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Abstract. In this article, we numerically study the regularity loss of the solu-

tions of non-parametric minimal surfaces with non-zero boundary conditions.

Parts of the boundaries have non-positive mean curvature. As expected from

theoretical results in such geometry, we find that the solutions may or may

not satisfy the boundary conditions depending upon the data. Firstly, we

validate the numerical study on the astroid and discuss the various kinds of

non-regularity characterizations. We provide an algorithm to test the regular-

ity loss using the numerical results. Secondly, we give a numerical estimate of

the threshold value of the boundary condition beyond which no regular solution

exists. More theoretical results are also given on the approximation by the reg-

ularized solution of the non-regularized one. The regularized solution exhibits

a boundary layer. Finally, the study is applied to the catenoid for which the

exact threshold value is known. The exact value and the computed one are in

good agreement.

Key Words. Boundary layers, minimal surfaces, non-regular solutions, singu-

lar perturbations.

1. Introduction

1.1. The context. Minimal surfaces have received attention at least since the
publication of L. Euler’s book [6] in 1744. In this book, L. Euler discussed one
hundred problems, one of them being to find surfaces of revolution having a critical
area. Later, J.L. Lagrange made the connection between vanishing mean curvature
and the first variation of area [13]. From experiments, J.A.F. Plateau noticed that
the singular set Γ of a soap bubble cluster is a piecewise smooth curve with vertices,
satisfying two laws [14]. These laws were proved only in 1976 with the theory of
varifolds by F. Almgren [1] and the regularity theorem of J. Taylor [19].

Almost two centuries and a half later, this topic is still active. In the Summer of
2001, the Mathematical Sciences Research Institute (MSRI) hosted the Clay Math-
ematics Institute Summer School on the Global Theory of Minimal Surfaces. The
nature of the meeting made it possible to give a panoramic view of this subject.
The subjects covered include minimal and constant-mean-curvature submanifolds,
geometric measure theory and the double-bubble conjecture, Lagrangian geome-
try, numerical simulation of geometric phenomena, applications of mean curvature
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to general relativity and Riemannian geometry, the isoperimetric problem, the ge-
ometry of fully nonlinear elliptic equations and applications to the topology of
three-dimensional manifolds. An edited book was published in 2005 [10].

The introduction of computer graphics enabled many numerical studies (see for
instance [15]). Some of these studies made possible the proof of theoretical results
such as the one of Hoffman and Meeks [11].

The problem of non-parametric minimal surfaces consists in finding a graph
function u solution of the following minimization functional :

(1) min
u|Γ=Φ

∫

Ω

√
1 + |∇u|2 dx,

for u defined inside Ω, Γ being the boundary of Ω on which Φ is a given L∞ (or
smoother) function.

We recall here that the Euler-Lagrange equation corresponding to (1) and the
associated boundary condition read as follows :

div
( ∇u√

1 + |∇u|2
)

= 0, in Ω,(2)

u = Φ, on Γ.(3)

Many works were concerned with the existence of a strong solution for (1) in
the case of boundary of non-negative curvature, such as [5], and many others.
Since the 1970s, several papers proved the existence of weak solutions of (1) called
“generalized solutions” satisfying either u|Γ′ = Φ or ∂u/∂n(Γ′) = ∞, for Γ′ ⊂ Γ :
see e.g. [3] and [20] and see also [12] for relevant a priori estimates in a more general
context. So the generalized solution develops a ”vertical branch” and its normal
derivative becomes infinite near the boundary in the region where u = Φ is not
satisfied. Of course here the minimal surface is non-parametric. These results were
obtained by two different arguments. On the one hand, Bombieri, De Giorgi and
Miranda [3] and Giusti [8] obtained a generalized solution by a purely geometric
argument. On the other hand, Temam used in [20] a duality argument and defined
also a generalized solution as the limit of sequences of some regularized solutions
in the following manner :

(4) min
uε|Γ=Φ

∫

Ω

(ε

2
|∇uε| 2 +

√
1 + |∇uε| 2

)
dx,

i.e.,

−ε∆uε − div
( ∇uε

√
1 + |∇uε|2

)
= 0, in Ω,(5)

uε = Φ, on Γ.(6)

Here ε is a small non-negative parameter which may tend to zero. The term
−ε∆uε in (5) constitutes an elliptic regularization making the functional in (4)
strictly convex and the corresponding Euler equation (5) uniformly elliptic. So,
we have by classical theorems the existence and uniqueness of a regular solution
(C2(ω) ∀ ω ⊂⊂ Ω 1). It is obvious that this fails to be true up to the boundary

1ω ⊂⊂ Ω means ω ⊂ ω ⊂ Ω as Ω is a bounded open set.
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since our data Φ is only L∞(Ω).

