
INTERNATIONAL JOURNAL OF c© 2008 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 5, Number 2, Pages 206–221

SOBOLEV GRADIENT TYPE PRECONDITIONING FOR THE
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Abstract. In this paper a suitable Laplacian preconditioner is proposed for

the numerical solution of the nonlinear elasto-plastic torsion problem. The aim

is to determine the tangential stress in cross-sections under a given torsion, for

which the physical model is based on the Saint Venant model of torsion and

the single curve hypothesis for the connection of strain and stress. The pro-

posed iterative solution of the arising nonlinear elliptic problem is achieved by

combining the advantages of Laplacian preconditioners with the qualitatively

favourable aspects of the strong formulation. Error estimate is given for the

convergence of the method. Finally, a numerical example is given.
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1. Introduction

The investigation of the elasto-plastic torsion of a hardening rod has a great
practical importance in mechanics and its theoretical background has been widely
analysed (see, e.g., [11, 12]). The mathematical formulation of this problem leads to
nonlinear differential equations. The most frequently used numerical methods that
arise in this context are the finite difference and finite element methods [20, 23].
The solution of the obtained system of algebraic equations is generally found by
some iterative method. The crucial point in the solution of these systems is most
often preconditioning. Namely, since the condition number of the Jacobians of
these systems tends to infinity when discretization is refined, therefore a suitable
nonlinear preconditioning technique has to be used to achieve a convenient condition
number [2].

In this paper the behaviour of the tangential stress is studied under the elasto-
plastic torsion of a hardening rod based on the following model [12]: the cross-
sections experience rigid rotation in their planes and are distorted in the direction
of the z-axis (this is the Saint Venant model), further, the intensity of the stress is
a strictly increasing function of that of the strain under the hardening condition.
The arising mathematical model is a quasilinear elliptic boundary value problem of
divergence form, in which nonlinearity comes from the stress-strain function.

As mentioned above, the main point in the numerical solution of the arising
elliptic problem is preconditioning. A general efficient way to provide a suitable
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This research was supported by NKTH Öveges Program and the Hungarian National Research
Grant OTKA under grant no. T049819 and T043765.

206



SOBOLEV GRADIENT PRECONDITIONING FOR ELASTO-PLASTIC TORSION 207

preconditioner is the Sobolev gradient approach, developed by Neuberger for least-
square methods [21, 22], which relies on using the Sobolev inner product. A strongly
related kind of preconditioning is using the discrete Laplacian as preconditioner (see
e.g. [7, 25]). These preconditioning methods benefit by the fast solvers available
for the Laplacian, also involving general domains via the fictious domain approach
(see also [25]). The Sobolev gradient technique points to the infinite-dimensional
generalizations of iterative methods, which go back to Kantorovich [13] and have
undergone extensive development. The authors’ investigations include the gradient
method for non-differentiable operators in a Hilbert space [14], and we underline
that the Sobolev space background helps us in constructing effective natural pre-
conditioners [3, 10, 21].

The Sobolev gradient approach yields a gradient (steepest descent) iteration in
Sobolev space which reduces the solution of the nonlinear equation to the sequence
of auxiliary linear Poisson problems. The numerical solution of these auxiliary linear
problems by a suitable finite element method yields the gradient–finite element
method (GFEM) introduced by the authors in [9]. This method combines the
above mentioned advantages of Laplacian preconditioners with the qualitatively
favourable aspects of the strong formulation. The GFEM is proposed in the present
paper for the numerical solution of the elasto-plastic torsion problem. The main
advantages of the GFEM are an easy algorithmization and preserving the ellipticity
bounds of the differential operator in the ratio of linear convergence. The latter
provides a priori mesh independent estimates for the FEM realization and is due
to the above-mentioned Sobolev space preconditioning background.

Besides the GFEM, we will sketch some other applications of Laplacian precon-
ditioners. In the comparison to other numerical methods it is important to refer to
Newton’s method, widespread for its fast convergence. The problem of only local
convergence and the extra work of compiling the Jacobians may justify the choice
of a theoretically slower method, cf. e.g. [3]. In the GFEM the auxiliary linear
problems are of fixed (Poisson) type, hence the matrices need not be updated in
each step. Further, as we will see, in our problem the rate of linear convergence
is suitably small. We note that for problems where the Laplacian preconditioner
cannot yield a favourable ratio of convergence, one can still use the Sobolev space
setting to construct preconditioned Newton iterations [4, 16, 25]. Some further re-
marks on the comparison of the GFEM, the nonlinear CGM and Newton’s method
will be given in Subsection 4.2.

