and piecewise-linear functions with respect to the spatial partition in [a, b] at time
t, and constant on the time interval [t,_1,t,]. We let IIpv € Sp(a,b) be the
piecewise-linear interpolation of v for any v € H'(a,b). The following estimates
hold [3]

Ty — 'UHHk(a’b) < Cih%*k HUHHZ(a,b)v Yv € H2(a7 b), k=0,1
H'Uh”LOO(a,b) < Cgh_l/ZHUhHLz(a’b), Yoy, € Sh(a, b)

—
[\
~

Since (IIp — p)(x;—1) = (IIp — p)(x;) = 0, there exists an &; /5 € (x;_1,2;) such
that (Ilp — p)’(#5-1/2) = 0. Thus, for x € [x;_1,x;] we have

(3) (p - p)(x) = (Tp— p)(x:) — / " (I — )y (y)dy = / / D (2)dzdy.
x g Ti—1/2

In this paper, we use C to denote a general positive constant that could assume
different values at different occurrences.

3. Revisit of ELLAM

The ELLAM uses a time-marching approach, so we need only to define these
methods at the current time interval [t,,_1,t,]. In the ELLAM formulation, the
space-time test functions w(z,t) are chosen to be continuous and piecewise smooth
and to vanish outside the space-time strip [a,b] X (t,—1,t,]. In particular, the
test functions w(zx,t) satisfy that w(z,t,) = lms_¢, _ow(zx,t), but w(z,tn_1) #
lim;_;, ,4ow(w,t) in general. In this case, we use the notation w(z,t ;) =

limy_;, ,+ow(z,t) to account for the possible discontinuity of w(z,t) in time at
time t,_1. We multiply Eq. (1) by test functions w and integrate the resulting
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equation on [a,b] X (t,—1,t,] by parts to obtain

b
dt

a

b t7l
/ u(x, ty)w(z, t,)dx + / (Vu — eDug)w

tn—l

tn b
+/tn_1 /abaD(a:,t)um(x,t)ww(x,t)da:dt
tn
—/ /u(z,t)(wt(x,t)—I—V(x,t)wx(x,t))dzdt
p e tn b
:/ u(a:,tn_l)w(m,ti;l)der/ / f(z, Hw(x, t)dzdt.
a th—1 Ja

In the ELLAM framework [2] the adjoint equation of the hyperbolic part of
Eq. (1) is used to define the temporal variation of w

(4) wy + Vw, = 0.

This implies the test functions w to be constant along the characteristics r(¢; x, t,,),
where r(t; T, ) refers to the characteristic curve passing T at time ¢ defined by

(5) Ve, rwzd| ==
dt t=t
Thus, once the test functions w(z,t) are specified in [a, b] at time step t,, and the
outflow boundary, they are determined completely in the space-time strip [a,b] x
(tn—1,tn]. So combining with the boundary condition, we obtain the following weak
formulation

b tn
/ u(x,tn)w(x,tn)der/ Vu(b, t)w(b, t)dt

tn—1

tn b
+/ / eD(x, t)uz(z, t)wy(x, t)dedt
btn71 a ‘
:/ u(x7tn,1)w(x,tifl)dx+/ g(t)w(a,t)dt

tn—l

_ / " h(w(b, e + /t f / " oty ) dudt.

tn—1

3.1. Evaluation of Diffusion and Source Terms. First of all, we use t} () to
denote the time instant if the characteristic intersects the boundary x = a during
the time period [tn—1,ts], i.e. a = r(tf(z);z,t,) and ¢} (x) = t,—1 otherwise. We
also let At(x) = t, — t}(z). We differentiate the characteristic r(s;x,t) respect to
x and t, respectively, to get

re(s;z,t) =1-— /t Vi (r(0;z,t),0)r,(0; x,t)d6,
(7) s ¢
ri(s;x,t) = —=V(b,t) —/ Va(r(0;,t),0)re(0; z,t)do.

