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SOLVING SINGULARLY PERTURBED REACTION DIFFUSION
PROBLEMS USING WAVELET OPTIMIZED FINITE

DIFFERENCE AND CUBIC SPLINE ADAPTIVE WAVELET
SCHEME
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Abstract. In this paper singularly perturbed reaction diffusion equations of

elliptic and parabolic types have been discussed using wavelet optimized finite

difference (WOFD) method based on an interpolating wavelet transform using

cubic spline on dyadic points as discussed in [1]. Adaptive feature is performed

automatically by thresholding the wavelet coefficients. WOFD [2] works by

using adaptive wavelet to generate an irregular grid which is then exploited for

the finite difference method. Numerical examples are presented for elliptic and

parabolic problems and comparisons have been made using cubic spline and

WOFD. The proposed adaptive method is very effective for studying singular

perturbation problems in term of adaptive grid generation and CPU time.
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1. Introduction

In this paper cubic spline and WOFD have been applied for solving singularly
perturbed reaction diffusion problems of elliptic and parabolic types. Problems in
which a small parameter is multiplied to the highest derivative arise in various fields
of science and engineering, for instance fluid mechanics, elasticity, hydrodynamics,
etc. The main concern with such problems is the rapid growth or decay of the
solution in one or more narrow ”layer region(s)”. The specific problems under
consideration in this paper is called dissipative because the rapid varying component
of the solution decays exponentially (dissipates) away from a localized breakdown
in the layer region(s) as ε → 0.

Here the author is trying to use cubic spline adaptive wavelet features to solve
singularly perturbed reaction diffusion problems belonging to sobolev space H2

0(I).
Cai and Wang’s [1] wavelets have been chosen because of their interpolating prop-
erty. They were considered by the authors as ”a semi-orthogonal cubic spline
wavelet basis of homogenous sobolev space H2

0(I)”.
Two semilinear singularly perturbed reaction diffusion problem of elliptic and

parabolic types have been discussed. The first one is the elliptic problem defined
as

(1a) −εu′′ε (x) = f(x, uε) where 0 ≤ x ≤ 1,
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with boundary conditions

(1b) uε(0) = ua, uε(1) = ub,
∂f

∂uε
≥ c2, c = const. > 0,

where ε is a small parameter and f(x, u) is sufficiently smooth. For ε ¿ 1, the
solution has boundary layers at x = 0 and x = 1 [3].

The second problem is the one dimensional parabolic problem

(2a) −ε uxx(x, t) + a(x, t)u(x, t) + b(x, t)ut(x, t) = f(x, t, u);

where (x, t) ∈ Q = (0, 1)× (0, T ] and

(2b) u(x, 0) = s(x) on Sx = (x, 0) : 0 ≤ x ≤ 1,

(2c) u(0, t) = q0(t) on S0 = (0, t) : 0 < t ≤ T ,

(2d) u(1, t) = q1(t) on S1 = (1, t) : 0 < t ≤ T .

Here ε is a parameter satisfying 0 < ε ¿ 1. We assume that a(x, t) ≥ a0 > 0 and
b(x, t) ≥ b0 > 0 on Q, where a0, b0 are some constants and Q = [0, 1]×[0, T ] denotes
the closure of Q. The solution u has in general boundary layers of parabolic type
along the sides x = 0 and x = 1 of Q [4].

Singular perturbation problems in consideration have shocks as boundary layers.
For such kinds of problems the solution can be smooth in most of the solution
domain with small area where the solution changes quickly. When solving such
problems numerically, one would like to adjust the discretization to the solution.
In term of mesh generation, we want to have many points in area where the solution
have strong variations and few points in area where the solution is smooth. Elliptic
problem earlier has been discussed [5] using cubic B-spline with Shishkin mesh.
One should have the pre-knowledge about the locations of the boundary layers for
working with Shishkin meshes, therefore, also motivates us for adaptive methods
for effective grid generation.

