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AN ALGORITHM-DRIVEN APPROACH TO ERROR ANALYSIS
FOR MULTIDIMENSIONAL INTEGRATION

FRED J. HICKERNELL AND JOSEF DICK

Abstract. Most error analyses for numerical integration algorithms specify the

space of integrands and then determine the convergence rate for a particular

algorithm or the optimal algorithm. This article takes a different perspective

of specifying the convergence rate and then finding the largest space of inte-

grands for which the algorithm gives that desired rate. Both worst-case and

randomized error analyses are provided.
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1. Introduction

Multi-dimensional integrals of the form

(1) I(f) :=
∫

Xs

f(x) dρ(x), Xs ⊆ Rs,

arise in a number of applications. Here f is some known integrand and ρ is a given
probability measure, i.e., I(1) = 1. For example, if f(x) is the discounted payoff
of an exotic option, and x = (x1, . . . , xs) dictates the changes in the prices of the
underlying assets that determine the payoff, then the fair price of that option is
the average discounted payoff, I(f), where Xs = Rs and ρ is a multivariate normal
distribution.

Error analysis of numerical integration rules typically yields error bounds and
asymptotic rates of convergence for a specified Banach space of integrands. This ar-
ticle proposes a different approach to analyzing numerical integration rules, namely
by specifying the convergence rate and the algorithm and then finding the largest
space of integrands for which the algorithm gives that desired rate.

The integration rules considered here take the form of a simple average of inte-
grand values:

(2) Q0(f) := 0, Qn(f) := n−1
n−1∑

i=0

f(xi) for n > 0,

where {xi} is the design or set of nodes where the integrand is evaluated. The
nodes may be deterministic or random, but they are assumed to be independent
of the integrand, making (2) a linear rule. Adaptive rules are not considered. The
design is assumed to be an infinite sequence of which one uses the first n points. In
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practice one may want to consider Qn for some increasing sequence of non-negative
integers, N = {0, n0, n1, . . .}. A typical example is nm = 2m. Among the familiar
rules of the form (2) that are considered here are simple Monte Carlo rules [4],
rules based on low discrepancy sequences, such as integration lattices [11, 14, 20]
or digital (t,m, s)-nets [14, 15]. Smolyak rules are similar, with the difference that
one replaces n−1 with more general weights ai,n, hence the approach proposed in
this paper could also be applied to such rules.

Researchers have expended considerable effort to understand the strengths and
weaknesses of various numerical integration rules. This is typically done by fixing a
Banach space of integrands, F , with a norm ‖·‖F , and computing the worst possible
error of a particular rule for integrands of norm no greater than unity:

err(f, Qn) := I(f)−Qn(f),

ewo(‖·‖F , Qn) := sup
‖f‖F≤1

|err(f, Qn)| , n ∈ N .(3)

The quantity ewo(‖·‖F , Qn) is called the worst-case error of Qn. Then one attempts
to determine the asymptotic rate of convergence of this quantity, i.e., to show that

(4) CL(s)g(n) ≤ inf
n′∈N
n′≤n

ewo(‖·‖F , Qn′) ≤ CU (s)g(n), n = 1, 2, . . . ,

for some function g(n) that tends to zero as n → ∞. Typically g(n) is a negative
power of n or a negative power of n times some power of log n. When (4) holds,
one may say that ewo(‖·‖F , Qn) ³ g(n). If only an upper bound is known, then
one may say that ewo(‖·‖F , Qn) = O(g(n)). It is also of interest to know how the
error depends on the dimension, s, i.e., whether CU (s) and CL(s) can be made
independent of s, or polynomial in s. This corresponds to the problems of strong
tractability or tractability, respectively, provided that ewo(‖·‖F , Q0) = 1 and g(n)
decays polynomially in n−1.

Knowing that a numerical integration rule has a particular convergence rate is
not the full story. One would also like to know the convergence rate of the best
possible rule. The worst-case difficulty of an integration problem can be defined as
the error of the best possible rule:

(5) ewo(‖·‖F , n) := inf
Qn

ewo(‖·‖F , Qn), n ∈ N .

If ewo(‖·‖F , Qn) ³ ewo(‖·‖F , n), then the rule Qn is optimal. In other words, an
optimal integration rule has the same convergence rate as the best rule, but their
errors may differ by a constant factor (which again may depend on s).

When the numerical integration rule used is a randomized one, then it makes
sense to compute the randomized error. Let Qn denote the sample space of random
rules Qn, where now n denotes the average number of function evaluations used.
Let µ be a probability measure on this sample space, and let rmsQn denote the root
mean square using this measure µ. The randomized error for a given Qn and µ is
defined as

rmse(f,Qn, µ) := rms
Qn

|err(f,Qn)| ,
era(‖·‖F ,Qn, µ) := sup

‖f‖F≤1

rmse(f,Qn, µ), n ∈ N .(6)

Although the norm-based approach described above is quite useful, it has a cer-
tain drawback that this article attempts to address, namely, the space of integrands
F is fixed in advance. Once the space of integrands and the accompanying norm
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are specified, all the analysis that follows depends essentially on these choices. If a
given integrand f does not lie in F , this does not necessarily imply that the rule
Qn performs badly for that f . Moreover, if f lies in F , the error might decay much
faster than the worst case. In mathematical terms, for deterministic algorithms

f /∈ F 6⇒ sup
n∈N

|err(f,Qn)| /ewo(‖·‖F , Qn) = ∞,

f ∈ F 6⇒ lim
n→∞

sup
n′∈N
n′≤n

|err(f, Qn′)| /ewo(‖·‖F , Qn′) > 0.

An analogous situation holds for random algorithms.
The main idea of this article is to construct spaces of integrands that depend on

the integration rules being used and make these spaces as big as possible given a
specified convergence rate (as seen in Section 7 this approach can avoid the problems
some of the classical approaches have). More specifically, we introduce a function
g : N × N → (0, 1] with g(0, s) = g(1, s) = 1 for all s that specifies the desired
convergence rate as a function of the number of sample points and the dimension.
The spaces we consider are spanned by a sequence of orthonormal basis functions
{ψν(x)}, i.e. the functions in our spaces can be written as f(x) =

∑
ν F (ν)ψν(x)

(below we will denote the span of {ψν} by Ψ). The task now is, for a given
sequence of quadrature rules with increasing number of points n (in the following
N will denote a subset of the set of natural numbers such that for each n ∈ N we
have a quadrature rule using n points), to define a norm which makes this space as
large as possible under the constraint that the worst-case error is bounded above
by g(n). More precisely, we prove the following main theorem:

Theorem 1. For sample sizes n ∈ N , dimensions s ∈ N, and a desired convergence
rate, g(n, s), which is monotonically decreasing in n and non-decreasing in s, define

(7) ωwo(ν, n, s) :=
| err(ψν , Qn)|

g(n, s)
and ωra(ν, n, s) :=

rmse(ψν ,Qn, µ)
g(n, s)

.

Define the Banach spaces Fwo,s and Fra,s as follows:

‖f‖Fwo,s := sup
n∈N

∑
ν

|F (ν)ωwo(ν, n, s)|, Fwo,s = {f ∈ Ψ : ‖f‖Fwo,s < ∞},

‖f‖2Fra,s
:= sup

n∈N

∑
ν

|F (ν)ωra(ν, n, s)|2, Fra,s = {f ∈ Ψ : ‖f‖Fra,s < ∞},

where the F (ν) are the ψν-series coefficients of f . Then under conditions (9) and
(11) below the randomized and worst-case errors of Fwo,s and Fra,s, respectively,
have the desired convergence rate, namely,

ewo(‖ · ‖wo,s, Qn) ≤ g(n, s) and era(‖ · ‖ra,s,Qn) ≤ g(n, s)

for all n ∈ N and s ∈ N.
Moreover, these are the largest possible spaces with the desired convergence rates

in the following sense: if span{ψν} is a dense subset in the space of absolutely
continuous functions C(Xs), then for any f ∈ C(Xs) \ Fwo,s there exists a f̃ ∈
C(Xs) \ Fwo,s with |F̃ (ν)| = |F (ν)| such that supn∈N | err(f̃ , Qn)|/g(n, s) = ∞.
Further, if span{ψν} is a dense subset in L2(Xs), then for all f ∈ L2(Xs) \ Fra,s it
follows that supn∈N rmse(f,Qn, µ)/g(n) = ∞.