In the evaluation of source and diffusion terms we reserve x for points in [a, b] at
time t,, representing the heads of characteristics. We use the variable y to represent
the spatial coordinate of an arbitrary point at time ¢ € (t,—1,t,). We use (7) and



290 KAIXIN WANG

the Euler quadrature to evaluate the source term as follows

tn b
/ / fy, w(y,t)dydt
tn 1

/ /t( ) r(t;x, ty), w(r(t; z, tn), t)r: (t; x, t,)dtde

(8) /t [ 1000000000300 0)r (030, )0
/ At(x Y, ) da
/t (= tu )V (5,0)f (b, w (b, )dt + By (w),

Here F4(w) is the local truncation error defined by

/ / Pt 2, t), ) (b 2, ) — f(x,tn)}dt w(z, t)dz

9)
/ / r(0;b,1) O)Tt(e;b,t)+V(b,t)f(b,t)}d&w(b,t)dt.

o 71
From (7), we know (W) =14 0(t, — 0) and r4(s;b,t) = =V (b, t)(1 +
O(t—s)). Since w(b,t) is constant on [t,_1,t,], from the adjoint equation we know
V (b, t)we(b,t) = —we(b,t) = 0. Then the diffusion term can be evaluated similarly

/tn /b eD(y, tyuy(y, t)wy (y, t)dydt
/ / oy DT t0) Oty (185 2, 60), Oy (rE 2, 0), o (8.2, )t
/n /t | eD(r(0;0,1), O)uy (r(8:b,), O)wy (r(6:.,2), 0)re(0;b, ) ddt
/ / o (6, tn ), )uy (r(6 @, ), )wy (r (2, tn), )re (& 2, ta)dbde

/ / eD(r(65b, £), )y (r(6: b, 1), 8)wa (b, 1)

(10)
or( 6’ b, t))

— ro(6: b, £)d6dt
/ /t Z)ED Pt 2 ), )1ty (1 (8 2 ), )0y (1 (L 2 ), ) (8 2 £ )t
/ /t #(05b,1), 0)uy (1(0: by £), O)V (b, £ (b, ) (1 + O(AL))dbdt
/ / Pt ) D)ty (.2 ) s (1, )t

:/a EAH(@) D, b )ita (@, b )wa (2, ) der + B, w),

Here Es(u,w) is the local truncation error defined by

t'll
(11) Es(u,w) / / Dum r(t;x,tn),t) — (Dug)(z, t,) | dt wy(z,t,)dz.
[2¢ (w)
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We substitute Eqgs. (8) and (10) into Eq. (6) to obtain an ELLAM formulation for
problem (1)

b t'VL
/u(:t,tn)w(mtn)dx—i— Vu(b, t)w(b, t)dt
a tn—1
b
+/ eAt(z)D(z, t)uy (z, t)wy (x, t)dadt
b(l
= [ w(@, tp_1)w(z, ty)re(tn—1; z,t,)dz

(12)

tn

—/n u(b*(t)7tn,l)w(b,t)rt(tn,l;b,t)dt+/ g(t)w(a,t)dt

tn,71 tnfl

tn b
- /t h(t)w(b, t)dt + / At(@) (@, t)w(w, b)dz

+/” (t = tn 1)V (b, £) (b, t)w(b, )t + Er (w) — Ea(u, w).

tn—1

In Equation (12) we have used the notations x*, b*(¢t), and Z defined by
(13) 2 =r(th_1;z,tn), , @) =r{En_1;01), x=71(n_1;7,tn).

We have also used the fact that w is constant along the characteristics to rewrite
the first integral at time ¢,_; on the right-hand side of (6) as an integral at time
t, and the outflow boundary.