We note that the regularized problem has no physical meaning. But it defines
a sequence of solutions converging locally, when ε → 0, to the generalized mini-
mal surface solution as proved in [20]. As a consequence, the regularized solution
develops a “boundary layer” near the parts of the boundary where the general-
ized solution u does not satisfy the boundary condition. In this article, we call
“boundary layer” the part of the domain in which the gradient of the solution is
very large at least in one direction and depends on a positive and small parameter ε.

1.2. Motivation. In the present article, we mainly study a minimal surface based
on a domain Ω which is the interior of an astroid (see Figure (1.a)). Indeed, it is
the simplest domain for which the whole boundary has negative curvature. The
boundary where the product x y is positive (respectively negative) is denoted Γ1

(respectively Γ2). See Figure (1.a). Hereafter we assume Φ = K1Γ1 −K1Γ2 ∈ L∞.
Thus, the regularized minimal surface equation and the boundary conditions are
given by :

(7) min
u|Γ1 = +K
u|Γ2 = −K

∫

Ω

(ε

2
|∇u| 2 +

√
1 + |∇u| 2

)
dx,

and the Euler-Lagrange equation is

−ε∆uε − div
( ∇uε

√
1 + |∇uε|2

)
= 0, in Ω,(8)

uε = K on Γ1, uε = −K, on Γ2.(9)

Formally, by taking ε = 0 in (7), we obtain again the corresponding nonpara-
metric minimal surface problem which reads :

(10) min
u|Γ1 = +K
u|Γ2 = −K

∫

Ω

√
1 + |∇u|2 dx.

We note that we have the existence of a generalized solution for (10) thanks to
[20]. A solution may be seen in Figure (1b). It looks like a saddle. We call “strong
solution” a solution minimizing the functional in (10) and satisfying the boundary
condition.

It is interesting to find where the generalized solution detaches from the desired
boundary condition and how the domain’s geometry plays a fundamental role in
this issue. For this purpose, Serrin [16] proved that if the domain’s boundary Γ is
not of non-negative mean curvature, the generalized solution may be non-regular
(u 6= Φ at the boundary) even if Φ is C∞. As the edge of the domain ∂Ω is not of
non-negative mean curvature, we should not expect the existence of strong solution
for any boundary condition K. We suspect therefore that beyond a critical value
K0, the surface is non-regular. Non-regular means here that either the normal de-
rivative of the generalized solution close to the boundary is infinite or the boundary
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condition is not satisfied. The two are equivalent.

In this article, we try to exhibit this regularity loss for the minimal surface so-
lution on the astroid since the mean curvature of its boundary is negative almost
everywhere. Such behavior may be studied numerically at any point of the bound-
ary but it is easier to work at points of symmetry such as a corner or the intersection
of ∂Ω and the line x = y, namely I(

√
2,
√

2) (see Figure (1)). In view of the dis-
continuity of the boundary conditions at the corners, the behavior close to these
points is not studied. As a result, we are going to numerically search whether the
solution is regular or not at I and find the value of the threshold K0 above which
no strong solution for (10) may exist. Moreover we will provide a generic process
to characterize the regularity loss. Another aim of this work is to numerically give
a size estimate of this boundary layer versus ε.
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Figure 1. The meshed astroid and a typical solution saddle-like
(K = 20)

After the introduction, the numerical study is given in Section 2. In this Sec-
tion, we start by presenting our method and validating it. Then, we describe the
approaches that were followed even though most of them were not conclusive. We
also provide some numerical and theoretical insights into the behavior of the regu-
larized solution when ε → 0 (the boundary layer behavior). In Section 3, we apply
the preceding method to the study of the catenoid, and we conclude in Section 4.

2. Numerical approach

The goal of this study is to determine whether there exists a non-regular solution
to the problem (10) and, should it be the case, to find a numerical estimate of
K0 such that for K ≥ K0 the generalized solution does not satisfy the boundary
conditions. We expect a non-regular solution of (10) and a boundary layer for the
regularized problem (4) when ε is small.