The paper is organized as follows. Section 2 describes the physical model based
on [12]. In Section 3 mathematical background is given. Section 4 is devoted to
the construction and error estimate of the GFEM and some related applications of
Laplacian preconditioners. Finally, in Section 5 numerical realization is developed
for computing the tangential stress in a copper bar when crack occurs.

2. The physical model of 2D elasto-plastic torsion

The mathematical model of plastic state under plane deformation conditions was
first given by Saint-Venant, and was later extended by von Mises to 3D, having a
simple physical interpretation and structure.

In the hardening state the model of elasto-plastic torsion is given below following
the presentation of Kachanov [12]. This model is based on the observation that
the equations of deformation theory may be used for plastic deformations which
develop in some definite direction. Since the tangential stress vectors act in parallel
cross-sections, the model reduces the 3D problem to 2D.
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We consider a hardening rod with cross-section Ω ⊂ R2, the lower end of the rod
being clamped in the (x, y)-plane. Our aim is to determine the tangential stress in
the points of the rod under given torsion.

In the notations of this chapter, coordinates are denoted by subscripts and partial
derivatives are denoted by ∂

∂x etc.

2.1. The Saint Venant model of torsion. In the Saint Venant model we assume
that the cross-sections experience rigid rotation in their planes and are distorted in
the direction of the z-axis. Denoting by ω > 0 the torsion per unit length of the
rod, the displacements ux, uy and uz are then given by

(1) ux = −ωzy, uy = ωzx, uz = w(x, y, ω),

where w is an unknown function. Denoting as usual the components of shear strain
by γxy,γxz,γyz, we obtain

γxy =
∂ux

∂y
+

∂uy

∂x
= 0,

(2) γxz =
∂ux

∂z
+

∂uz

∂x
=

∂w

∂x
− ωy, γyz =

∂uy

∂z
+

∂uz

∂y
=

∂w

∂y
+ ωx.

The tangential stress vectors τ also act in cross-sections parallel to the (x, y)-plane,
i.e., denoting by τxz and τyz the x and y coordinates of τ , respectively, we can
neglect the third coordinate and write

τ = (τxz, τyz) .

An important quantity, involving the tangential stress, is the twisting moment

(3) M =
∫

Ω

(xτyz − yτxz) dxdy .

Further, the tangential stress satisfies the equilibrium equation

(4)
∂τxz

∂x
+

∂τyz

∂y
= 0 .

Hence, we can introduce the stress function F fulfilling

(5) τxz =
∂F

∂y
, τyz = −∂F

∂x
.

The conditions (1) of rigid rotation in planes imply that the stresses in the rod
are determined by those in the domain Ω. Further, the surface of the rod is free of
normal stresses, hence the tangential derivative of F vanishes, i.e., we have

(6) F|∂Ω ≡ const.

2.2. The hardening state. The condition of the hardening state involves the
single curve model, wherein the connection between strain and stress depends only
on strain and stress intensities

(7) Γ =
(
γ2

xz + γ2
yz

)1/2
, T =

(
τ2
xz + τ2

yz

)1/2
.

Moreover, we require that T is a strictly increasing function of Γ. In the elastic state
this function is linear owing to Hooke’s law (i.e., T = GΓ, where G > 0 is Hooke’s
constant), then in the plastic state it becomes a concave nonlinear function. The
stress-strain function is defined for arguments below a certain strain Γ∗ (the end of
validity of the elasto-plastic model), for which crack of the material first occurs.
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The stress-strain function is usually written in the form

(8) T = g(Γ)Γ,

where the decreasing function g is called modulus of plasticity. The inverse is
expressed in the similar product form

(9) Γ = g(T )T .

According to the above, the increasing function g is also defined in a bounded
validity interval [0, T∗]. Identities (8) or (9) are referred to as hardening condition.

2.3. The boundary value problem. The relations in (2) imply the continuity
condition

(10)
∂γyz

∂x
− ∂γxz

∂y
= 2ω .

Further, it follows from Hencky’s relations that the strain and stress vectors are
parallel, hence the hardening condition (9) yields

(11) γxz = g(T )τxz , γyz = g(T )τyz .

Substituting this into (10) and using (5), we obtain

− ∂

∂x

(
g(T )

∂F

∂x

)
− ∂

∂y

(
g(T )

∂F

∂y

)
= 2ω ,

where

(12) T =
(
τ2
xz + τ2

yz

)1/2
=

((
∂F

∂x

)2

+
(

∂F

∂y

)2
)1/2

.