3.2. Approximate Characteristics and Numerical Scheme. We note that
the initial-value problem (5) can not be solved in a closed form to define true char-
acteristics r(s; x, t,) or r(s; b, t), for a general velocity field V' (z,t). Thus, numerical
means have to be used in practice. In order to retain the order of approximation of
the ELLAM scheme, we use a second-order Heun’s method with a micro-time step-
ping to define approximate characteristics, which extends backward from x € [a, ]
at time step t,, as follows

Ing = Tnk-1— AtV (Tnk—1,tnk-1),
(14) At
Tpk = Tpk—1— Tf V(@15 tn—1) + V(@n tag)], 1<k <IC,
with x, 0 = = and x}, = 2, 1¢. Here Aty and t,, j are defined as
Vv A
Cr= max 7(% ) t,
(@,)E€[a,b] X [tn_1,tn] h

and IC to be the ceiling of Cr. Then, we partition the space-time outflow boundary
{(b,t) : t € [tn-1,tn]} by
. At
tn’kztn—kAtf, k=0,1,---,IC, with Atfzf.
e
It is obvious that ¢, 0 =t, and ¢, jc = tp—1.
In Eq. (14), r1(8; Tn k-1, tn,k—1) is linear between (2, k—1,tnx—1) and (znk, tn k)
for s € [tnk,tnk—1]. By the semigroup property of the characteristic tracking, we
see that r,(8; Tn k-1, tn k—1) = Th(S; 2, ty) fOr s € [ty i, tnk—1]. In case Ty, < a for
some 1 < k < IC, we define ¢} () € [tnk,tn,k—1] to be the time instant when the
approximate characteristic ry(s;z,t,) backtracks to the inflow boundary = = a.
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Namely, we solve ¢} (z) from the following equation

t k—1 — ti(x
(15) a =Tpp_1— %}L() V(Znk—1,tnk—1)
HV (k1 — (g = @)DV @t tp1), 5 () .
and ¢} (x) = t,—1 otherwise.
We similarly define an approximate characteristics ry(s;b,t) which backtracks
from the outflow boundary = = b at time ¢ € [ty k, tn k—1] for 1 < k < IC as follows

Tng =b—(t—tyr)V(b1),

(16) t—t,
T =b—— KV (b, 8) + V(g tar)]-

Tnj =Tnj1— AtV (Tnj-1,tn;—1), k+1<j<IC,

(17) At
Tpj = Tpj—1— Tf [V(ﬂin,j—l,tn,j—l) + V(fﬁn,j,tn,j)]y

and set b} (t) = @y, rc. Finally we define Aty (x) and Zp, by
(18) Atp(z) =t, —t5(z) and x=rp(tn_1;Th,tn).

The following lemma gives several error bounds between the approximate and
true characteristics, which can be proved as the numerical approximations to the
initial-value problem of an ordinary differential equation (5) and so is omitted here.

Lemma 3.1. Let r(s;x,t) and rp(s;x,t) be the true and approzimate characteris-
tics defined in (5) and in section 3.2, respectively. Assume thatV € L>(0,T; W32 (a,b)),
vV LV o L>°(0,T; WL (a,b)). Then the following estimates hold

dt ° dt?

27, — ]+ b°(0) = B (O] + 183.2) — #* ()] = O((AH2),
|Th,3:(tn—1; €T, tn) - rm(tn—l; €z, tn)| = O((At)z)
[7he(tn=1;b,t) — ¢ (tn—1;0,t)| = O(A?)
|Zn, — & = O(At(Ats)?).

Next we derive the ELLAM scheme based on Eq. (12). Because the character-
istics r(t;z,t,) and r(0;b,t) cannot be tracked exactly in general, the test func-
tions wp, in the ELLAM scheme are defined to be constant along the approxi-
mate characteristics rp(t;z,t,) and rp(6;b,t). Consequently, the ELLAM scheme
states as follows: Find up(x,t,) € Sp(a,b) for n = 1,..., N, such that for any
wp(x,t,) € Sp(a,b)

(19)

b tn
/ uh(x,tn)wh(x,tn)der/ Voup (b, t)wp (b, t)dt
a tn—1
b

+/ eAty(2)D(z, t)up o (2, t)wh o (z, t)dadt

ba

:/~ uh(z;;atn—l)wh(l'vtn)rh,w(tn—l;zatn)dl'

(20) ot tn

—/ uh(bZ(t),tn,l)wh(b,t)rh’t(tn,l;b,t)dt+/ g(t)wp(a,t)dt
th—1

tn—1

tn b
_ / h(#)wn (b, t)dt + / Atn(2)f (2, £ )wn (, t)dx
+ / b WV (b 0)f (b £ (b ).

tn—1
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4. An e-Uniform Error Estimate for the ELLAM Scheme

In this section we prove an a priori optimal-order error estimates for the ELLAM
schemes in an e-weighted energy norm for problem (1), which holds uniformly with
respect to €. Let A =1 if Cr < 1 or = 0 otherwise. The main result is given in the
theorem below.