Wavelets have been making an appearance in many pure and applied area of
science and engineering [2]. Wavelets detect information at different scales and at
different locations throughout a computational domain. Wavelets can provide a
basis set in which the basis functions are constructed by dilating and translating a
fixed function known as the mother wavelet. The mother wavelet can be seen as
a high pass filter in the frequency domain. One of the key strength of the wavelet
methods is data compression. An efficient basis is one in which a given set of
data can be represented with as few basis elements as possible. Given a wavelet
representation of a function

∑

k

cj,kϕj,k(x) +
∑

j,k

dj,kψj,k(x),

where ϕj,k(x) are scaling functions and ψj,k(x) are wavelets, the scaling func-
tion coefficients cj,k, essentially encode the smooth part of the function, while the
wavelet coefficient dj,k contains information of the function behavior on successive
finer scales. The most common way of compressing such a representation is thresh-
olding. We delete all wavelet coefficients of magnitude less than some threshold,
say τ . If the total no. of coefficients in the original representation was N , we have
Na significant coefficients left after the thresholding. Note that by thresholding a
wavelet representation we have a way to find an adaptive feature and we can also
use this representation to compute function values at any point.
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Cubic splines have several useful properties: they are compactly supported,
smooth and symmetric, which is an advantage when approximating shocks [6].
Moreover they have an analytic expression which makes their values and the values
of their derivatives at any point easily available. There is no system to solve or
data vectors to store as it was the case with Daubechies scaling functions [7]. The
main restriction imposed by the use of spline is the fact that it is not possible to
build with them a basis which is both orthogonal and compectly supported: only
biorthogonal systems are possible, for the resolution of a PDE, the interpolating
wavelets fit easily in a collocaton method which presents the advantage that no
evaluation of inner product is necessary.

This paper has been divided into the following sections. In section 2, we introduce
the cubic scaling functions φ(x), φb(x) and their wavelet functions ψ(x), ψb(x). An
multiresolution analysis (MRA) and its corresponding wavelet decomposition of the
sobolev space H2

0(I) are constructed using φ(x), φb(x) and ψ(x), ψb(x). In section
3, we introduce the fast DWT (discrete wavelet transform) between functions and
their wavelet coefficients. In 4, we discuss the adaptive collocation method using
cubic spline and WOFD. In section 5, numerical experiments are presented and all
numerical results using Lagrangian finite difference (WOFD) have been generated
for p = 3, where p is the degree of the spline.

2. Basis functions

Let I denotes a finite interval, I = [0, L], and H2(I) and H2
0(I) denote the

following two subspaces of L2(R):

(3) H2(I) := {f(x), x ∈ I|
∫

I

(|f(x)|2 + |f ′(x)|2 + |f ′′(x)|2)dx < ∞},

(4) H2
0(I) := {f(x) ∈ H2(I)|f(0) = f ′(0) = f(L) = f ′(L) = 0}.

The space H2
0(I) is a Hilbert space with the inner product

(5) 〈f, g〉 =
∫

I

f ′′(x)g′′(x)dx,

thus

(6) ‖f‖ =
√
〈f, f〉,

provides a norm for H2
0(I).

We are going to use a set of basis functions for the space H2
0(I) to generate a

multiresolution analysis (MRA). To deal with the boundary conditions, we consider
two scaling functions φ(x) as an interior scaling function and φb(x) a boundary
scaling function,

(7) φ(x) =
1
6

4∑

j=0

(
4
j

)
(−1)j(x− j)3+,

(8) φb(x) =
3
2
x2

+ −
11
12

x3
+ +

3
2
(x− 1)3+ −

3
4
(x− 2)3+,

where φ(x) is a cubic spline and for any real number n

xn
+(x) =

{
xn, if x ≥ 0
0, otherwise.

Scaling function satisfies the following relations.
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Lemma:- 1.

φ(x) =
4∑

k=0

2−3

(
4
k

)
φ(2x− k),

φb(x) = β−1φb(2x) +
2∑

k=0

βkφ(2x− k),

(9)

where β−1 = 1/4, β0 = 11/16, β1 = 1/2 and β2 = 1/8.

Lemma:- 2. φ(x) and φb(x) as defined above satisfy the following properties:

(10) φ(x), φb(x) ∈ H2
0(I);

(11) supp(φ(x)) = [0, 4]; supp(φb(x)) = [0, 3],

(12) φ′(1) = −φ′(3) =
1
2
, φ′(2) = 0, φ′b(1) =

1
4
, φ′b(2) = −1

2
;

(13) φ(1) = φ(3) =
1
6
, φ(2) =

2
3
, φb(1) =

7
12

, φb(2) =
1
6
.