Since F is only determined up to an additive constant, the boundary value in (6)
may be chosen 0. Hence the discussed model leads to the nonlinear boundary value
problem written briefly as

(13)
{−div (g(|∇F |)∇F ) = 2ω,

F|∂Ω = 0 .

If this is solved for F then the required tangential stress is obtained from (5).

2.4. Solution for a circular section. A special case when it is elementary to
determine the tangential stress is a cylindrical rod, i.e., when the cross-section Ω is
a disc. Then the symmetry yields w = 0 in (1), hence (2) gives

γxz = −ωy, γyz = ωx, Γ = ωr,

where r = (x2 + y2)1/2. Using parallelity as in (11), we obtain

(14) τxz = g(Γ)γxz = −g(ωr)ωy, τyz = g(Γ)γyz = g(ωr)ωx.

In a general case for Ω, one has to apply a numerical method to determine the
tangential stress.
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3. Mathematical background

3.1. Sobolev space setting. For the investigation of the boundary value problem
(13) we first introduce the operator

P (F ) ≡ −div (g(|∇F |)∇F )

in the real Hilbert space L2(Ω) with domain of definition D(P ) = H2(Ω)∩H1
0 (Ω).

The function g is defined as in (9) in the validity interval [0, T∗] and as constant
g(T ) ≡ g(T∗) for T ≥ T∗. Further, the conditions g ∈ C1[0,∞) and g > 0, g′ ≥ 0 are
satisfied. The corresponding generalized differential operator A : H1

0 (Ω) → H1
0 (Ω)

is defined by the identity

〈A(F ), V 〉H1
0 (Ω) ≡

∫

Ω

g(|∇F |)∇F · ∇V dΩ, (F, V ∈ H1
0 (Ω)),

where

(15) 〈F, V 〉H1
0 (Ω) ≡

∫

Ω

∇F · ∇V dΩ

is the inner product on H1
0 (Ω) and dΩ denotes the Lebesgue measure on Ω. Then

the divergence theorem yields
∫

Ω

P (F )V dΩ = 〈A(F ), V 〉H1
0 (Ω) (F, V ∈ H2(Ω) ∩H1

0 (Ω)).

This, together with the identity

(16) 〈F, V 〉H1
0 (Ω) =

∫

Ω

(−∆F )V dΩ (F, V ∈ H2(Ω) ∩H1
0 (Ω)),

implies that
A|H2(Ω)∩H1

0 (Ω) = (−∆)−1P .

It can be verified in a usual way (see e.g. [19]) that A is Gâteaux differentiable and
its derivative A′ fulfils

〈A′(F )V, V 〉H1
0 (Ω) =

∫

Ω

(
g(|∇F |)|∇V |2 +

g′(|∇F |)
|∇F | (∇F · ∇V )2

)
dΩ

for all F, V ∈ H1
0 (Ω). Hence (using the Cauchy-Schwarz inequality) A′ satisfies

∫

Ω

g(|∇F |)|∇V |2dΩ ≤ 〈A′(F )V, V 〉H1
0 (Ω) ≤

∫

Ω

(
g(|∇F |)|∇V |2 + g′(|∇F |)|∇F ||∇V |2)dΩ ,

i.e., the uniform ellipticity property

(17) λ‖V ‖2H1
0 (Ω) ≤ 〈A′(F )V, V 〉H1

0 (Ω) ≤ Λ‖V ‖2H1
0 (Ω) (F, V ∈ H1

0 (Ω))

holds with bounds

(18) λ = min
T≥0

g(T ) = g(0), Λ = max
T≥0

{g(T ) + Tg′(T )} = g(T∗) + max
0≤T≤T∗

Tg′(T ) .

The uniform ellipticity implies that A is uniformly monotone and Lipschitz con-
tinuous in H1

0 (Ω). This yields the existence and uniqueness (see e.g. [28]) for (13):
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Theorem 3.1. Problem (13) has a unique weak solution F ∗ ∈ H1
0 (Ω), i.e.,∫

Ω

g(|∇F ∗|)∇F ∗ · ∇V dΩ = 2ω

∫

Ω

V dΩ (V ∈ H1
0 (Ω)).

3.2. Regularity. Although Theorem 3.1 guarantees the well-posedness of our
problem (13), the weak solution has an insufficiency concerning the meaning of
the model. Namely, for F ∗ ∈ H1

0 (Ω) it might occur in theory that |∇F ∗| is un-
bounded even for arbitrarily small ω. On the other hand, it is expected that the
mathematical model is able to yield solutions whose derivatives are pointwise within
the validity of the elasto-plastic model.

The following regularity result implies that indeed there exists

max
Ω
|∇F ∗| < +∞ .