The norms in the theorem above now depend on the quadrature rule through
err(ψν , Qn), the worst-case error of the basis function ψν using the quadrature rule
Qn, and rmse(ψν ,Qn, µ), the root mean square error of the basis function ψν using



170 F.J. HICKERNELL AND J. DICK

the random quadrature rules from the sample space Qn. Furthermore, these norms
are also shown to be as weak as possible.

The following section provides some necessary preliminaries. Section 3 describes
the method for constructing spaces of integrands for the randomized error analysis,
and Section 4 gives an analogous treatment for worst-case error analysis. The proof
of the main theorem of this article is given in Section 3 for the randomized error
and Section 4 for the worst-case error. This theorem is applied to both lattice
integration rules and digital net integration rules in Sections 5 and 6. This article
concludes with some examples and a discussion.

2. Preliminaries

2.1. Basis Functions and Quadrature Rules. The integrands considered in
this article are defined on some Cartesian product domain, Xs, that is an measure-
able subset of Rs. The integrands are represented as infinite series:

(8) f(x) =
∑

ν

F (ν)ψν(x), x ∈ Xs ⊆ Rs, ‖f‖22 =
∑

ν

|F (ν)|2 < ∞,

where x := (x1, x2, . . . , xs), {ψν(x)} is a sequence of complex-valued, integrable,
orthonormal basis functions with index ν that has a countable range. Orthonor-
mality is meant with respect to the L2 inner product on Xs, i.e., I(ψ̄νψλ) is unity
for ν = λ and zero otherwise. This means that the series coefficients may be writ-
ten as F (ν) = I(fψ̄ν). The integrands are assumed to be square integrable (their
series coefficients are square summable), to permit randomized error analysis of
simple Monte Carlo methods and other random algorithms. For worst-case error
analysis it is also assumed that the series are absolutely summable for any x ∈ Xs.

The dependence of the index ν, the basis function ψν(x), and the set of possi-
ble ν on the dimension s are not explicitly stated for simplicity of notation. The
probability measure ρ(x) used to define the integral in (1) is assumed to have inde-
pendent marginals and so the basis functions are assumed to be of tensor product
form. As s increases the set of possible ν increases monotonically. For example,
for trigonometric polynomials ψtr,ν(x) := e2πıνT x for ν ∈ Zs where ı :=

√−1. The
wavenumbers (1, 2) and (1, 2, 0) are taken to be equivalent, although one corre-
sponds to s = 2 and the other to s = 3. Three examples of basis functions defined
on the unit cube are discussed in Sections 5 and 6: trigonometric polynomials,
Walsh functions and Haar wavelets.

It is further assumed that the function one has unit norm and corresponds to
ν = 0, i.e.,

(9) ψ0(x) = 1, ‖ψ0‖F = ‖1‖F = 1,

which implies that I(ψν) = 0 for all ν 6= 0. Thus error of the zero algorithm is
simply the error in integrating constants, which is unity:

(10) ewo(‖·‖F , Q0) = era(‖·‖F ,Q0, µ) = 1.

Quadrature rules of the form (2) include Monte Carlo and quasi-Monte Carlo
integration rules, such as lattice rules and digital net rules. These rules are consid-
ered in detail in Sections 5 and 6. The performance of these rules depends on how
well the design, {xi} is chosen. As mentioned earlier, it is assumed that designs
considered here are extensible in n ∈ N , that is, the design for nm+1 points is a
superset of the design for nm points.

The quadrature rules Qn depend implicitly on s, but it is assumed that the
designs are extensible in dimension s. This means that for problems of dimension
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s + 1 one takes xi = (xi1, . . . , xis) from the s-dimensional design and appends the
value xi,s+1 to form xi for the s+1-dimensional design. Designs that are extensible
in the dimension make sense because the probability measure ρ(x) has independent
marginals.

For the randomized error analysis it is assumed that the integration rule and the
basis functions match in the sense that the errors for different basis functions are
uncorrelated:

(11) EQn∈Qn
{[err(ψν ,Qn, µ)][err(ψ̄λ,Qn, µ)]} = 0 for ν 6= λ.

This is a nontrivial condition, however, Lemmas 6, 9, and 10 below gives examples of
integration rules and basis functions that satisfy it. Simple Monte Carlo rules satisfy
this condition for any orthonormal functions. Randomly shifted lattice rules satisfy
this condition for trigonometric polynomials. Digital nets satisfy this condition for
Walsh functions and Haar wavelets.

2.2. Monotonic Convergence Rates. In the subsequent sections the goal is to
construct as large a space of functions as possible so that integrands in the unit
ball have worst-case or randomized errors that decay like some prescribed function
g(n, s). It is assumed that the function g(n, s) decreases monotonically to 0 in n
and is non-decreasing in s, i.e. we assume

(12) 1 = g(0, s) = g(1, s) ≥ g(n, s) ≥ g(n′, s) > 0 for 1 ≤ n ≤ n′ < ∞ and all s.

Functions such as g(n, s) = n−α for α > 0 are suitable, but functions such as
g(n, s) = n−α(log n)s are not suitable, although they often arise in the error analysis
for multivariate integration rules. The problem with n−α(log n)s is that it does not
decrease monotonically with n.

One solution to this problem is to use g(n, s) = n−α+ε, but then ε becomes a
free parameter in the exponent. An alternative is the function

(13) g(n; α, δ) :=





e−α[log n+1−(1+δ−1 log n)δ], 0 < δ < 1, n ≥ 1,

n−α, δ = 0, n ≥ 1,

1, n = 0.

There is still the undetermined parameter δ, but this does not affect the power of
n. This s-independent function g is used in the examples in Sections 5 and 6.

Lemma 2. For any fixed α > 0 and δ with 0 ≤ δ < 1 the function g(n, s) =
g(n;α, δ) defined in (13) satisfies (12), and furthermore,

(14) n−α = g(n; α, 0) ¿ n−α(log n)s ¿ g(n;α, δ) ¿ g(n; α− ε, 0) = n−α+ε

as n →∞, for 0 < δ < 1, ε > 0, s ≥ 0.

Proof. The condition g(0; α, δ) = g(1; α, δ) = 1 follows from the definition. Con-
sider the quantity

g̃(n) = log
(

g(n;α, δ)
n−α̃(log n)s

)
= (α̃− α) log n− α + α(1 + δ−1 log n)δ − s log(log n),

defined for all n ≥ 1, and its first derivative with respect to n:

g̃′(n) =
1
n

[
(α̃− α) + α(1 + δ−1 log n)δ−1 − s

log n

]
.