For any j, k ∈ Z, we define

(14) φj,k(x) = φ(2jx− k), φb,j(x) = φb(2jx),

and Vj can be written as

(15) Vj = span{φj,k(x)|0 ≤ k ≤ nj − 4; φb,j(x), φb,j(L− x)},
where nj = 2jL.

Theorem:- 1. Let Vj , j ∈ Z+ be a linear span as defined in (15). Then Vj forms
an MRA for H2

0(I) having norm (6) in the following sense:
(i) V0 ⊂ V1 ⊂ V2 ⊂ ....;
(ii) closH2

0(I)(∪j∈Z+Vj) = H2
0(I); and

(iii) ∩j∈Z+Vj = V0;

We consider the following two wavelet functions ψ(x), ψb(x) as

(16) ψ(x) = −3
7
φ(2x) +

12
7

φ(2x− 1)− 3
7
φ(2x− 2) ∈ V1,

(17) ψb(x) =
24
13

φb(2x)− 6
13

φ(2x) ∈ V1,

and

(18) ψ(n) = ψb(n) = 0 for all n ∈ Z.

Property (18) will be used in construction of a fast DWT.
For each j ≥ 0, we define

(19) Wj = span{ψj,k(x)|k = −1, 0, ....nj − 2},
where

(20) ψj,k(x) = ψ(2jx− k), j ≥ 0, k = 0, 1, 2...nj − 3,

(21) ψl
b,j(x) = ψb(2jx), ψr

b,j(x) = ψb(2j(L− x)),

for the sake of simplicity, we use the following notation:

(22) ψj,−1(x) = ψl
b,j(x), ψj,nj−2 = ψr

b,j(x).
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So, when k = −1 and k = nj − 2, wavelet functions ψj,k(x) will denote the two
boundary wavelet functions, which can’t be obtained by translating and dilating
ψ(x).

Theorem:- 2. The Wj , j ≥ 0, defined in (19) is the orthogonal compliment of Vj

in Vj+1 under the inner product (6),i.e
(i) Vj+1 = Vj

⊕
Wj for j ∈ Z+, where

⊕
stands for Vj⊥Wj under the defined

inner product and Vj+1 = Vj + Wj, therefore,
(ii) Wj⊥Wj+1, j ∈ Z+, and
(iii) H2

0(I) = V0

⊕
j∈Z+ Wj

Proof. For proof see [1]. ¤
We can see that dimVj = nj − 1 and dimWj = nj . As a consequence of above

theorem 2, any function u(x) ∈ H2
0(I) can be approximated as closely as needed

by a function uj(x) ∈ Vj = V0

⊕
W0

⊕
W1

⊕
...

⊕
Wj−1 for a sufficiently large j

and uj(x) has a unique orthogonal decomposition

(23) uj(x) = u0 + g0 + g1 + ... + gj−1,

where u0 ∈ V0, gi ∈ Wi.
When we deal with the functions belonging to H2(I) having non-homogeneous

boundary conditions we use the following interpolation near the boundaries for
j ≥ 0:

(24) Ib,ju(x) = α1η1(2jx) + α2η2(2jx) + α3η2(2j(L− x)) + α4η1(2j(L− x)),

where η1, η2 are given as

(25) η1(x) = (1− x)3+,

(26) η2(x) = 2x+ − 3x2
+ +

7
6
x3

+ −
4
3
(x− 1)3+ +

1
6
(x− 2)3+,

and coefficients α1, α2, α3 and α4 are determined by certain interpolating condi-
tions. Since spline Ib,ju(x) is expected to approximate the non-homogeneities of
the function u(x) at the boundaries, these interpolating conditions is called end
conditions. Since we have shocks at boundary layers, therefore, we use not-a-knot
conditions.