That is, problem (13) fulfils the above-mentioned requirement. Further, a higher
regularity also holds in Sobolev sense.

Proposition 3.2 [18]. Let Ω ⊂ R2 be a bounded domain with piecewise C2

boundary, such that the angles at the corners are less than π, and g ∈ C1[0,∞).
Then the weak solution of (13) satisfies F ∗ ∈ C1(Ω) ∩H2(Ω).

(Incidentally, the result is formulated in [18] for a more general class, when g
may depend on ∇F instead of |∇F |; further, the derivative of F is even Hölder
continuous.)

4. Preconditioning by the Laplacian

Our aim is to determine the solution of (13) and its derivative. For this we
investigate the numerical solution of the more general class of problems of the form{

P (F ) ≡ −div g(x,∇F ) = f(x),
F|∂Ω = 0(19)

that satisfy uniform ellipticity, i.e.,

(20) λ‖V ‖2H1
0 (Ω) ≤ 〈A′(F )V, V 〉H1

0 (Ω) ≤ Λ‖V ‖2H1
0 (Ω) (F, V ∈ H1

0 (Ω))

with constants Λ ≥ λ > 0, where A : H1
0 (Ω) → H1

0 (Ω) is the corresponding
generalized differential operator, defined similarly to Subsection 3.1.

Our investigations are focused on a Sobolev gradient type iteration for problem
(19). The main idea on the continuous level is that a steepest descent iteration
is defined for the corresponding convex potential in the space H1

0 (Ω) under the
H1

0 -inner product (15), further, a suitable regularity yields a constructive Sobolev
gradient such that the iteration takes the form with Laplacian preconditioner

(21) Fn+1 = Fn − αn(−∆)−1(P (Fn)− f)

with some steplengths αn. We will consider constant steplengths αn ≡ 2/(Λ + λ),
which are known to be optimal for an operator with bounds λ and Λ as in (20).
The proposed numerical iteration is obtained as the projection of the theoretical
sequence into a suitable FEM subspace (or sequence of subspaces).

The advantages of Laplacian preconditioners appear in two important areas.
First, their efficiency for solving the auxiliary problems is justified by the various
available fast Poisson solvers, see e.g. [24] and the references therein. Further, the
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Laplacian as an elliptic operator is able to provide mesh independent convergence
estimates.

In Subsection 4.1 the exact formulation of the construction and convergence of
the GFEM is given, relying on the authors’ earlier results in [9], where the gradient–
finite element method (GFEM) has been introduced for the numerical solution of
(19). In the GFEM the auxiliary linear Poisson equations, arising in (21), are solved
by suitable FEM.

In Subsection 4.2 we sketch the nonlinear conjugate gradient method and inner-
outer Newton iterations, where Laplacian preconditioning can be used with appro-
priate modifications of the GFEM setting.

4.1. Construction and convergence of the gradient–finite element method.
The GFEM has been defined in [9] by the following algorithm: let (δn) ⊂ R+ be a
sequence such that δn → 0. Then

(22)

F0 ∈ H2(Ω) ∩H1
0 (Ω) is arbitrary;

for any n ∈ N :
(a) Rn = P (Fn)− f,

(Z∗n = (−∆)−1Rn denotes the exact solution
of the auxiliary equation);

(b) Zn ≈ Z∗n using FEM such that
Zn ∈ H2(Ω) ∩H1

0 (Ω) and ‖Z∗n − Zn‖H1
0 (Ω) ≤ δn ,

(c) Fn+1 = Fn − 2
Λ+λZn .





In other words, Zn is the numerically computed solution of the auxiliary Poisson
equation

−∆Z = Rn , Z|∂Ω = 0,

using FEM with accuracy δn in H1
0 (Ω) norm.

Remark 4.1. The general form of the GFEM can be defined by allowing any
F0 ∈ H1

0 (Ω) and such that only Zn ∈ H1
0 (Ω) is required. Then Rn is defined via

the weak formulation of the operator P . We note that the convergence result cited
below holds in the same way for the weak form of the GFEM. The strong form
used in (22) that requires Zn ∈ H2(Ω)∩H1

0 (Ω) is motivated by qualitative aspects
listed at the end of Subsection 5.2.

The convergence of the method is presented by the following theorem.

Theorem 4.1 ([9]). Let the problem (19) fulfil the following conditions:

(i) The bounded domain Ω ⊂ RN is convex or fulfils ∂Ω ∈ C2; g ∈ C1(Ω ×
RN ;RN ), f ∈ L2(Ω).