If α̃ = s = 0, then g̃′(n) < 0 since δ < 1, and g(n, s) = g(n; α, δ) decreases
monotonically in n for n ≥ 1. If α̃ = α and s ≥ 0, then limn→∞ g̃(n) = +∞ since



172 F.J. HICKERNELL AND J. DICK

δ > 0, which proves the left side of (14). If α̃ < α and s = 0, then limn→∞ g̃(n) =
−∞ since δ < 1, which proves the right side of (14). ¤

The notion of strong tractability as studied in [16] and elsewhere is important
for high dimensional problems. Briefly, integration is strongly tractable if there
exists an algorithm whose worst-case or randomized error relative to the error for
the zero algorithm is bounded above by CUg(n; α, δ) for some CU > 0 independent
of the dimension of the problem. For spaces considered here, the error of the zero
algorithm is unity and can be ignored. Therefore, the notion of strong tractabil-
ity in the context of this article corresponds to determining how large the series
coefficients F (ν) can be while still maintaining the pre-determined worst-case or
randomized convergence rate g(n; α, δ).

3. Randomized Error Analysis

Condition (11) is crucial for the randomized error analysis. Under this assump-
tion the root mean square quadrature error for a specific integrand is

rmse(f,Qn, µ) = rms
Qn∈Qn

|err(f, Qn)| =
√∑

ν

|F (ν) rmse(ψν ,Qn, µ)|2.

It follows that

sup
n∈N

rmse(f,Qn, µ)
g(n, s)

≤ 1 ⇐⇒ sup
n∈N

√√√√∑
ν

∣∣∣∣
F (ν) rmse(ψν ,Qn, µ)

g(n, s)

∣∣∣∣
2

≤ 1

⇐⇒ sup
n∈N

√∑
ν

|F (ν)|2 ω2
ra(ν, n, s) ≤ 1,(15)

where ωra(ν, n, s) was defined in (7).
This equivalence shows how to define the norm that gives the largest space of

integrands with a randomized error decaying as g(n, s) as given in Theorem 1. The
proof of the part of Theorem 1 dealing with the randomized setting follows from
(15). The root mean square integration error for the integrand f converges as fast
as g(n, s) if and only if the norm ‖f‖ra,s is finite.

The norm ‖f‖ra,s defined in Theorem 1 is not easy to calculate in practice be-
cause there is a supremum over an infinite sum parameterized by n. Since equivalent
norms give the same function space, it is desirable to find equivalent norms with
a simpler form. For convenience sake it may even be desirable to find a slightly
stronger norm that yields a slightly smaller space of integrands for which the ran-
domized error still has the same convergence rate. The forms of these simpler norms
depend on how ωra(ν, n, s) depends on ν, n, and s.

For the rest of this section we will assume that {ψν} forms a complete orthonor-
mal system in L2(Xs). The following corollary summarizes now two extreme cases.

Corollary 3. Let a convergence rate g be given. If supn∈N
ν

ωra(ν, n, s) = CU,s <

∞, then Fra,s = L2(Xs) and era(‖·‖L2(Xs) ,Qn, µ) = O(g(n, s)). On the other hand,
if for a given s one has supn∈N ωra(ν, n, s) = ∞ for all ν 6= 0, then Fra,s is the set
of constant functions.

Proof. Under the first assumption the formula for ‖f‖2ra,s can be bounded by

‖f‖2ra,s ≤ sup
n∈N

ν

ω2
ra(ν, n, s)

∑
ν

|F (ν)|2 = C2
U ‖f‖2L2(Xs) ,
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which implies that the norm ‖·‖ra,s is no stronger than the norm ‖·‖L2(Xs). The
conclusion follows.

Under the second assumption, suppose that there exists a nonconstant f ∈ Fra,s,
i.e., for some ν0 6= 0, F (ν0) 6= 0. Then by the definition in Theorem 1

‖f‖2ra,s = sup
n∈N

∑
ν

|F (ν)|2 ω2
ra(ν, n, s) ≥ sup

n∈N
|F (ν0)|2 ω2

ra(ν0, n, s) = ∞.

This leads to a contradiction, so all f ∈ Fra,s are constant functions. ¤
Simple Monte Carlo integration fits the assumptions of Corollary 3. Since

the basis functions are orthonormal, condition (11) holds automatically, and the
root mean square error of integrating a basis function by simple Monte Carlo is
rmse(ψν ,Qn, µ) = n−1/2. For g(n, s) = n−1/2 one has ωra(ν, n, s) = 1. The
first part of this corollary holds, and so era(‖·‖L2(Xs) , MC, n) = O(n−1/2). For
g(n, s) = O(n−1/2−ε) with ε > 0 the second part of this corollary holds. This
implies that era(‖·‖L2(Xs) , MC, n) ³ n−1/2, and the convergence rate for simple
Monte Carlo integration can only be improved by shrinking the space of integrands
to constants.

Corollary 3 is not useful for more sophisticated rules, such as randomly shifted
integration lattices, because

sup
n∈N

ν

ωra(ν, n, s) = ∞

in this case. However, we note that as n increases, an increasing number of basis
functions are integrated exactly. This suggests another corollary that can be used
to simplify the norm ‖·‖ra,s.

Corollary 4. Let ω̃ra(ν, n, s) be a function satisfying ω̃ra(0, n, s) = 1,

(16) CU,s := sup
n∈N

ν

ωra(ν, n, s)
ω̃ra(ν, n, s)

< ∞, C̃2
U,s := sup

n∈N
ν

∑

n′∈N
n′≥n

ω̃2
ra(ν, n, s)

ω̃2
ra(ν, n′, s)

< ∞.

For each ν let N(ν) ∈ N be defined such that rmse(ψν ,Qn, µ) = 0 for all n ∈ N
with n > N(ν). Define the norms ‖·‖ra,s,k for k = 1, 2 by

‖f‖2ra,s,1 := sup
n∈N

∑

ν:N(ν)=n

|F (ν)|2 ω̃2
ra(ν, N(ν), s),

‖f‖2ra,s,2 :=
∑

ν

|F (ν)|2 ω̃2
ra(ν, N(ν), s),

and the spaces Fra,s,k = {f ∈ L2(Xs) : ‖f‖ra,s,k < ∞}, k = 1, 2. It then follows
that era(‖·‖ra,s,k ,Q0, µ) = 1 for k = 1, 2. Furthermore, (CU,sC̃U,s)−1 ‖f‖ra,s ≤
‖f‖ra,s,1 ≤ ‖f‖ra,s,2 for any f ∈ L2(Xs), and so era(‖·‖ra,s,k ,Qn, µ) = O(g(n, s))
for k = 1, 2. On the other hand, if

(17) CL,s := inf
n′∈N

sup
n∈N
n≤n′

inf
ν:N(ν)=n′

ωra(ν, n, s)
ω̃ra(ν, N(ν), s)

> 0,

then ‖·‖ra,1 is equivalent to ‖·‖ra and Fra,s,1 = Fra,s.

Before proving Corollary 4 some explanation is given of the assumptions. The
first part of condition (16) simply allows one to choose weights ω̃ra that are simpler
in form and not significantly smaller than ωra. Their precise form vary from case to
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case. The second part of this condition is a technical one. It is satisfied, for example,
by choosing ω̃ra = O(nα) and any N = {0, b, b2, . . .} with b > 1. Essentially, one
must ensure that inf nm+1/nm > 1.

Proof. The condition that ω̃ra(0, n, s) = 1 implies that ‖1‖ra,s,k = 1, and so, as
observed in (10), era(‖·‖ra,s,k ,Q0, µ) = 1 for k = 1, 2. Also note that ‖f‖ra,s,1 ≤
‖f‖ra,s,2 by definition.