Theorem 4.1. Let u be the true solution to problem (1) and uy be the numerical
solution of scheme (20). The following optimal-order error estimate holds uniformly
with respect to €

|un — UHLE(O,T;HlD(a,b))

du df
< Cat(fufe. |5 ||
(21) - lu(®: Yl 017 + dt 20,1311 Tl L (0,T;L2)
Jr||f||Loo(o,T;L2)> + C(At + h?)|Jull L= 0,7:12)
+AACR? (|[ull g 0,152y + l[ull Lo 0,7:9))-
Here the constant C' is independent of w or the parameter €.
Remark 4.1. The Sobolev norms of u can be bounded by the corresponding Sobolev

norms of the initial and boundary conditions of u as well as the right-hand side
source term f, which are independent of € [6].

Proof. We let e = wup — u and choose the test function w(z,t,) in (12) to be
wp(x,t,) € Sp(a,b). We then subtract Eq. (12) from the ELLAM reference equa-
tion (20) to obtain an ELLAM error equation for any wy(x,t,) € Sy(a,b)

b tn
/ ez, b )won (2, bn)dz + / Ve(b, ywn (b, t)dt
a tn—1

b
+/ ety () D(z,ty)ex(x, tn)wh oz, ty)de

a

b
= / e(£2(£)7tn—l)wh(xatn)rh,w(tn—l;x7tn)dx
a

h

tn
- / (b (£), b1 )0 (b, ) s (b1 b, £)dlt
th—1

n—

+/ u(‘r;kwt’nfl)wh(ajatn)"qh,ac(tnfl;33atn)d3j
a

+ | (Atp(x) — At(2)) f(z, tp)wn(x, ty)de — Ey(wy) + Eo(u, wy).

Let I u € Sp(a,b) be the interpolation of the true solution u, &, = up — Iu €
Sh(a,b), and n = Ipu — u. The error estimates for n are given in (2), so we need
only to estimate &,. We choose wy(x,t,) = &,(x,t,) in Eq. (22) and rewrite the
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error equation in terms of &, and n as follows

b tn b
/fi(x,tn)d:ﬂ—i-/ Vf,%(b,t)dt—{—/ eAty () D(2,t0)&f (2, tn)da
a tn—1 a
b
— [ (et (ot tari )

h
tn

- En(br,(£); tn—1)8n (b, )7t (tn—1; b, t)dt

tn—1

b
n(x;kmtn—l)gh(xvtn)rhyx(tn—l;‘T,tn)dx*/ n(xvtn)gh(xvtn)dx
n a

tn tn
m&wiwn@wwmﬂ%quﬁ—/'xmww&wwﬁ
tn—1 tn—1

b

eAty () D(z,tn)Ne (z, t0)En o (T, By )d
b

u(x;;) tn—l)fh(% tn)rh,m (tn—l; x, tn)dm
b

w(x®, tn—1)En(x, tn)re(tn_1;x,t,)dx
tn

w(by, (t), tn—1)En (b, )T ¢ (tn—1; b, t)dt

+

T—

+

[

3

+ (b*( )stn— 1)§h<b t)Tt( n-1;0, t)d

|

tn—1

b
/ S( Aty () — AH@))D(, b )ts (2, ) o (@, ) dt
%
/(Ath() At(x)) f (@, tn)n (2, tn)dr — E1(&n) + Ea(u, &p).