(ii) The matrix ∂g
∂p (x, p) is symmetric, uniformly bounded and positive definite,

i.e., there exist Λ ≥ λ > 0 such that its eigenvalues are between λ and Λ
for all (x, p) ∈ Ω×RN .

(iii) There exists a constant γ > 0 such that
∣∣∣ ∂gi

∂xi
(x, p)

∣∣∣ ≤ γ|p| for all (x, p) ∈
Ω×RN .

Let 0 < q < 1 be fixed, c1 > 0, δn ≤ c1q
n (n ∈ N) and Λ as in (20). Then (with

a suitable constant c2 > 0) the following estimates hold for all n:

(a) If q >
Λ− λ

Λ + λ
then ‖Fn − F ∗‖H1

0 (Ω) ≤ c2q
n .
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(b) If q <
Λ− λ

Λ + λ
then ‖Fn − F ∗‖H1

0 (Ω) ≤ c2

(
Λ− λ

Λ + λ

)n

.

The proof relies on contractivity techniques (similarly as for any simple precon-
ditioning method) and the ellipticity properties of the operator P regularized by
the Laplacian.

Corollary 4.1. The GFEM converges as in Theorem 4.1 for the elasto-plastic
torsion boundary value problem (13).

Proof. The class of problems (19) was introduced such that it contains (13).
This is shown by the inequalities (17) and (20), which means equivalently that (13)
fulfils conditions (i)-(iii) of Theorem 4.1. (Especially, we simply have γ = 0.) ¤

The H1
0 (Ω) convergence of (Fn) implies the convergence of (∇Fn) to the required

(∇F ∗) in L2(Ω) norm, where F ∗ is the unique weak solution of (19) applied as
preconditioner in the inner iterations (cf. e.g. [25]). We underline that the resulting
bound (Λ − λ)/(Λ + λ) for the convergence quotient only depends on the original
coefficient and is in this sense independent of the mesh size used.

Remark 4.2. As mentioned in Remark 4.1, the above convergence result holds
equally for the weak or strong form of the GFEM. However, the strong form has
advantages in controlling the sequence of tolerances δn used in step (b) of (22).
Namely, the sequence δn is strongly connected to the widths of the meshes hn.
Using the standard FEM error estimate, we have

‖Zn − Z∗n‖H1
0 (Ω) ≤ Chn‖Z∗n‖H2(Ω) = Chn‖(−∆)−1(P (Fn)− f)‖H2(Ω) ≤

C ′hn‖P (Fn)− f‖L2(Ω)

with suitable constants C, C ′ > 0. The obtained expression on the right-hand side
plays the role of δn. If (hn) → 0 is chosen a geometric sequence and sup{‖P (Fn)−
f‖L2(Ω) : n ∈ N} < +∞ (which can be assumed, since (Fn) is constructed to
converge to the solution of equation P (F ) = f), then the condition of Theorem 4.1
on δn is fulfilled, i.e. (instead of estimating δn in the steps) the suitably prescribed
refinement of the mesh yields the required order estimate of the convergence of δn.

4.2. Some other iterations: conjugate gradients and inner-outer Newton
iterations. In this subsection we sketch very briefly two other kinds of methods,
where Laplacian preconditioning can be used with appropriate modifications of the
previous considerations.

The Hilbert space version of the nonlinear conjugate gradient method (CGM) was
introduced in [8] and extended to operators in a strong form in [15]. The Laplacian
preconditioner used in the gradient–finite element method algorithm (22) can be
equally applied for the CGM via a suitable modification of (22), using an auxiliary
sequence (Sn) of conjugate directions defined simultaneously with (Fn). Namely,
if Rn and Zn are obtained in the same way as in (22), then the following steps are
made:

(i) we calculate the constant γn = −αn/βn, where

αn =
∫

Ω

∂g

∂p
(x,∇Fn)∇Sn−1 ·∇Zn dΩ, βn =

∫

Ω

∂g

∂p
(x,∇Fn)∇Sn−1 ·∇Sn−1 dΩ ;
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(ii) we calculate the constant cn > 0 as the smallest positive root of the equation
∫

Ω

g(x,∇Fn − c∇Sn−1) · ∇Sn−1 dΩ =
∫

Ω

fSn−1 dΩ;

(iii) we let

Sn = Zn + γnSn−1 and Fn+1 = Fn − cnSn−1 .

The conjugate gradient method converges with ratio
√

Λ−
√

λ√
Λ +

√
λ

[8, 15], hence the ratio obtained in Theorem 4.1 for the GFEM is improved. How-
ever, the price for this is the stepwise numerical integration for calculating the
constants αn, βn and the numerical root search for finding cn in each step of the
iteration.