2.1. Not-a-Knot Conditions. In our case, solution changes dramatically near
the boundary so we use the so called not-a-knot end conditions [8], which amounts
to requiring that the spline Ib,ju(x) agrees with function u(x) at one additional
point near each boundary. So we have the following equations for αk, 1 ≤ k ≤ 4:

Ib,ju(0) = u(0), Ib,ju(L) = u(L),

Ib,ju(γ1) = u(γ1), Ib,ju(γ2) = u(γ2).
(27)

In our case we take γ1 = 1
2j+1 , γ2 = L− 1

2j+1 , we have

α1 = u(0), α2 = 6u(γ1)− 3u(0)
4

,

α3 = 6u(γ2)− 3u(L)
4

, α4 = u(L).
(28)

Although in this case u(x) − Ib,ju(x) is no longer in the space H2
0(I), an interpo-

lating spline

uj(x) = Ib,ju(x) + u0 + w0 + w1 + ...... + wj−1, u0 ∈ V0, wi ∈ Wi, 0 ≤ i ≤ j − 1,

with Ib,ju(x) will still have an approximation of u(x) of order O(2−4j)[9].
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3. Discrete wavelet transform (DWT)

In this section, we introduce a DWT which directly decompose the sampling
data of a function to its wavelet coefficients.

3.1. Interpolation operator IVj in Vj. Consider any function u(x) ∈ H2
0(I) and

we define the interpolation operator IVj u(x) for the data {uj
k} as,

(29) IVj
u(x) = c−1φb(x) +

nj−4∑

k=0

ckφj,k(x) + cnj−3φb(1− x),

where

(30) uj
k = u(xj

k) for xj
k =

k

2j
, k = 1, .., nj − 1.

IVj u(x) interpolates data uj
k, k = 1, .., nj − 1, namely

(31) IVj
u(xj

k) = uj
k, k = 1, 2.., nj − 1.

The transformation between u(j) = (uj
1, ....., u

j
nj−1)

T and the coefficient c = (c−1, c0, ...., cnj−3)T

is given by

(32) u(j) = Bc,

where

(33) B =




7
12

1
6

1
6

2
3

1
6

1
6

2
3

1
6

. . . . . . . . .
1
6

2
3

1
6

1
6

7
12




,

for our conveniences, interpolation in V0 is considered for j = −1.
The interpolation operator IWj in Wj , j = 0, 1, 2..., J−1 can be similarly defined.

We choose the grid points in I:

(34) xj
k =

k + 1.5
2j

, −1 ≤ k ≤ nj − 2,

where nj =DimWj = 2jL.
The wavelet functions ψj,k(x) satisfy point value vanishing property. For j >

i, −1 ≤ k ≤ nj − 2,

(35) ψj,k(xj
k) = 1, ψj,k(xi

l) = 0,

for −1 ≤ l ≤ nj − 2, if i ≥ 0; 1 ≤ l ≤ nj − 1, if i = −1.
So {φ0,k(x)}, {ψj,k(x)}∞j=0 form a hierarchical basis for the sobolev space H2

0(I).
Moreover, the point value vanishing property will be useful in obtaining the fast
DWT.

The interpolation IWj u(x) of the function u(x) in Wj , j ≥ 0, can be expressed
as a linear combination of ψj,k(x), k = −1, 0, ...nj − 2, namely,

(36) IWj u(x) =
nj−2∑

k=−1

ûj,kψj,k(x),

and

(37) IWj u(xj
k) = u(xj

k), −1 ≤ k ≤ nj − 2.
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If we denote Mj is the njth order matrix that relates û = (ûj,−1, ...., ûj,nj−2)T and
u = (uj

−1, ......, u
j
nj−2)

T , as uj
k = u(xj

k), then

(38) u = Mjû,

where

(39) Mj =




1 − 1
14

− 1
13 1 − 1

14
− 1

14 1 − 1
14

. . . . . . . . .
− 1

14 1 − 1
14

− 1
14 1 − 1

13
− 1

14 1




.