The first two terms on the right side are bounded by

b
/ fh(m27tnfl)fh(mvtn)rh,m(tnfl;x7tn)dl'

h

tn

—/ R (1)t )En (b, )y (13 b, D)l

1+C’At 1+CAt
< —— &tz + —5 & (s a7z

1+ CAt [t
++T VEX (D, t)dt

(24)

tn—1

We use the following estimate for the interpolation n(z,t,) on [b}, b]

b b b 2
[otade= [ { [ nttad} do < Ol o g
h Rode

to bound the fifth and sixth terms on the right side of Eq. (23) to conclude that
tn

‘/RM%WJWﬂ&wﬂmﬂhqﬂﬂﬁ+/"m&ﬂ&wﬂﬁ

tn—1 tn—1

tn
<er [ VEGD+ b, 0+ C [ Pt
t 1 *

'ri; h
S&/ VE (b, )t + C(AD|ub, ) 3, 0o
t

(At)QhQHUH%M(O,T;H?)'
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The estimates of the third, fourth, and seventh terms on the right side of Eq. (23)
present major difficulties. For clarity of exposition, the proofs are presented in
Lemma 5.1 and Lemma 5.2, respectively; there we obtain

b b
[ 77(55;—17tn—l)gh(x;tn)rh,m(tn—l;mvtn)d‘r_/ n(l’,tn)fh(iﬂ7tn)d$
ap a
< 21t o any + AL ta) 22 + COAD 3 07,12
26) =380 tn)lzz@an) )l L= (142
+CAt(min{h?, (At)*} + b [ullT e (0 1512y + )\El/t VEX (b, t)dt
n—1
AXCE ([ ull3ri o, s onemzy + AtlullT o o 7,19));
and
b
/sAth(x)D(x,tn)nm(:zz,tn)ghx(:c,tn)d:r
(27) @

b
< 62/ EAth(x)D(x,tn)ffL’m(x, tn)dx + CAL((At)* + h4)||u||2Loo(0,T;Hz).

To bound the eighth and ninth terms on the right side of Eq. (23), we assume
that a;, < a without loss of generality (otherwise, we switch a;, and @ by symmetry).
We decompose these two terms as

b
/ (st )En (2 ) (b1 2 )
a

h

b
- / u(x*7tn—l)£h(za tn)rm(tn—ﬁ x, tn)dfﬂ

a
(28) _ / W@ s tn)En (s b (bt 2 £ )t
a

h

b
+/ (u(x;;atn—l) - u(x*atn—l))gh(xatn)rh,x(tn—l;x7tn)dx

b
+/: u(-r*atn—l)gh(xvtn)(rh,m(tn—l;-Tytn) - rw(tn—l;xatn))dl‘-

We use estimates of (19) to bound the three terms on the right side by

[u(wi,tn_l)ﬁh(x,tn)rh,x(tn_l;x,tn)dx‘
ap
(29) < CAL(AL )2l oo 0,7500) 1€ (s ) || oo

< CALE( ta)ll72 + C(At)BHUH%OO(O,T;L‘X’)’

here we have used the fact that Aty < Ch and the inverse inequality,

b
/ u(x*, tn—l)gh(xa tn)(rh,m(tn—ﬁ z, tn) - rm(tn—IQ z, tn))dx

a

30 b
(30) < cary / W@t 1) (2, ) da
< CALn (s tn)ll L2 + C(AL)? |Jul| oo (0,752.2),
and
b
‘/ (u(z;atn—l) - u(x*atn—l))rh,z(tn—ﬁx;tn)gh(xatn)dz
(31)

< C(At)2“fh($at;z)||L2 ||“HL°§(0,T;2W01C)
< CAH[E (- tn) T2 + C(AL lull e 0,mw )
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We use Lemma 3.1 to bound the tenth to eleventh terms, the twelfth to thirteenth
terms, and the last two terms on the right side of Eq. (23) by

tn

u(b}';(t) n=1)&n (b, t)rp 1 (tn—1; b, t)dt

/ b Yen (b, (b, )|
/ —1) = u(b* (t), tn—1))&n (b, t)rh e (tn—1; b, t)dt
/ )18 (0, 1) (et 13b,2) — rultn130,0)) |

tn—1

(32)

n

< (e1 + CAY) / VEX (b t)dt + C(At)BHuH%OO(O,T;Wolo)?