Another even more widespread way for the iterative solution of the nonlinear
problem (19) is Newton’s method (or its damped version). Its finite element real-
ization can be easily constructed by projecting the Sobolev space Newton iteration
into the considered FEM subspace (see, e.g., [4, 13, 23, 25]). This can be given
by the following modification of the algorithm (22): instead of Z∗n = (−∆)−1Rn

defined there, we let
Z∗n = L−1

n Rn ,

where Ln denotes the linearized elliptic operator at Fn:

LnZ ≡ −div
(

∂g

∂p
(x,∇Fn) ∇Z

)
.

Then Zn is the suitable FEM approximation of Z∗n similarly as earlier. Further, we
define the next iterate as

Fn+1 = Fn + τnZn ,

where τn = 1 in the original Newton’s method and 0 < τn ≤ 1 is a suitable damping
parameter in the damped version. For the convergence of Newton’s method we
assume the Lipschitz (or at least Hölder) continuity of ∂g/∂p. This is inherited
by the discretized nonlinear elliptic operator in any fixed finite dimensional FEM
subspace Vh ⊂ H1

0 (Ω), hence one can prove in a standard way the corresponding
superlinear convergence estimates, which are global in the case of suitable damping
(see, e.g., [1] for details). For a study on the use of varied mesh sizes hn → 0 (the
so-called multilevel Newton methods) see [5].

Finding the functions Zn requires the FEM solution of general elliptic problems
with the operators Ln, hence (in contrast to the Poisson equations in the GFEM
algorithm) one can no more rely on any fast solver for these linearized equations
and hence the work of their solution is no more negligable. Therefore, a much wide-
spread way of solving the linearized equations is to apply distinct inner iterations for
each of these equations. (These are generally preconditioned CG iterations, whose
standard implementation for linear systems is found in [2].) In order to preserve
the benefit of fast Poisson solvers, the discrete Laplacian might also be applied as
preconditioner in the inner iterations (cf. e.g. [25]). The resulting convergence
quotient is bounded by (Λ − λ)/(Λ + λ) for a simple (Richardson) inner iteration
and by (

√
Λ−

√
λ)/(

√
Λ +

√
λ) for an inner CG iteration. These bounds only de-

pend on the original coefficient and hence are mesh independent even if a multilevel
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Newton’s method is used. Regarding the convergence of the overall inner-outer it-
eration, we remark that Laplacian preconditioners yield an overall iteration which
consists of Poisson equations just as well as the GFEM iteration (22), hence the
stepwise contractivity bounds are the same. Therefore, it is easily seen that the
order of required number of iterations to achieve a prescribed error is also the same
as for the GFEM iteration, namely, n = O(log ε) as the prescribed error ε tends to
0.

5. Numerical solution of the elasto-plastic torsion problem

In the preceding sections it has been shown that determining the tangential stress
requires the solution of the boundary value problem (13) for the stress function F .

From this we obtain the coordinates of the tangential stress according to the
relations

(23) τxz =
∂F

∂y
, τyz = −∂F

∂x
.

For the numerical solution of the above boundary value problem we have in-
troduced the gradient–finite element method, which exhibits linear convergence in
H1

0 (Ω) norm.
This section is devoted to the investigation of the elasto-plastic torsion of a cop-

per rod having square cross-section 10 mm × 10 mm. The purpose is to determine
the tangential stress in the case of a torsion per unit slightly above the critical
value, i.e., when crack occurs at the edge of the cross-section. (We use N for force
and, for convenience, mm for length throughout the experiment.)

5.1. Determining the strain-stress function. The single curve hypothesis of
the hardening condition implies that the connection of strain and stress can be
determined from experiments with simple tension and pure shear [12]. This means
that the strain-stress function is obtained directly, which is usual in the study of
load elongation (e.g., work hardening of the compound AlZnMg [17]).

Another possibility is to measure the twisting moment (defined in (3)) versus
the torsion per unit ω. This measurement has been achieved for copper cylinder
[27]. The material was heat treated at the temperature 600◦C for 1 hour. For the
investigation of the mathematical model we need the strain-stress function g in the
boundary value problem. Since the studied rod had a circular cross-section, the
measurements of the moment enable us to determine the modulus of plasticity g as
formulated below. From g we can obtain g using formulas (8) and (9).

Proposition 5.1. Consider a rod with circular cross-section with radius a. Let
the connection between the twisting moment and the twist per unit be given by the
differentiable function M = Φ(ω). Then we have

g(Γ) =
1

2πa4

(
3a

Γ
Φ(

Γ
a

) + Φ′(
Γ
a

)
)

.