Four possible ideas can be employed for a numerical characterization of K0 :
• for any K ≥ K0, the extrapolated value of the solution uK inside the

domain to the point I(
√

2,
√

2) is K0 ;
• for any K, K ′ ≥ K0, the difference between uK and uK′ vanishes inside Ω ;
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• the slope of the solution gets infinite for K ≥ K0 ;
• for K ≥ K0, the numerical resolution does not converge when the mesh

gets finer and finer as the solution is no more regular than L2.
Notice that the two first ideas rely on the characterization of non-regularity by

u|Γ 6= Φ and the two last on ∂u/∂n|Γ = ∞. We explain the numerical method
hereafter.

2.1. Numerical method. The numerical method involves three classical steps :
constructing the mesh, evaluating the cost function and the (equality) constraints
and, mainly, optimizing.

2.1.1. The mesh. The meshes were generated by emc2 [7] which is included in
MODULEF [2]. To speed up the evaluation of the cost function, we meshed only one
fourth of the domain, relying on the symmetry for the other quadrangles. We used a
spline representation of the astroid’s boundary divided into 160 pieces. This spline
representation enables angles at the corner of 7E-3 radian. Then emc2 propagates
the mesh inside the astroid.

The angle of the node that coincides with the corner is 0.1 radian for mesh 1
(see Figure (2)), 0.07 radian for mesh 2 and 0.05 radian for mesh 3. As we are in-
terested in the point I(

√
2,
√

2), and not in the corner, we can assume (this will be
partially tested below) that the discretization close to the corner will not product
inaccuracies.
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Figure 2. One fourth of the domain (mesh 1)

We refined the border close to the point I exponentially. The main data of the
meshes are summarized in Table 1.

mesh summits triangles number of ratio of ∆x close
(nbs) (nbt) points on refinement to I

Ω
⋂

(x = y) along x = y
1 541 980 20 1.09 3.9E-2
2 2391 4560 50 1.04 1.3E-2
3 4243 8184 80 1.03 6.2E-3

Table 1. Main data of the meshes
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2.1.2. Numerical evaluation of the functional and constraints. We used a
P1 finite element discretization to compute the non-linear cost function. It has been
proved that such a discretization does not converge when minimizing a functional
under the constraint of convexity of the function u [4]. This is not our case. It is
then a standard result that such a discretization converges if u is H1 (and so ∇u is
L2). On the contrary, for a non-classical solution which is of interest in this article
(say L2 and not H1 nor W 1,1), the discretization might not converge.

Although the functional is non-linear, it is simple as it depends only on the gra-
dient which is constant in every triangle for P1 finite elements. In order to compute
it exactly and efficiently, we created two more arrays that stored the derivatives
of the local basis functions (the size was 3×nbt where nbt is the number of triangles).

The constraints were evaluated thanks to an array of integers associated to every
summit on the boundary. Three different choices of boundary conditions could be
settled at the corner (either +K, 0 or −K). We wondered whether the computed
solution could depend on this choice.

2.1.3. Numerical optimization. First, we used MATLAB and fmincon from
the toolbox optim. As one computation needed about 4 days on mesh 2, we gave
up after the validation step.

Secondly, we used DONLP2 [17] [18] that is a free code written either in F77,
F90 or C. It is available on the internet. It uses a slightly modified version of the
Pantoja-Mayne update for the Hessian of the Lagrangian, variable dual scaling and
an improved Armijo-type stepsize algorithm. The CPU time was much less (say a
factor 30-40) than MATLAB’s routine.

2.2. Validation. Various assumptions have to be tested :
• Does the computed solution depend on the prescribed value at the corners

(0, +K, −K) ?
• Does the computed solution depend on the initial guess ?
• Can we consider mesh 2 or mesh 3 as acceptable ?

2.2.1. Dependence on the corner value. We solved (10) on mesh 2 for K = 3
and various prescribed values at the corner (±4,±4). The results are in Table 2.
All the expected measures of the singularity close to I(

√
2,
√

2) gave very similar
results. One may notice that the slope along x = y close to I, which will interest
us later, depends very weakly (' 1%) on the prescribed value at the corner.