tn—1

b
/ e(Atn(2) = AU@) D@, bt (2, 1) €2 (2, tn) d
¢ b
(33) +/ (Atp(z) — At(x)) f (2, tn)En (2, t)da

b
<eg | eAtp(z)D(x, tn)fiz(ac, tn)dx + CAL|E(, t,)]22

CA? ullZoe 0,731y + CA [ f Lo 0,722

and

|E1(&n) + Ba(u, &) .
< CAY )l +22 [ eAt(@)D(a, )6 )

+0At/ VEX(b,t)dt + C(At) (H

We substitute the estimates (24)—(34) for the corresponding terms in Eq. (23)
to obtain the following estimate

L2 tn 17tn7H )

112tz

L2(tn—1,tn;L?)

b

tn
16 ta) 20 + / VE (b, t)dt + / eAt(2)D (2, t)ER o (2, 1) da

tn 1 a
1—|—CAt 1 b
< T (It + enCta-lE) + (5 o+ 320+ €t) [ vERD v
tp—1

b
+3¢ / At (@) D(@, t)EF , (@, t)da + CAH((AD? + W) |u]]3 e o opre)

du ||2
+C<At>2(\|u< Wirssn + 1120z + |Gl o s

2 2
L+ S i)
+ACh (”u”Hl(tn 1,tn,H2)+AtHu||L°°(OTH3))
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Choosing &1 = 15 and &3 = i, we sum the estimate for n = 1,..., N1 (< N) and

cancel like terms to obtain

tNl Ny b
16t 22 + / VEb O+ Y [ D) D16} (5. t)ds
0 n=1"7a
Ni—1 !
< CAt Z [1€n (-, ta)l72 + C((AL) + h4)||u||L°°(0T H?)

+O(AD)* (||u( Wi o) + H L2(0,T;H1) H dt‘ L2(0,T;L?)

+||f||%°°(O,T;L2)) + )‘Ch4(Hu”H1(O,T;H2) + ||u||L°°(O,T;H3))'
We then apply Gronwall inequality to conclude

1€l 0,7 E, (a0)

du
S (T R 4 S s
+C (AL + B2) |[ul| oo (0,7:82) + ACh? (||U||H1 (0,7;12) + ||l Lo 0,712 )-
The general constant C' depends exponentially on the final time 7" in problem (1)

due to the application of Gronwall inequality, but does not depend on the parameter
€. Combining this result with the well-known estimate for 7, we finish the proof. [

5. Auxiliary Lemmas

In this section, we prove two auxiliary lemmas which address the estimates in
(26) and (27), respectively .

5.1. A Superconvergent Estimate on Interpolation. We prove the following
superconvergence estimate on the interpolation error.

Lemma 5.1. Assume u € L>(0,T;H3(a,b)) N HY(0,T; H?*(a,b)). Let Myu €
Sh(a,b) be the interpolation of u and n = Iu —u. Let X be the parameter defined
in Theorem 4.1. Then the superconvergence estimate (26) holds.

Proof. When Cr > 1 that implies h < C'At, the left side of (26) can be bounded as

b b
n(x;;atnfl)gh(x7tn)rh z(tnfﬁxatn)dx_/ U(wvtn)ﬁh(%tn)dﬂ?

ap a
< COln Gyt (InC ta)llLz + [InC tn-1)llz2)
< CAHEn (- ta) 22 + COtming 2, (A2 H[ul2e o s

(35)

For Cr < 1, we decompose the left-hand side of (26) as follows:

b b
/ ($7tn)€h(x tn)dl‘_/ n(x;;;tn—l)fh(aﬂtn)Th,x(t7L—1§xatn)d$

ho b
(36) / 0@ (@t + [ (&t 1) — 1@ e 1)) () de

bt an b
" / / (2, )t (, )z + / O ) )
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We use the property (3) to estimate the first term as follows

ap

ol talon w)dz

(37) Usz (2, tn)dzdy&p (z, ty)dx

I12

< CAt”fh( )||L2 +C(AL)? ||u||L°° 0,T;H2)"
We apply the estimate (2) to bound the third term on the right side by
/ t)dt & (z,t )dm‘