Proof. From (3) and (14) we have

Φ(ω) = 2πω

∫ a

0

g(ωr)r3dr =
2πa4

ω3

∫ ω

0

g(at)t3dt.

Then suitable arrangement and differentiation yield the required statement. ¤

Using the above formula, we obtain the following data from the measurements
of [27]:
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T 0 1.0779 1.2962 1.5238 1.7395 1.9293
g(T ) 1.0840 1.0840 1.1479 1.2160 1.2754 1.3201
T 2.5097 2.6786 3.4842 3.6339 4.0616 4.4678

g(T ) 1.4329 1.4650 1.6292 1.6614 1.7462 1.8166

T 4.5887 4.9247 4.9866 5.1473 5.3245
g(T ) 1.8486 1.9398 1.9811 2.0541 2.1259

Table 1. The values of T mean 102× N/mm2, and this will be used throughout
the experiment. The values of g(T ) mean 10−4× mm2/N.

In the sequel the values of g(T ) are determined by suitable interpolation using Table
1. Letting

T∗ = 5.3245,

the validity interval is [0, T∗] (see Subsection 2.2). The two cases 0 ≤ T ≤ 1.0779
(with g(T ) ≡ 1.0840) and 1.0779 ≤ T ≤ 5.3245 correspond to the elastic and plastic
state, respectively.

5.2. Numerical realization of the GFEM. As can be seen in Theorem 4.1, the
GFEM exhibits easy algorithmization and preserves the ellipticity bounds of the
differential operator in the ratio of the global linear convergence. Further, we solve
auxiliary linear problems of fixed (Poisson) type, hence (in contrast to Newton’s
method) the matrices need not be updated in each step. The realization of the
GFEM requires a suitable FEM for these auxiliary Poisson problems.

The algorithm (22) has been defined involving the solution of the auxiliary prob-
lems in H2. This approach requires the use of C1 finite elements. (Although an
intermediate degree between C0 and C1 might also be considered, see e.g. [29], in
our case it is recommended to use C1-elements for several reasons, discussed at the
end of the subsection.) Therefore we use standard full quintic finite element ap-
proximation on each triangle. Then the 21 coefficients of the polynomials of degree
5 are determined such that 18 come from the values v, vx, vy, vxx, vxy, vyy at the
vertices and the remaining three from the normal derivatives vn at the midpoint of
each edge ([26]).

For the case u∗ ∈ Hk(Ω) (k = 1, ..., 6), the error estimate ([26]) corresponding
to this finite element subspace is

(24) ‖u∗ − uh‖1 ≤ const. · hk−1‖u∗‖k .

It is worth underlining the case when u∗ happens to be in H6(Ω):

‖u∗ − uh‖1 ≤ const. · h5‖u∗‖6 .

Remark 5.2. (Reasons that justify C1-elements.) As is clear, the described
higher order approximation leads to more arithmetic operations. However, the
reasonability of its usage in general is presented in literature, in particular, it is
also a basis for the hp-version (see e.g. [6, 29]). On the other hand, there are
several aspects that especially justify this extra work in our case:

• According to Remark 4.1, the suitably prescribed refinement of the mesh
yields the required order estimate of the convergence of GFEM. The usage
of lower order elements would yield reduction of order; especially, in the
case of C0-elements the width h would not even appear in this estimate.

• The estimate (24) allows much coarser mesh to achieve prescribed accuracy.
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• Using C1-elements means finding the numerical solution in C1(Ω)∩H2(Ω).
This is favourable from qualitative point of view, since, according to Propo-
sition 3.2, the smoothness of the solution is thus preserved.

5.3. Experiment. As mentioned above, first we wish to determine a torsion per
unit ω for which the solution of problem (13) slightly increases above the critical
state. This means that the modulus of the derivative of the solution (the stress
intensity defined by (12)) slightly exceeds the maximum T∗ = 5.3245 of the validity
interval in some points of the cross-section, i.e., crack occurs.

Our aim, i.e., to determine the tangential stress field corresponding to the above
value of ω, is achieved in the second step. Here the cross-section can be divided
into three parts: elastic state, plastic state and where the crack occurs.

The numerical solution is carried out following Subsection 4.2. According to
(18) in Subsection 3.1, the strain-stress function obtained above gives the ellipticity
bounds

λ = 1.0840, Λ = 4.6861.

From this the stepsize and the convergence quotient are
2

Λ + λ
= 0.3466,

Λ− λ

Λ + λ
= 0.6243.