In order to calculate all the expansion coefficients, we need to solve tridiagonal
system, which requires 8nj operations, for each j. For any function u(x) ∈ H2

0(I),
we can find the wavelet interpolation at all interpolating points (30) and (34) as
given below

uJ(x) = PJu(x) = û−1,−1φb(x) +
nj−4∑

k=0

û−1,kφj,k(x) + û−1,nj−3φb(1− x)

+
J−1∑

j=0

[
nj−2∑

k=−1

ûj,kψj,k(x)]

= u−1(x) +
J−1∑

j=0

uj(x),

(40)

where

u−1(x) = IV0u(x) ∈ V0, uj(x) =
nj−2∑

k=−1

ûj,kψj,k(x) ∈ Wj , j ≥ 0,

Let us denote u = (u(−1),u(0), ......,u(J−1))T , the value of u(x) on all interpola-
tion points, i.e

u(−1) = u(x−1
k )

nj−1

k=1
; u(j) = u(xj

k)
nj−2

k=−1
, j ≥ 0,

and by û = (û(−1), û(0), ......, û(J−1))T , the wavelet coefficients, where

û(−1) = (û−1,k)nj−1
k=1 ; û(j) = (ûj,k)nj−2

k=−1, j ≥ 0.

After solving a tridiagonal system for j − 1, the value of the interpolated function
at level j− 1 must be subtracted from the original value of the function at the grid
points for level j, i.e u(xj

k)−Pj−1u(xj
k). This requires 7nj +5jnj +nj = (5j +8)nj

operations for each j. Therefore, total number of operation for finding all the
coefficients is given by 8(nj − 1) +

∑J−1
j=0 (5j + 16)nj .

Lemma:- 3. Let 0 < α < 1 and u ∈ H2
0(I). If the second derivative of the function

u is Hölder continuous with exponent α, at x0 ∈ I, i.e.

|u′′(x)− u′′(x0)| ≤ C|x− x0|α, x ∈ (x0 − δ, x0 + δ) ⊂ I,

for some δ > 0, then for any k ∈ Z, j ∈ Z+ such that 2−jk ∈ (x0 − δ/2, x0 + δ/2),

|ûj,k| = O(2−(α+2)j) as j →∞
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Proof can be found in [1]. Lemma implies that the wavelet coefficients ûj,k, j ≥ 0,
reflect the singularity of the function to be approximated.

4. Adaptive collocation method using cubic spline and WOFD

In this section we outline adaptive collocation approach for solving singularly
perturbed problems using cubic spline and WOFD. As we know that the multires-
olution representation is not very convenient for the calculation of derivatives. It is
the smallest scale which is important for differentiation because the basis function
at small scale changes rapidly. On the other hand collocation method may be a
good idea if the calculation of derivatives is performed on different scales and then
added together. The collocation method proposed in [1] has the advantage that
the derivatives can be calculated using the smallest scale by approximating the
solution with a cubic spline. Here two different kinds of derivatives matrices have
been proposed.

4.1. Adaptive choice of collocation points. We get the adaptive grid as fol-
lows:

• First we solve the given problem on a initial mesh as defined by equations
(30) and (34) for the initial solution profile.

• We apply the discrete wavelet transform to the solution profile and calculate
the wavelets coefficients. We locate the index (j, k) such that

|ûj,k| < τ,

where τ ≥ 0 be a prescribed tolerance. Using lemma 3 it is clear that
wavelets coefficients will be smaller where the solution is smooth and large
at the place of singularity like boundary layers in our case. A large value
of wavelet expansion coefficient ûj,k is an indication that the grid spacing
1/2j is too coarse to resolve u properly in the interval. Hence when a large
value of ûj,k arises, we add points with spacing 1/2j+1 about position k/2j

locally and remove the mesh points where wavelet coefficient are smaller
than τ .

After getting the irregular adaptive grid, we apply the cubic spline and Lagrangian
finite difference (discussed in the next section) to get the final solution.

4.2. Cubic spline. For the calculation of the derivative, we can use the fact that
we have a representation of the solution on the basis consisting of cubic spline
functions. Instead of differentiating the basis functions themselves, we use the
continuity conditions for the derivatives. The cubic spline satisfy the following
continuity conditions for the first and second derivatives:

(41) u′i =
hi

6
u′′i−1 +

hi

3
u′′i +

ui − ui−1

hi
, 1 ≤ i ≤ L,

(42) u′i−1 = −hi

3
u′′i−1 −

hi

6
u′′i +

ui − ui−1

hi
, 1 ≤ i ≤ L,

and

(43)
hi

hi + hi+1
u′′i−1 + 2u′′i +

hi+1

hi + hi+1
u′′i+1 =

6
hi + hi+1

[
ui+1 − ui

hi+1
− ui − ui−1

hi
],

where 1 ≤ i ≤ L, u′i = u′(xi), u′′i = u′′(xi) and hi = xi−xi−1. At boundary points
x = 0, and x = L, we have

(44)
h1

3
u′′0 +

h1

6
u′′1 =

u1 − u0

h1
− u̇0,
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(45)
hL

6
u′′L−1 +

hL

3
u′′L = u̇L − uL − uL−1

hL
,

where u0 = uL = 0 and u̇0, u̇L are the approximations of the first derivative of u(x)
at x0, xL as

u′(0) =
1
h

p∑

k=0

cku(kh) + O(hs),

u′(L) = − 1
h

p∑

k=0

cku(L− kh) + O(hs),

(46)

where h > 0 and p ≥ 3. For p = 3, if we take

c0 = −11
6

, c1 = 3, c2 = −3
2
, c3 =

1
3
,

then we have an error of O(h3).
In matrix form these relations become

(47) T1u′′ = T2u + u̇b,

where u = (u(x0), u(x1), ........, u(xL))T
, u′′ = (u′′(x0), u′′(x1), ........, u′′(xL))T and

u̇b = (u̇0, 0, 0, ...., 0, u̇L)T
, where matrices are given as

(48) T1 =




h1
3

h1
6

h1
h1+h2

2 h2
h1+h2

. . . . . . . . .
hi

hi+hi+1
2 hi+1

hi+hi+1

. . . . . . . . .
hL−1

hL−1+hL
2 hL

hL−1+hL
hL

6
hL

3




,

and

(49) T2 =




0 1
h1

6
h1(h1+h2)

− 6
h1h2

6
h2(h1+h2)

. . . . . . . . .
6

hL−1(hL−1+hL) − 6
hL−1hL

6
hL(hL−1+hL)

1
hL

0




,

by solving this equation for u′′, we can get the second derivative of u(x). This
calculation requires (8 + 5)N operations, where N be the total number of grid
points. As a result of the uniqueness of the spline T1 is invertible, so we have

(50) u′′ = T −1
1 (T2u + u̇b) = T u.

4.3. Wavelet optimized finite difference. WOFD works by using adaptive
wavelet to generate an irregular adaptive grid, as discussed in section 4.1, which is
then exploited using Lagrangian finite difference methods as discussed below.

Using mesh points (30) and (34), derivatives on non-uniform grid can also be
approximated using Lagrangian interpolating polynomial through p points [2]. We
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consider only odd p ≥ 3 because it makes the algorithm simpler. Let w = p−1
2 and

define

(51) uI(x) =
i+w∑

k=i−w

u(xk)
Pw,i,k(x)
Pw,i,k(xk)

,

where

Pw,i,k(x) =
i+w∏

l=i−w,l 6=k

(x− xl).

It follows that uI(xi) = u(xi) for i = 0, 1, 2....N − 1, N i.e uI interpolates u at the
grid points. Differentiation of uI(x) d times yields

(52) ud
I(x) =

i+w∑

k=i−w

u(xk)
P d

w,i,k(x)
Pw,i,k(xk)

.

The derivatives ud
I(x) can then be approximated at all the grid points by

ud
I = Dd

pu,

where the differentiation matrix Dd
p is defined by

[Dd
p]i,k =

P d
w,i,k(xi)

Pw,i,k(xk)
; d = 1, 2.

First and second derivatives are

(53) P
(1)
w,i,k(x) =

i+w∑

l=i−w,l 6=k

i+w∏

m=i−w,m 6=k,l

(x− xm),

and

(54) P
(2)
w,i,k(x) =

i+w∑

l=i−w,l 6=k

i+w∑

m=i−w,m 6=k,l

i+w∏

n=i−w,n 6=k,l,m

(x− xn).

5. Numerical results and discussion

Now we discuss adaptive collocation method for elliptic and parabolic problems.

5.1. Elliptic problem. We consider linear elliptic problem as

(55) −εuxx + u = 1 + 2
√

ε(exp(−x/
√

ε) + exp((x− 1)/
√

ε)),

with boundary conditions

(56) u(0) = 0 and u(1) = 0.