/ah TL

< cmugh( W72 + P ullfr e, im2)-

(38)

We bound the fourth term on the right-hand side in a similar way to (24)

/ (AN s )en (o )|
< CAH|ER (- tn)||7 +0Ath4||u||L°°(OTH2)

(39)

We decompose the second term on the right side of (36) as follows

b
[ 0 tas) = i) )
ap
I Xy x
(40) = Z/ /* N2 (2, tn—1)dz&p(z, ty)dx
7,:11 Zili;r:il,h,h x
+Z/ / N2 (2, tn—1)dz&p(z, t,)dx
i=2 Y Ti—1 T}

For x € [z;—1,%i—1,1], ) € [Ti—2,2zi—1]. Thus, we can estimate the second term on
the right side by

Z/: o /”” 77z(27tn71)dzéh(x,tn)dx‘
(41) = ‘Z/:z bh / (z7tn71)d2+/’” nz(z,tnfl)dz}fh(l',tn)dx‘

Tj—1

<o Zmax{|§ (i1, 00, 1€, |}/ it (%, a1 )|
2
< CAt”fh( w72 + C(AL)? Hu||L°° (0,T;H?)"
To bound the first term on the right side of (40), we decompose it as follows

i/mllh/ N:(2, tn—1)dz&n(x, t,)dx

_Z V) At (2, b 1) (1 1)

LTi—1

$z—l,h
—Z/ V (&, tn) Aty (z, ty—1)En (2, t,)dz
i—=1 Y Ti—1

Z} T; T T
- Z/ / / Uyy (Y, tn—1)dydz&p (z, t)dx
=1 jifl,h $2 z
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Let X[q,p) be the indicator function of = over [a,b]. We interchange of the order of
integrations in the third term on the right side to get

’Z/ lh/ / Uyy (Y, tn—1)dydzp(z, ty, )dx)

(43) - ;Ah/ uyy(y,tn_l)(y—x;;)dygh(x,tn)dx‘

< OAtlent t)l13: + (A1) \Z L[ it s

Zi—1,h

< CAHEn (-, ta)l[ 72 + C(AL)? Hu||L°° (0,73 H?)-

We bound the second term on the right side of (42) by

‘Z/: o n) At (2, th—1)En(x, tn)de

w B ’Z/w Vit At/ Uz (2, tn 1) d28p (2, tn ) d

i—1 Iq 1/2

< CAt”fh( )7z + C(AL)? ||u||L°C(O,T;H2)'

Finally, we decompose the first term on the right side of (42) as

Z/ V x t Atnw(xvtnfl)fh(xatn)dx
I

(45) = D Vlaiom / e b ) (2, )

+Z/ V(z,tn) = V(Ziz1/2,tn)) Atne(x, ty—1)En (2, t,)da.

Here x;_; /5 is the middle point of the interval [€;—1,2;]. The second term can be
bounded in a standard way as follows:

(46) ’Z/ — V(@1 /2, tn)) Atne (2, ty1)En (2, ty)d

Ti—1

< CA|ER( tn) |72 + CAth4||uH%°°(O,T;H2)'

Next, we rewrite the integral in the first term on the right side of (45) by

/ i 771(37, tnfl)gh(x> tn)dx

Ti—1
= / Ne (2 tn—1)Eh,e(Tim1/2,tn) (T — 2i_1/2)dT
(47) i—1 z z
= *fh,z(fl?i—1/2,tn)/ / Uyyy (Ys tn—1)dydz(z — ;1 )9)dx
Zq Tij—1/2 Y Ti—-1/2

h3
_thw(xifl/% tn)uaw(xifl/% tn)-
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We bound the first term on the right side of (47) by

‘ZV Ti—1/2,tn) Atép 2 (@, tn)