The sum with respect to ν in the definition of the norm ‖·‖ra,s can be bounded
in terms of sums over the sets {ν : N(ν) = n′} as follows:

‖f‖2ra = sup
n∈N

∑

n′≥n

∑

ν:N(ν)=n′
|F (ν)|2 ω̃2

ra(ν, n, s)
ω2

ra(ν, n, s)
ω̃2

ra(ν, n, s)

≤ C2
U,s sup

n∈N

∑

n′≥n

∑

ν:N(ν)=n′
|F (ν)|2 ω̃2

ra(ν, n, s)

≤ C2
U,s sup

n∈N

∑

n′≥n


 ω̃2

ra(ν, n, s)
ω̃2

ra(ν, n′, s)

∑

ν:N(ν)=n′
|F (ν)|2 ω̃2

ra(ν, n′, s)




≤ C2
U,s sup

n∈N








∑

n′≥n

ω̃2
ra(ν, n, s)

ω̃2
ra(ν, n′, s)







 sup

n′≥n


 ∑

ν:N(ν)=n′
|F (ν)|2 ω̃2

ra(ν, n′, s)











≤ C2
U,sC̃

2
U,s ‖f‖2ra,s,1 .

This proves the first part of the corollary.
To prove the second part of the corollary a lower bound on the norm ‖·‖ra,s is

derived with the help of assumption (17):

‖f‖2ra,s ≥ sup
n,n′∈N
n′≥n

∑

ν:N(ν)=n′
|F (ν)|2 ω2

ra(ν, n, s)

≥ sup
n,n′∈N
n′≥n

[{
inf

ν:N(ν)=n′

ω2
ra(ν, n, s)

ω̃2
ra(ν, N(ν), s)

}

×




∑

ν:N(ν)=n′
|F (ν)|2 ω̃2

ra(ν, N(ν), s)








≥ sup
n′∈N








sup
n∈N
n≤n′

inf
ν:N(ν)=n′

ω2
ra(ν, n, s)

ω̃2
ra(ν, N(ν), s)









∑

ν:N(ν)=n′
|F (ν)|2 ω̃2

ra(ν, N(ν), s)








≥ C2
L,s ‖f‖2ra,sm1 .

¤
Whereas ‖·‖ra,s requires one to compute the supremum over an infinite sequence

of n of infinite series in ν, ‖·‖ra,s,1 requires only the supremum over an infinite
sequence of n of finite series in ν, and ‖·‖ra,s,2 requires only an infinite series in ν.
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4. Worst-Case Error Analysis

Now the worst-case numerical integration error is considered. For this analysis
it is not enough that the integrands be square integrable. It is assumed that the
series defining f(x) is absolutely summable for all x.

A specific rule, Qn, applied to a particular integrand, f , has absolute error

err(f, Qn) =

∣∣∣∣∣
∑

ν

F (ν) err(ψν , Qn)

∣∣∣∣∣ ≤
∑

ν

|F (ν) err(ψν , Qn)| ,

with equality holding if the phase of F (ν) is chosen to make F (ν) err(ψν , Qn) non-
negative (non-positive) for every ν. It follows that

(18) sup
n∈N

|err(f, Qn)| /g(n, s) ≤ 1 ⇐= sup
n∈N

∑
ν

|F (ν) err(ψν , Qn)/g(n, s)| ≤ 1,

with equivalence holding if the phases of F (ν) are chosen appropriately.
This statement suggests the definition of the norm that gives the largest space

of integrands with a worst-case error decaying as g(n, s) as defined in Theorem 1.
The definition of ‖f‖wo,s corresponds to the right side of (18). The implication in
(18) proves the first part of this theorem. To obtain the second part it is noted that
(18) becomes an equivalence if the phases of F (ν) are chosen correctly. In other
words, there may be some integrands, f , left out of Fwo,s for which Qn performs
well, but for each such integrand there is a related one, f̃ whose series coefficients
have the same magnitudes as those of f for which Qn performs poorly.

Corollary 4 has an analog in the worst-case setting. The proof is similar and
is omitted. Again, for convenience, we will assume that {ψν} forms a complete
orthornormal system in L2(Xs).

Corollary 5. Let ω̃wo(ν, n, s) satisfy ω̃wo(0, n, s) = 1,

CU,s := sup
n∈N

ν

ωwo(ν, n, s)
ω̃wo(ν, n, s)

< ∞, C̃U,s := sup
n∈N

ν

∑

n′∈N
n′≥n

ω̃wo(ν, n, s)
ω̃wo(ν, n′, s)

< ∞.

For each ν let N(ν) ∈ N be defined such that err(ψν , Qn, µ) = 0 for all n ∈ N with
n > N(ν). Define the norms ‖·‖wo,s,k for k = 1, 2 by

‖f‖wo,s,1 := sup
n∈N

∑

ν:N(ν)=n

|F (ν)| ω̃wo(ν, N(ν), s),

‖f‖wo,s,2 :=
∑

ν

|F (ν)| ω̃wo(ν, N(ν), s),

and the spaces Fwo,s,k = {f ∈ Ψ : ‖f‖wo,s,k < ∞}, k = 1, 2. It then follows
that ewo(‖·‖wo,s,k , Q0) = 1 for k = 1, 2. Furthermore, (CU,sC̃U,s)−1 ‖f‖wo,s ≤
‖f‖wo,s,1 ≤ ‖f‖wo,s,2 for any f ∈ Ψ, and so ewo(‖·‖wo,s,k , Qn, µ) = O(g(n, s)) for
k = 1, 2. On the other hand, if

(19) CL,s := inf
n′∈N

sup
n∈N
n≤n′

inf
ν:N(ν)=n′

ωwo(ν, n, s)
ω̃wo(ν, N(ν), s)

> 0,

then ‖·‖wo,1 is equivalent to ‖·‖wo and Fwo,s,1 = Fwo,s.
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Figure 1. Plot of a two-dimensional nodeset of a shifted integra-
tion lattice that is also shifted digital net.

5. Extensible Lattice Rules

In this section and the next, Theorem 1 and the corollaries of the previous two
sections are applied to particular quadrature rules. First extensible lattice rules
are considered. The suitable domain of integration is the half-open, s-dimensional
unit cube, i.e., Xs = [0, 1)s, and the basis functions are multivariate trigonometric
polynomials ψtr,ν(x) := e2πıνT x for ν ∈ Zs.

Integration lattices are a kind of design that places the sample points more evenly
than i.i.d. random points. An integration lattice, L, is a superset of Zs that is closed
under addition and subtraction [11, 14, 20]. To obtain a design in the unit cube one
takes the nodeset of a shifted lattice, i.e., {xi = y + ∆ mod 1 : y ∈ L ∩ [0, 1)s},
where ∆ is some point in [0, 1)s. The shift ∆ can be fixed deterministically or
chosen randomly uniformly on [0, 1)s [2].

One commonly used integration lattice is the shifted rank-1 lattice. In this
case the nodeset may be written as {xi = ih/n + ∆ mod 1 : i = 0, . . . , n − 1}.
The nodeset in Figure 1 shows the lattice rule with n = 9, h = (1, 8) and ∆ =
(1/18, 1/18).

The dual lattice is defined as L⊥ := {ν ∈ Zs : νT y ∈ Zs ∀y ∈ L}. Let Ln

denote a lattice whose nodeset has n points, and let L⊥n denote the corresponding
dual lattice. The lattice rules considered here are all extensible [8, 9]. This means
that for N = {0, n0, n1, . . .}, nm+1 must be an integer multiple of nm. Furthermore,

Zs = L0 ⊂ Ln0 ⊂ Ln1 ⊂ Ln2 ⊂ · · · and Zs = L⊥0 ⊃ L⊥n0
⊃ L⊥n1

⊃ L⊥n2
⊃ · · · .

Shifted lattice rules do a perfect job of integrating trigonometric polynomials whose
wave numbers are not in the dual lattice. This is made precise in the following
lemma.

Lemma 6. For shifted lattice rules applied to trigonometric basis functions one
has the following absolute and root mean square errors for n ≥ 1:

(20) |err(ψtr,ν , lat, n)| = rmse(ψtr,ν , ra-lat, n) =

{
1 for 0 6= ν ∈ L⊥n ,

0 for ν = 0 or ν /∈ L⊥n ,
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For a randomly shifted lattice rule and trigonometric basis functions condition (11)
holds.