This problem has earlier been discussed in [10]. The exact solution is

u(x) = 1− (1− x) exp(−x/
√

ε)− x exp((x− 1)/
√

ε).

This problem has boundary layers at x = 0 and x = 1.
Definition:- A discretization method is said to be uniformly convergent (with
respect to ε) of order % > 0 in the norm ‖.‖, if there exists a positive integer N0,
and positive numbers C, where N0, C and % are all independent of N and ε, such
that for all N ≥ N0

sup
0<ε≤1

‖uε − Uε‖ ≤ CN−%

where Uε is the numerical approximation for the analytical solution uε of the sin-
gularly perturbed problems in consideration and N is the number of mesh points
in the interval.
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Table 1 shows the maximum error obtained by the proposed methods. We have
estimated all the error in the maximum norm because it is an appropriate norm
for the study of boundary layer phenomena as discussed in [11]. This problem has
also been studied in [5] using cubic B-spline where it was shown that the method is
second order (% = 2) uniform convergent in ε. If we interpolate a given function, say

Table 1. Maximum error for elliptic problem using adaptivity

ε = 2−k nJ = 2J cubic spline WOFD N, N?
a

k = 5 J = 7 .0030 .0021 128, 56
J = 8 .0030 .0024 256, 69
J = 10 .0023 .0022 1024, 95
J = 11 .0023 .0022 2048, 106

k = 10 J = 7 .0037 .0033 128, 61
J = 8 .0025 .0012 256, 75
J = 10 .0019 .0024 1024, 106
J = 11 .0019 .0024 2048, 119

k = 15 J = 7 .0518 .0410 128, 61
J = 8 .0455 .0171 256, 76
J = 10 .0027 .0012 1024, 105
J = 11 .0021 .0017 2048, 122

(?) N and Na are the number of mesh points before and after adaptivity.

g(x) ∈ C4[a, b] on a uniform mesh xi = ih, 0 ≤ i ≤ n, h = (b−a)
h , we get a general

(not in terms of ε uniform convergence) fourth order convergence, which reduces to
second order for non-uniform meshes as discussed in [1, 6] and [8]. Cubic B-spline
gives second order uniform convergence in ε for piecewise uniform mesh as given
by Shishkin [5]. As wavelets have a very strong advantage of data compression,
therefore, at this point of time we are more concerned about this issue as compared
to ε uniform convergence. Nevertheless, in view of the numerical results in Table
1, the proposed methods seems to have atleast first order ε uniform convergence on
the adaptive grid and hence are able to resolve the boundary layer for all ε.

We define compression error as

(57) Eτ = ‖uτ − u0‖∞
where uτ is the solution obtained with tolerance τ and u0 corresponds to the solution
obtained on the finest grid. In Table 2 we have given the compression error for
different value of singular perturbation parameter ε and for different J (nJ = 2J)
using cubic spline and WOFD. Clearly, both the methods give almost same result
but CPU time can be reduced using WOFD as compared to cubic spline because of
very spares nature of the Lagrangian matrices in comparison of very dense matrices
which arise in cubic spline.

Figures 1, 2 show the solution for the elliptic problem for adaptive grid using
cubic spline and WOFD. It is clear from these figures that mesh points are more
concentrated at the boundaries (where the boundary layers occur). Figure 3 gives
the compression for different values of tolerance τ and perturbation parameter ε.
As we decrease the tolerance τ , significant coefficients increase almost linearly.
Eigenvalues for the diffusion operator have also been plotted for both the methods
in figures 1, 2 which show that all the eigenvalues are real.
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Table 2. Compression error for elliptic problem with tolerance
τ = 10−4

Methods ε nJ = 2J Eτ (u) CPU(s) for
u0

CPU(s) for
uτ

N, Na

Cubic Spline 2−10 J = 7 .0004 .4360 .6420 128, 61
J = 9 .0016 8.812 .7970 512, 91
J = 10 .0018 80.84 .5000 1024, 106
J = 11 .0019 526.98 1.2350 2048, 119