=1

(48) / / / uyyy Yy bn— 1)dydz( i—1/2)d‘r
Ti—1/2 Y Ti—1/2

< O enlaist) — En(ainst) / [ty (9 1)y
1=1
< CAER( ta) |72 + CAth4||uHL°°(O,T;H5)'

As for the second term on the right side of (47), we decompose it as follows first

I

Ath?
Z 12 V(mifl/%tn)gh,w(-rvtn)uza:(xifl/mtn)
i=1

Ath2 Tiri/2
(49) {Zgh xu n / (Va:(w7tn)uxw($i71/2>tn)

Ti—1/2

+V( z+1/27 )uacxx(xa tn—l))dx + V(x1/27 tn)gh(av tn)uwc(xl/% tn)
_V(xl—l/Qvtn)gh(b; tn)umx(xl—l/%tn)] .

By the inverse inequality and the fact that &,(b,t) = &, (b, t,), we can estimate
the first and the third terms on the right side of (49) by

Ath? [y T/
‘ [th Ziytn / (Vw($7tn)u$a:(xifl/27tn)

Ti—1/2

+V($z‘+1/27 b )Uzoe (T, tn—1))dx — V (2712, tn)En (D, tn)Use (T1-1 /2, tn)i| ‘

tn
< CAHEn (s t)ll72 + CAtR* [ullf o105y + 61/ V(. t,)&7 (b, t)dt

tn—1

Note that in the current context of Cr< 1, {(x,t,) is linear on [a, ay] C [a,x1] and
so can be expressed as

E(rtn) = = (E(atn) @n — ) + E(n, ) (@ — a).

ap — a

Then we can get

@n ap —a
/ fz(x,tn)dx = hT(gz(aa tn) +§(aatn)£(ahv ) +§ (aha ))
> 226 (a ).
Therefore the second term on the right side of (49) is bounded by

‘ Ath?
12

1
< §||f('7tn)||21;2(a,ah) + CAth4||u||%°°(0,T;W2v°°)'

V(zy, tn)tuge (1, th-1)¢(a,ty)
(50) ’ i

We combine the estimates (35)—(50) to finish the proof. O
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5.2. Proof of the estimate (27).

Lemma 5.2. Let Il u € Si(a,b) be the interpolation of u, n = Illpu — u, and A be
defined in Theorem 4.1. Then the superconvergence estimate (27) holds.

Proof. In the case Cr > 1 which implies h < CAt, we have

b
/ eAty, (LL')D(:E, tn)"?r ($7 tn)fh,x (337 tn)dx

b
<e / EAL (@)D, t)E2 o (2, )i + C (AL ]2 o

When Cr < 1, ap, —a < h. Thus, At,(x) = At on [ay, b]. Hence, we can rewrite
the left side of (27) as

b
ety () D (2, tn)ng(x, tn)Eh o (2, ty)d

a

(52) :At/ eD(x, tn)nz (2, tn)én,o (2, tn)da

(51)

_ghz Z1/2,tn / _tn I)D(x7tn)nz(x;tn)dx-
We use the inverse estimate (2) to bound the second term by

anp
2, )/ St (2) — tn 1) D@, b (3, £)d
(53) < Ce(AD 6 (@120 1) / g (2, )| d
<2 / EALL(2)D (@, t0)ER o (3, ta)dz + CAD ]2 0 10102

Note that &, ,(x,t,) is constant on each interval [z;_1,z;] and that n satisfies
n(xi—1,tn) = n(xs,t,) = 0 for i = 1,...,1, we bound the first term on the right-
hand side of Eq. (52)

b
‘At/ sD(a:,tn)nm(x,tn)ﬁh,z(z,tn)daz’

I
(54) - ‘Atzggm(xi_l/g,tn)/ (D(,t0) — D(2i_1 /2, tn))0e (x, ) da
i=1 Ti-1
&2

b
< B eAt(x)D(x,tn)&h (2, tn)dt + CAth4||u||2Loo(0,T;Hz).

We combine the estimates (51)—(54) to finish the proof. O

a
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