Proof. The proofs of (20) may be found in [14, 20, 7]. The proof of (11) may be
found in [7]. ¤

5.1. Weakest Norms for Shifted Extensible Lattice Rules. For randomly
or deterministically shifted extensible lattice rules applied to series of trigonometric
polynomials one may define Ctr([0, 1)s) := {f :

∑
ν |F (ν)| < ∞}. By Lemma 6 the

norms in Theorem 1 may be written as

‖f‖lat,s = max


|F (0)| , sup

0 6=n∈N

∑

06=ν∈L⊥n

|F (ν)|
g(n, s)


 ,

‖f‖2ra-lat,s = max


|F (0)|2 , sup

0 6=n∈N

∑

06=ν∈L⊥n

∣∣∣∣
F (ν)
g(n, s)

∣∣∣∣
2

 .

The choices ω̃wo(ν, n, s) = ω̃ra(ν, n, s) = 1/g(n, s) satisfy the hypotheses of
Corollary 4 and 5, provided that g(n, s) decays algebraically with n. Since one has
an extensible lattice nm+1/nm is bounded below by two. It is natural to define
N(0) = 0 and for ν 6= 0 to define N(ν) as the largest n ∈ N such that ν ∈ L⊥n . It
follows that

‖f‖lat,s,1 = sup
n∈N

∑

ν:N(ν)=n

|F (ν)|
g(N(ν), s)

, ‖f‖2ra-lat,s,1 = sup
n∈N

∑

ν:N(ν)=n

∣∣∣∣
F (ν)

g(N(ν), s)

∣∣∣∣
2

.

are equivalent norms to ‖f‖lat,s and ‖f‖ra-lat,s, respectively, since CL,s = 1 in (17)
and (19) for this case. Slightly stronger, but simpler to compute, norms are

‖f‖lat,s,2 =
∑

ν

|F (ν)|
g(N(ν), s)

, ‖f‖2ra-lat,s,2 =
∑

ν

∣∣∣∣
F (ν)

g(N(ν), s)

∣∣∣∣
2

.

An important question is how small N(ν) can be made by a good choice of
integration lattice. A smaller N(ν) implies a larger g(N(ν), s) and therefore a
larger set of integrands that can be integrated accurately by shifted lattice rules.
Consider, for example, the extensible rank-1 lattice with the generating vector

(21) h = (1, 17797)T with N = {0, 1, 2, 4, . . .}
proposed in [8]. The values of N(ν1, ν2) are plotted in Figure 2.

5.2. Bounds on N(ν). Good theoretical upper bounds on N(ν) are difficult
to obtain, however, one may obtain lower bounds on g(N(ν), s) as a function of
ν̄1 · · · ν̄s, where the notation

ν̄ :=

{
1, ν = 0,

|ν| , ν 6= 0,

is commonly used in the study of lattice rules. Below is an example of a new lower
bound, which is an extension of a result in [9].

Theorem 7. For g(n;α, δ) defined in (13) there exist extensible rank-1 lattice
rules with g(N(ν); α, δ) ≥ c(γ, α, δ)[ν1/γ1 · · · νs/γs]−α for any s, α ≥ 1 and γ =
(γ1, γ2, . . .) satisfying

∑∞
j=1 γδ

j < ∞, where c(γ, α, δ) is independent of the dimen-
sion s.
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Figure 2. Plots of N(ν1, ν2) (left) and the upper bound
NU (ν1, ν2) (right) for the rank-1 integration lattice defined in (21).
Lighter shades of gray denote smaller values.

The proof of this theorem relies on the lemma below. This lemma and its proof
are similar to [9, Lemma 3].

Lemma 8. Given a fixed γ ∈ [0,∞)∞ and δ with 0 < δ < 1, let S(γ,m) =∏∞
j=1[1 + γjm], for m ≥ 0. If

∑∞
j=1 γδ

j < ∞, then it follows that b−mS(γ,m) ≤
C̃(γ, d)g(bm; 1, δ) for m ≥ 0.

Proof. Let σs =
∑∞

j=s+1 γδ
j , s = 0, 1, . . .. Note that by increasing s one may make

σs arbitrarily small. We can assume without loss of generality that all σs > 0.
Then applying some relatively elementary inequalities yields:

log[S(γ,m)] =
∞∑

j=1

log[1 + γjm]

≤
s∑

j=1

log[1 + σ−1
s + γjm] +

∞∑

j=s+1

log[1 + γjm]

= s log(1 + σ−1
s ) +

s∑

j=1

log[1 + γjm/(1 + σ−1
s )]

+
∞∑

j=s+1

log[1 + γjm]

≤ s log(1 + σ−1
s ) +

σδ
sm

δ

δ

s∑

j=1

γδ
j +

mδ

δ

∞∑

j=s+1

γδ
j

≤ s log(1 + σ−1
s ) +

(σ0σ
δ
s + σs)mδ

δ
.

From this upper bound it follows that

log
[
b−mS(γ,m)
g(bm; 1, δ)

]
≤ s log(1 + σ−1

s ) +
(σ0σ

δ
s + σs)mδ

δ
+ 1− (1 + δ−1m log b)δ.

Choosing s large enough makes σs small enough so that this quantity bounded
above for all m ≥ 0, which completes the proof. ¤
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Proof of Theorem 7. This proof follows the arguments used to prove [9, Theorem
2] but replaces [9, Lemma 3] by Lemma 8. Just the outline of the proof is given
here. For any γ = (γ1, γ2, . . .) define the following quantity, which is often used in
the analysis of lattice rules:

Rα(n) =
∑

ν∈L⊥n∩(−n/2,n/2]s

[ν1/γ1 · · · νs/γs]−α.

Using arguments similar to those in [9] it can be shown that if
∑∞

j=1 γδ
j < ∞ and α >

1, then there exist extensible lattice rules satisfying Rα(n) ≤ g(n; α, δ)/c(γ, α, δ)
for some c(γ, α, δ) independent of n and s. This implies that

[ν1/γ1 · · · νs/γs]−α ≤ Rα(N(ν)) ≤ g(N(ν); α, d)/c(γ, α, d),

which completes the proof. ¤
The lower bound in Theorem 7 is rather conservative, although the author is not

aware of substantially better lower bounds. Ignoring for a moment γ and the effect
of δ, the bound in Theorem 7 in essence replaces N(ν) by

NU (ν) := max
λ1···λs=ν1···νs

N(λ).

This upper bound, plotted in Figure 2, is much larger than the actual values of
N(ν).

6. Extensible Digital Net Rules

For prime bases b, a linearly scrambled digital sequence is defined by [14, 17, 12,
13, 10]:

xi = (0.xi11xi12 · · · , 0.xi21xi22 · · · , . . .) base b, i = · · · i2i1 base b, i = 0, 1, . . .



xij1

xij2

...


 = LjCj




i1
i2
...


 + ej mod b, j = 1, . . . , s

where the Cj are the prescribed ∞ × ∞ generator matrices, the Lj are lower
triangular ∞×∞ scrambling matrices, and the ej are ∞× 1 digital shifts. The
scrambling matrices and shifts may be chosen deterministically or randomly.

For example, the design in Figure 1 corresponds to the first nine points of
digitally-shifted Faure sequence [5], i.e.,

b = 3, C1 = L1 = L2 = I, C2 =




1 1 1 · · ·
0 1 2 · · ·
0 0 1 · · ·
...

...
...

. . .


 , e1 = e2 =




0
0
1
...


 .