Our principle for the stopping criterion relies, as usual, on the difference of consec-
utive terms. Namely, in each step we compute the nodal errors εn, which we define
as the difference of the derivatives with respect to the mesh points. (Computing
the nodal error requires no extra work, since the used values of derivatives appear
during the FEM calculations.) When εn decreases below 10−4, we also compute the
error en = ‖Fn−Fn−1‖H1

0 (Ω) with numerical integration of suitably higher accuracy
than for εn.

Computations are executed up to accuracy 10−4. The FEM error estimate (24)
shows that even h = 2.5 mm is a reasonable choice for this purpose. The convenience
of this coarse mesh is due to the use of C1-elements.

The experiments were carried out in the following way. In each step we computed
the stress intensity |∇Fn|. We made some preliminary runnings for different values
of ω. In order to reduce the computational cost, this was executed using coarser
mesh (h = 5 mm). The results showed that the computed stress intensities Tn :=
|∇Fn| stabilized in 3-4 steps around a value depending on ω. When this value
arrived sufficiently close to T∗, we chose the corresponding torsion per unit ω =
0.3613 mm−1 for the final running on the finer mesh.

We first give the results of the experiment with ω = 0.3613 mm−1 and h = 5
mm in Table 2. The number of iterations n, the computed stress intensities Tn and
the nodal errors εn are given.

n 1 2 3 4 5
Tn 3.4220 5.0535 5.3806 5.3888 5.3459
εn 1.8541 0.9439 0.2677 0.1336 0.1441

Table 2. Results with ω = 0.3613 mm−1 and h = 5 mm.

This shows that the value, around which Tn is stabilized, lies slightly above T∗.
This suggests that this ω is suitable for the final computations for the tangential
stress.

In Table 3 we summarize the results of the computations with ω = 0.3613 mm−1

and h = 2.5 mm. The required stopping criterion is εn ≤ 10−4.
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n 1 2 3 4 5 6 7 8
Tn 3.4402 5.2090 5.4735 5.3440 5.4500 5.4040 5.4325 5.4174
εn 1.6552 0.8993 0.2487 0.0748 0.0423 0.0143 0.0088 0.0047
n 9 10 11 12 13 14 15 16
Tn 5.4237 5.4210 5.4226 5.4217 5.4223 5.4216 5.4219 5.4217
εn 0.0033 0.0018 0.0014 0.0010 0.0007 0.0004 0.0002 0.0001

Table 3. Results with ω = 0.3613 mm−1 and h = 2.5 mm.

After step 16 we computed e16, using numerical integration of the gradients on a
20× 20 mesh, and obtained e16 = 0.000086. Further refinement to 40× 40 yielded
e16 = 0.000089. The obtained values strengthen the reliability of the nodal stopping
criterion. Consequently, we accept

F̃ = F16

as the numerical solution.

The surface and contours of the obtained tangential stress intensity are plotted
in Figures 1 and 2, respectively. Here the cross-section can be divided into three
parts: the corners and a small central part are in elastic state, in the middle of the
edges crack occurs, and the intermediate region is in plastic state. This is shown
by Figure 3.

0
5

10
15

20
25

0

5

10

15

20

25
0

1

2

3

4

5

6

Figure 1. The surface of the tangential stress intensity

Remark 5.2. Owing to the used C1-elements, the numerically computed stress
intensity T̃ = |∇F̃ | is continuous. Therefore, its level contours are connected as well
as those belonging to the exact solution. This would not be satisfied if lower order
elements had been used. The latter may cause inconvenience when the contours
are of interest, since in the discontinuous case they are disconnected.
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Figure 2. The contours of the tangential stress intensity
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Figure 3. The regions of elastic state, plastic state and crack

5.4. Conclusion of the experiment. In this section we have investigated the
elasto-plastic torsion of a copper rod, having cross-section 10 mm × 10 mm, in the
hardening state. We have determined numerically the tangential stress in cross-
sections under a torsion in the neighbourhood of the critical one when crack occurs.
The iterative solution of the involved BVP has been achieved using the GFEM, and
the properties of this method have been presented. Owing to the used C1-elements,
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the GFEM is a qualitatively reliable numerical method, since it preserves the con-
tinuity of the exact stress intensity and the corresponding connected contours of its
modulus. According to the results, when slightly less than 0.3613 rad/mm (i.e. a
little more than half rotation per cm) is executed then we can already experience
crack in the material. The tangential stress intensities imply that the crack occurs
in the middle of the edges, the central part of the cross-section is in elastic state,
the intermediate region is in plastic state. This phenomenon corresponds to other
results with different nonlinearity and numerical approach (see e.g. [12]).
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