2−15 J = 7 .0001 .3130 .4770 128, 61
J = 9 .0001 8.469 .4120 512, 91
J = 10 .0008 81.60 .5000 1024, 105
J = 11 .0014 512.9 .6489 2048, 122

WOFD 2−10 J = 7 .0007 .0760 .3550 128, 61
J = 9 .0016 .1560 .2500 512, 91
J = 10 .0023 .3440 .4230 1024, 106
J = 11 .0024 1.112 .3430 2048, 119

2−15 J = 7 .0001 .0971 .2370 128, 61
J = 9 .0001 .1410 .2620 512, 91
J = 10 .0010 .3600 .2940 1024, 105
J = 11 .0010 1.019 .3689 2048, 122
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Figure 1. Approximation for elliptic problem for p = 3.

5.2. Parabolic problem. The second problem is the semilinear parabolic prob-
lem with a(x, t) = q0(t) = q1(t) = 0, b(x, t) = 1, f(x, t, u) = e−u − 1 and initial
condition s(x) = 1, 0 ≤ x ≤ 1. Nonlinearity is dealt with quasilinearization tech-
nique of Bellman and Kalaba [12]. In the quasilinearization technique, the non-
linear differential equation is solved recursively by a sequence of linear differential
equations. The main advantage of this method is that if the procedure converges, it
converges quadratically to the solution of the original problem. The linear equation
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is obtained by using the first and second term of the Taylor’s series expansion of
the original non-linear differential equation. The non-linear term f(x, un+1(x)) can
be expanded as
(58)
f(x, un+1(x)) = f(x, un(x)) + (un+1 − un)f ′(x, un(x)) + .... where n = 0, 1, 2......; .

Here we consider an implicit two-level time difference scheme on the non-uniform
mesh as given in equations (30) and (34). Table 3 gives the compression error for
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Table 3. Compression error for parabolic problem with tolerance
τ = 10−4 at time t = 2

Methods ε nJ = 2J Eτ (u) CPU(s)
for u0

CPU(s)
for uτ

N, Na

Cubic Spline 2−8 J = 8 9.053E(−5) 11.391 4.609 256, 71
J = 9 8.926E(−5) 171.64 19.032 512, 83
J = 10 7.720E(−5) 1666.0 168.98 1024, 95

2−14 J = 8 6.253E(−6) 11.45 2.797 256, 80
J = 9 6.690E(−5) 172.157 19.047 512, 89
J = 10 8.779E(−5) 1674.65 169.26 1024, 107

WOFD 2−8 J = 8 1.700E(−4) 1.266 1.719 256, 71
J = 9 1.200E(−4) 2.344 2.032 512, 83
J = 10 9.000E(−5) 6.188 2.969 1024, 95

2−14 J = 8 1.344E(−5) 1.266 1.781 256, 77
J = 9 1.558E(−4) 2.438 1.953 512, 91
J = 10 1.288E(−4) 6.250 3.00 1024, 108
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Figure 4. Approximate solution with adaptive mesh for parabolic
problem using cubic spline.

the parabolic equation at time t = 2 for both the methods. It can be seen that the
proposed methods work well in term of compression error and CPU time.

Figures 4, 5 show the approximated solution for the parabolic problem at time
t = 2 and at various times with adaptive mesh points Na. Again we can see that
more mesh points are concentrated in the area with large gradient. In order to
represent the better solution in the area of boundary layers, one needs to add more
points. One way to do this is to increase the resolution. With smaller and smaller
scales, one can progressively resolves the boundary layers, as can be seen in all the
figures. Once again WOFD gives better results in terms of CPU time as compared
to cubic spline.
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Figure 5. Approximate solution with adaptive mesh for parabolic
problem using WOFD.

6. Conclusion

We have proposed cubic spline and WOFD using adaptivity for solving singularly
perturbed reaction diffusion elliptic and parabolic problems. The adaptivity is
achieved by using an interpolating wavelet basis. The novelty of this work lies in
the threshholding scheme used to adaptively reducing the CPU time with wavelet
compression of data. This adaption works both for features that are moving and
for features that develop over time, such as boundary layers. WOFD takes the
advantage over the cubic spline in term of CPU time and also can be extended
easily to higher degree polynomials for different p.
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