Choosing the first n = bm points of a digital sequence gives a digital net, so
for digital net rules one has N = {0, 1, b, b2, . . .}. This article considers numerical
integration rules based on nets because nets generally have better uniformity than
an arbitrary piece of a digital sequence. The quality of a net is measured by the
quality of the generator matrices, Cj .

For any non-negative vector ` = (`1, . . . , `s) let ‖`‖1 denote the sum of the
elements of `. Let U(`) ⊆ {1, . . . , s} denote the set of all j for which `j 6= 0, and
let |U(`)| denote the cardinality of U(`), i.e., the number of nonzero components
of `. Let C(`) be the ‖`‖1 ×∞ matrix formed by the first `1 rows of C1 followed
by the first `2 rows of C2, etc. For any non-negative integer m, let C(`,m) denote
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the ‖`‖1×m matrix formed by the first m columns of C(`). Let null(·) denote the
null space of a matrix, and def(·) denote the defect of a matrix, i.e., the dimension
of its null space.

For a fixed u ⊆ {1, . . . , s} the parameter Tu is the smallest number T for which
any ` with ‖`‖1 ≤ m− T and U(`) ⊆ u yields def(CT (`, m)) = 0, i.e., C(`,m) has
linear independent rows. In other words,

(22) Tu := min{T : def(CT (`,m)) = 0

∀m ≥ T, ∀` with U(`) ⊆ u & ‖`‖1 ≤ m− T}.
Smaller values of Tu correspond to better nets. By convention T∅ = 0. It follows
from the definition that 0 = T∅ ≤ Tv ≤ Tu for v ⊆ u, and Tu provides an upper
bound on def(CT (`,m)) for all m:

(23) max(0, ‖`‖1 −m) ≤ def(CT (`,m)) ≤ max(0, ‖`‖1 −m + TU(`)).

6.1. Walsh Functions and Haar Wavelets. Just as trigonometric polynomials
are well-suited to the analysis of lattice rules, Walsh functions in base b are well-
suited to the analysis of digital net rules. For any ν ∈ Zs

+, the set of non-negative
s-dimensional integer vectors, let νj` denote the `th b-ary digit of the jth component
of ν represented in base b. Moreover, for any x ∈ [0, 1)s, let x·j` denote the `th
b-ary digit of the jth component of x. Multivariate Walsh functions are defined as

ψWa,ν(x) := exp


2πı

b

s,∞∑

j,`=1

νj`x·j`


 , x ∈ [0, 1)s, ν ∈ Zs

+.

Before analyzing the error of scrambled digital net rules applied to Walsh func-
tions it is helpful to define some further notation. For any ν ∈ Z+ define the
function

lg(ν) :=

{
blogb(ν)c+ 1 for ν > 0
0 for ν = 0,

where b·c denotes the largest integer part of a real number or vector, i.e., the base
b representation of ν has lg(ν) digits if one ignores leading zeros. For any set
u ⊆ {1, . . . , s} let 1u denote the vector whose jth component is 1 for j ∈ u and
0 otherwise. Let δ(x,y, `) = 1 if the first `j digits of xj and yj are the same for
all j = 1, . . . , s and let δ(x,y, `) = 0 otherwise. Let digit(ν, `) denote the ‖`‖1-
vector which is formed by the first ` digits of ν, more precisely, let digit(ν, `) =
(ν1,1, . . . , ν1,`1 , . . . , νs,1, . . . , νs,`s)

T . Let C̃(`,m) be the analog of C(`,m) formed
from the scrambled generator matrices, C̃j := LjCj , and let e(`) denote the analog
of C(`) formed from the digital shifts ej . The following lemma provides bounds on
the errors of deterministic and randomly scrambled digital sequence rules applied
to Walsh functions.

Lemma 9. For scrambled net rules applied to Walsh functions one has the following
absolute errors for m = 0, 1, . . .:

(24a) |err(ψWa,ν ,net, bm)|

=

{
1 for ν 6= 0 and digit(ν, lg(ν)) ∈ null(C̃T (lg(ν),m)),
0 for ν = 0 or digit(ν, lg(ν)) /∈ null(C̃T (lg(ν),m)).
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Walsh functions are integrated exactly if m ≥ ‖lg(ν)‖1 + TU(ν). Moreover, the root
mean square errors for randomly scrambled net rules applied to Walsh functions are

rmse(ψWa,ν , ra-net, bm) ≤ 3|U(ν)|/2b(TU(ν)−m)/2,(24b)

rmse(ψWa,ν , ra-net, bm) = 0 for m ≥ ‖lg(ν)‖1 + TU(ν).(24c)

Finally, for randomly scrambled net rules and Walsh functions condition (11) is
satisfied.

Proof. The integrals of Walsh functions vanish except in the case of ν = 0, i.e.,
I(ψWa,ν) = δν,0. Moreover, the digital net rule with n = bm points applied to a
Walsh function is

Qn(ψWa,ν ; net)

=
1

bm

bm−1∑

i=0

exp
{

2πı

b
digit(ν, lg(ν))T

[
C̃(lg(ν),m) digit(i,m) + e(lg(ν))

]}

=

{
0 for digit(ν, lg(ν))T C̃(lg(ν),m) 6= 0 mod b,

exp
{

2πı
b digit(ν, lg(ν))T e(lg(ν))

}
otherwise.

This implies (24a). If m ≥ ‖lg(ν)‖1 + TU(ν) then it follows from the definition in
(22) that def(C̃T (lg(ν),m)) = 0, and so |err(ψWa,ν , net, bm)| = 0. This completes
the proof of the sentence after (24a) and statement (24c).

For randomly scrambled net rules it can be shown that

ψWa,ν(xi)ψ̄Wa,λ(xk) = exp
{

2πı

b

[
digit(ν, lg(ν))T C̃(lg(ν),m) digit(i,m)

− digit(λ, lg(λ))T C̃(lg(λ),m) digit(k, m)

+digit(ν, lg(ν))T e(lg(ν))− digit(λ, lg(λ))T e(lg(λ))
]}

.

If ν 6= λ, then the expectation of the factor corresponding to the digital shift
vanishes:

E

[
exp

{
2πı

b

[
digit(ν, lg(ν))T e(lg(ν))− digit(λ, lg(λ))T e(lg(λ))

]}]
= 0,

proving (11). If ν = λ, then following a line of argument similar to that in [18,
Theorem 1] yields

E
[
ψWa,ν(xi)ψ̄Wa,ν(xk)

]
= E


exp





2πı

b

s,∞∑

j,`=1

νjl(xij` − xkj`)








=
∏

j∈U(ν)

bδ(xij , xkj , lg(νj))− δ(xij , xkj , lg(νj)− 1)
b− 1

= δ(xi,xk, lg(ν)− 1U(ν))
∏

j∈U(ν)

bδ(xij , xkj , lg(νj))− 1
b− 1

=
∑

v⊆U(ν)

(−1)|v|b|U(ν)|−|v|δ(xi,xk, lg(ν)− 1v)
(b− 1)U(ν)

.(25)
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The sum of δ(xi,xk, `) over k depends on the defect of C(`,m) as follows:

1
bm

bm−1∑

k=0

δ(xi,xk, `) = bdef(C(`,m)) ∀i = 0, . . . , bm − 1.

Because C(`,m) and CT (`, m) have the same column rank, their defects are related
by

(26) max(0, m− ‖`‖1) ≤ def(C(`,m)) = m− ‖`‖1 + def(CT (`,m))

≤ max(m− ‖`‖1 , TU(`)),

applying (23). Then (25) implies that the expected value of the square absolute
value of the quadrature rule for a Walsh function is

(27) E[Q(ψWa,ν ; net)Q(ψ̄Wa,ν ; net)]

=
(

b

b− 1

)|U(ν)| ∑

v⊆U(ν)

(−1)|v|
[
bdef(C(lg(ν)−1v,m))−|v|−m − b−‖lg(ν)‖1

]
,

where the second term in the sum facilitates the derivation, but makes no contri-
bution because

∑
v⊆U(ν)(−1)|v| = 0.

By (26) it follows that the term contained in the square brackets in (27) is non-
negative. For all sets v ⊆ U(ν) with m − ‖lg(ν)‖1 + |v| ≥ TU(ν) it follows from
(26) that def(C(lg(ν) − 1v,m)) = m − ‖lg(ν)‖1 + |v|, so the term in the square
brackets in (27) vanishes. For all sets v ⊆ U(ν) with m− ‖lg(ν)‖1 + |v| < TU(ν) it
follows from (26) that def(C((lg(ν)−1v,m)) ≤ TU(ν). Together with the binomial
theorem this implies that

E[Q(ψWa,ν ; net)Q(ψ̄Wa,ν ; net)] ≤
(

b

b− 1

)|U(ν)| ∑

v⊆U(ν)

bTU(lg(ν)−1v)−|v|−m

≤
(

b + 1
b− 1

)|U(ν)|
bTU(ν)−m ≤ 3|U(ν)|bTU(ν)−m,

since b ≥ 2. This establishes (24b). ¤

As an alternative to Walsh functions, Haar wavelets are another set of basis
functions used to analyze digital net rules. Like Walsh functions they are piecewise
constant, but whereas Walsh functions have their support as the whole unit cube,
Haar wavelets have their support as a box of volume b|U(ν)|−‖lg(ν)‖1 . Multivari-
ate Haar wavelets may be defined as orthonormal linear combinations of Walsh
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functions, as follows:

ψHa,ν(x)

:=
1

b(‖lg(ν)‖1−|U(ν)|)/2

∑

λ:lg(λ)=lg(ν)
λj lg(λj)=νj lg(νj)

exp


−2πı

b

s,∞∑

j,`=1

λj`νj`


ψWa,λ(x)(28)

=
1

b(‖lg(ν)‖1−|U(ν)|)/2

∑

λ:lg(λ)=lg(ν)
λj lg(λj)=νj lg(νj)

exp


2πı

b

s,∞∑

j,`=1

λj`(x·j` − νj`)




= b(‖lg(ν)‖1−|U(ν)|)/2 exp


2πı

b

s∑

j=1

νj lg(νj)x·j lg(νj)


 δ(x, zν , lg(ν)− 1U(ν)),(29)

where zν := (zν1 , . . . , zνs)
T is defined by νj = νj lg(νj) + zνj b

lg(ν)−1, i.e., zν ∈ [0, 1)s

is comprised of all but the most significant digits of ν.

Lemma 10. For scrambled net rules applied to Haar wavelets one has the following
absolute errors for n = bm, m = 0, 1, . . .:

(30a) |err(ψHa,ν ,net, bm)| ≤ b(‖lg(ν)‖1−|U(ν)|)/2+TU(ν)−m

for m < ‖lg(ν)‖1 − |U(ν)|+ TU(ν),

(30b) |err(ψHa,ν ,net, bm)| ≤ b(|U(ν)|−‖lg(ν)‖1)/2

for ‖lg(ν)‖1 − |U(ν)|+ TU(ν) ≤ m < ‖lg(ν)‖1 + TU(ν),

(30c) |err(ψHa,ν ,net, bm)| = 0 for m ≥ ‖lg(ν)‖1 + TU(ν).

Moreover, the root mean square errors for randomly scrambled net rules applied to
Haar wavelets are

rmse(ψHa,ν , ra-net, bm) ≤ 3|U(ν)|/2b(TU(ν)−m)/2,(30d)

rmse(ψHa,ν , ra-net, bm) = 0 for m ≥ ‖lg(ν)‖1 + TU(ν).(30e)

Finally, for randomly scrambled net rules and Haar wavelets condition (11) is sat-
isfied.

Proof. For small m the worst that may happen is that a proportion of bdef(C(lg(ν)−1U(ν),m))−m

of the sample points fall inside the support of the wavelet. This implies that the
worst possible numerical integration error is this proportion times the magnitude
of the wavelet, i.e.,

err(ψHa,ν , ra-net, bm) ≤ b(‖lg(ν)‖1−U(ν))/2+def(C(lg(ν)−1U(ν),m))−m.

The bound on def(C(`,m)) in (26) derived in the proof of the previous lemma
implies error bounds (30a) and (30b). Haar wavelets are integrated exactly under
the analogous condition as for Walsh functions in Lemma 9, which implies (30c).
Since Haar wavelets are orthonormal transformations of Walsh functions, (30d) and
(30e) follow from Lemma 9. ¤
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6.2. Error Analysis for Scrambled Digital Net Rules. For series of Walsh
functions supx∈[0,1)s |ψWa,ν(x)| = 1 for all x, so it makes sense to define the space
of possible functions for worst-case analysis as

CWa([0, 1)s) := {f :
∑

ν

|F (ν)| < ∞},

analogously to the case of trigonometric polynomials. On the other hand, Haar
wavelets have support that is in general only a subset of the unit cube, in contrast
to trigonometric polynomials and Walsh functions. For a given ` ∈ Zs

+ the Haar
wavelets in the set {ψHa,ν(x) : lg(ν) = `} have the same magnitude and mutually
disjoint support. Therefore, one may define

CHa([0, 1)s) :=

{
f :

∑

`

[
sup

ν:lg(ν)=`

b(‖`‖1−|U(`)|)/2 |F (ν)|
]

< ∞
}

.

For both the deterministic and randomly scrambled net rules applied to mul-
tivariate Walsh or Haar series it is rather tedious to obtain exact formulas for
|err(ψν , net, bm)| and rmse(ψν ,Qn, µ), for all ν. Instead, the upper bounds in
Lemmas 9–10 are used with Corollary 4 to obtain norms that are probably slightly
stronger than the one defined in Theorem 1. Recall that N = {0, 1, b, b2, . . .}, and
note that the upper bound on the number of points needed to integrate ψx,ν exactly
for x = Wa, Ha is N(ν) = b‖lg(ν)‖1+TU(ν) for ν 6= 0 and N(0) = 0. It is convenient
to choose desired convergence rate as a simple power of n, g(n, s) = g(n, s; α, 0) =
min(1, n−α) for both the worst-case and randomized settings, avoiding the need for
log n terms as is the case for lattice rules.

The weights ω̃wo(ν, n, s) and ω̃ra(ν, n, s) differ from each other for digital net
rules, as opposed to lattice rules. Moreover, in the worst-case setting they differ for
Walsh functions and Haar wavelets. Specifically, they are

ω̃wo,Wa(ν, bm, s) = bαm,

ω̃wo,Ha(ν, bm, s) = b(|U(ν)|−‖lg(ν)‖1)/2+αm+max(0,‖lg(ν)‖1−|U(ν)|+TU(ν)−m),

ω̃ra,x(ν, bm, s) = 3|U(ν)|/2bTU(ν)/2+m(α−1/2), x = Wa, Ha.

It follows that

‖f‖net,Wa,1 := sup
m=0,1,...

∑

ν:‖lg(ν)‖1+TU(ν)=m

bα[TU(ν)+‖lg(ν)‖1] |F (ν)| ,

‖f‖net,Wa,2 :=
∑

ν

bα[TU(ν)+‖lg(ν)‖1] |F (ν)| ,

‖f‖net,Ha,1 := sup
m=0,1,...

∑

ν:‖lg(ν)‖1+TU(ν)=m

bαTU(ν)+|U(ν)|/2+(α−1/2)‖lg(ν)‖1 |F (ν)| ,

‖f‖net,Ha,2 :=
∑

ν

bαTU(ν)+|U(ν)|/2+(α−1/2)‖lg(ν)‖1 |F (ν)| ,

‖f‖2ra-net,x,1 := sup
m=0,1,...

∑

ν:‖lg(ν)‖1+TU(ν)=m
ν 6=0

3|U(ν)|b2αTU(ν)+(2α−1)‖lg(ν)‖1 |F (ν)|2 ,

‖f‖2ra-net,x,2 :=
∑

ν

3|U(ν)|b2αTU(ν)+(2α−1)‖lg(ν)‖1 |F (ν)|2

for x = Wa, Ha. To ensure that the norms for the randomized setting only admit
square integrable functions it is assumed that α ≥ 1/2.
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The quality factor for nets, Tu, plays an important role in the definition of
these norms. The values of T{1,...,s} increase as s increases. From [14] one has the
following upper bounds on bTu :

2Tu ≤
∏

j∈u

[CSobj log2(j + 1) log2(log2(j + 3))] for Sobol’ sequences (b = 2),

bTu ≤
∏

j∈u

[2j logb(j + b) log2(log2(j + 3))] for Niederreiter sequences.

Unfortunately, even for |u| fixed, Tu may become large if max(u) becomes large.

7. Some examples

This section provides a couple of examples to illustrate how the algorithm-driven
approach can explain certain behaviours of the integration error not explained using
traditional error analysis. For simplicity we consider univariate functions defined
on [0, 1].

Consider the three periodic functions plotted in Figure 3:

f1(x) := 3− |2x− 1| , f2(x) = 1 + [4x(1− x)]2, f3(x) = [4x(1− x)]4.

To integrate these functions one might use the rectangle rule, Qrect,n(f) := [f(0) +
f(1/n) + · · ·+ f(1− 1/n)]/n, which is the one-dimensional special case of a lattice
rule. Let F (r)

per denote the space of periodic functions with r − 1 absolutely con-
tinuous, periodic derivatives and absolutely integrable rth derivatives. Define the
accompanying norm as ‖f‖F(r)

per
:= |f(0)| + ∫ 1

0

∣∣f (r)(x)
∣∣ dx. The worst-case error

of this rectangle rule is ewo(‖·‖F(r)
per

,Qrect,n) ³ n−r. Because fr ∈ F (2r−1)
per \ F (2r)

per

for r = 1, 2, 3, one might expect that the rectangle rule has the fastest convergence
rate for f3 followed by f2, and then f1. While it is true that the convergence rate
for f3 is faster than that for f2, the convergence rate for f1 is the fastest, as seen
in Figure 3 for n = 0, 1, 2, 4, . . ..

The reason for this nonintuitive behaviour is that f1 has nonzero trigonometric
Fourier coefficients, F1(ν), for only zero and odd ν, and the rectangle rule with
an even number of points integrates these odd wavenumber Fourier terms exactly.
Specifically, N(0) = 0 and N(ν) = 1 for odd ν, so g(N(ν); α, δ) = 1 for all ν with
F1(ν) 6= 0. Thus, the norms ‖f1‖ra-lat,tr,k and ‖f1‖lat,tr,k for k = 1, 2 are uniformly
bounded in α. This yields a convergence rate g(n; α, δ) for arbitrarily large α. On
the other hand, f2 and f3 have nonzero Fourier coefficients for all ν and so, their
convergence rates are algebraic in n−1.

Consider three more functions, that are plotted in Figure 4:

f4(x) := 2 +
4x 1[0,3/4)(x)

3
+ 2(1− x) 1[3/4,1](x),

f5(x) := 1 +
3x 1[0,2/3)(x)

2
+

3(1− x) 1[2/3,1](x)
2

,

f6(x) :=
3x 1[0,2/3)(x)

2
+ 3(1− x) 1[2/3,1](x).

The first two of these are discontinuous and the third one is continuous. Consider
now the sample space of stratified sampling numerical integration rules, Qstrat,n(f),
whose elements are Qstrat,n(f) := [f(0 + ∆0) + f(1/n + ∆1) + · · · + f(1 − 1/n +
∆n−1)]/n, where the ∆i are independent and identically distributed (i.i.d.) uniform
random variables on [0, 1/n). This is a special case of a randomly scrambled digital
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Figure 3. Plots of the functions f1 (solid), f2 (dashed), and f3

(dot-dashed) and the absolute integration errors using a rectangle
rule.

net rule. Let F (r) denote the space of integrands with r − 1 absolutely continuous
derivatives and square integrable rth derivative with ‖f‖2F(r) := |f(0)|2 + · · · +∣∣f (r−1)(0)

∣∣2 +
∫ 1

0

∣∣f (r)(x)
∣∣2 dx. Again the convergence rate of the integration error

improves as the smoothness increases, era(‖·‖F(r) ,Qstrat,n) ³ n−r−1/2 for r = 0, 1.
Because f6 ∈ F (1), but f5 /∈ F (1), it is no suprise that f5 is integrated much worse
than f6, as seen in Figure 4. However, f4 /∈ F (1), but the convergence rates for f4

and f6 are the same.
For base 2 net rules the Walsh and Haar bases ψν(x) may have discontinuities

at points where x is a multiple of 2− lg(ν). Discontinuities of the integrands at such
points do not affect the decay rate of the series coefficients and consequently do not
influence the performance of the net integration rules. However, discontinuities at
other points do affect the decay rate of the Haar or Walsh series coefficients and the
performance of the net integration rule. Since the discontinuity of f4 is at x = 3/4
it does not influence the convergence rate of the net integration rule. However,
since the discontinuity of f5 is at x = 2/3 it does influence the convergence rate of
the net integration rule.

8. Discussion

The algorithm-driven approach proposed here requires finding an appropriate
basis to match the numerical integration rule. There must be a simple formula for
err(ψν , Qn) for deterministic rules and E{[err(ψν ,Qn, µ)]2} for random rules, and
condition (11) must be satisfied. Several examples of matching rules and bases have
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Figure 4. Plots of the functions f4 (solid), f5 (dashed), and f6

(dot-dashed) and the root mean square integration errors using a
stratified sampling rule.

been given here. However, it is not yet known what basis is appropriate for, say,
random-start Halton sequences [21].

In spite of the effort involved, the algorithm-driven approach does have a number
of benefits. It gives a more complete picture than the usual norm-based approach
of under what conditions an algorithm performs well and under what conditions it
does not. Integrands for which the numerical integration rule works well that are
missed by the norm-driven approach are often picked up by the algorithm-driven
approach.

One may safely assume that the weights ωra(ν, n, s) in Theorem 1 for the ran-
domized case are no larger than the corresponding weights ωwo(ν, n, s) for the worst
case. For lattice rules applied to trigonometric Fourier series they are in fact the
same. Even in this situation the norm for the randomized case is weaker because
it is an L2-norm of the series coefficients rather than an L1-norm for the worst
case. However, for digital net rules applied to Walsh function and Haar wavelet
series the randomized case norm is even weaker because the weights ωra(ν, n, s) are
asymptotically smaller than ωwo(ν, n, s) as n →∞.

There are several problems that deserve further study. To understand what
is meant by the norms defined in the algorithm-driven approach one may wish to
relate the series coefficients to other properties of the integrand, such as smoothness.
The analysis in this article describes the largest spaces of integrands for which a
numerical integration rule yields a specified convergence rate, however it does not
address the question of whether the algorithm is optimal for these spaces. For
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the case of Haar wavelets integrated by net rules the approach of [6] might help.
Owen and his collaborators have introduced the concept of effective dimension
[1, 19]. It would be interesting to understand what the typical effective dimension
for integrands in the spaces defined by the algorithm-driven approach is.
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