prescribed value extrapolated (cubic)-K extrapolated (spline)-K slope close to I

0 6.4E-3 1.3E-2 12.79

K 6.3E-3 1.29E-2 12.65

−K 6.5E-3 1.34E-2 12.92

Table 2. Dependence on the corner value

Moreover the differences of the computed solutions are small. If U0 is the solution
computed with a zero prescribed value at the corner, UK with value K and U−K

with value −K, then ‖ U0 − UK ‖L2(Ω)= 1E − 3, ‖ U0 − U−K ‖L2(Ω)= 1E − 3,
and ‖ U0 ‖L2(Ω)= 5.5. Finally, the difference U0 −UK is very localized around the
corner. For the sequel we use the zero prescribed value as it is more meaningful.
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2.2.2. Dependence on the initial guess. Using zero as the initial guess, MAT-
LAB could compute a solution U10 for K = 10. Strongly, using this just computed
U10 as an initial guess to find another U ′

10 took as long as computing U10. The
normal gradient (slope) close to I is 76.56 for U10 while it is 76.58 for U ′

10. The L2

difference of the two solutions is 9.E − 07.
For donlp2, the code did not even start, as the gradient is sufficiently small in

all the directions.

2.2.3. Dependence on the mesh. In order to prove that our best solution is
also a good one, we computed the L2 norm of the difference of a solution on mesh
2 denoted by U2

10 and a solution on mesh 3 U3
10 for the same K = 10 and ε = 0.

The difference is ‖ U2
10 − U3

10 ‖L2(Ω)= 0.06 and the L2 norm of U2
10 is 20.7.

We may conclude that results on mesh 3 can be considered as good and even
results on mesh 2 are reasonable. We have reached convergence.

2.3. Numerical results. Our aim is to find a good numerical characterization
of the regularity loss. Theoretical results propose two ideas : either u|Γ 6= Φ or
∂u
∂n |Γ = +∞ at I. Testing the first idea is done in two differents ways in Sections
2.3.1 and 2.3.2. Testing the second idea is done in Sections 2.3.3 and 2.3.4.

2.3.1. Extrapolation of u. The first approach is to extrapolate the solution from
inside the domain to the point I at the border of the astroid. We expect to find an
extrapolated value equal to K0 for any K ≥ K0. Yet, either Piecewise Cubic Her-
mite Interpolation (PCHI) or piecewise cubic spline interpolation (SPLINE) give
results so close to the identity function that only their difference with K is given
in Figure 3 for mesh 2. Even though a kind of rupture can be guessed on Figure
3 at about K = 3, the difference of the extrapolated value with K has no obvious
link with K0.
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Figure 3. Difference of the extrapolated value (two methods)
with K 7→ K

Three other tools provided by MATLAB to extrapolate gave infinite values, even
for “small” K such as K = 1 (at this stage we have no idea of K0).

One may explain the discrepancy with our expectation by saying that the numer-
ical code provided a too regular solution. It does not seem to catch the (assumed)
non-regularity. Here, the non-regularity is a drawback to measure K0. It will be
an advantage further.
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2.3.2. Difference of UK and UK′ . The second approach is to look at the differ-
ence UK − UK′ as a function of K, K ′. We expect the difference to vanish inside
the domain for K and K ′ greater than K0 as, then γ0(U(K)) = γ0(U(K ′)) and the
functional does not depend on K.

It happens that the difference of the computed UK and UK′ does not vanish at the
boundary (its value is K −K ′). To overcome this error, we evaluate the difference
by removing the triangles which have an edge on the boundary. So we draw a
slightly modified version of |UK+1 − UK |L2/|UK |L2 on Figure 4. This very crude
graph is difficult to interpret as no abrupt change appears. The undrawn figures of
|UK − U40|L2/|U40|L2 and |UK − U40|L2/|U40|L2 provide no more conclusion. This
approach is unreliable.
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Figure 4. Relative difference between UK and UK+1 (L2 norm)

2.3.3. Infinite slope. None of the preceding means using the values of u provided
a result. Although measuring a slope is less accurate (and more sensitive !), we tried
the third approach which consists in drawing the normal gradient (or normal slope)
close to I for mesh 1, mesh 2 and mesh 3 in Figure 5.
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Figure 5. Slopes versus K

No discontinuity (as a signal of infinity) could be detected, but Figure 5 led us
to use the last mean : once K is greater than K0, the exact slope is infinite and so
the discretized one should be mesh dependent. The non-convergence is no more a
drawback : it is useful.
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2.3.4. Slope depending on the mesh for K ≥ K0. The fourth approach uses
the fact that the solution we are interested in is non-regular. So it should not con-
verge as can be partially seen on Figure 5 which gives a rough estimate of the value
of K0 between 2 and 4. Zooming in the range K ∈ [0.1, 3] shows little discrepancy
between the results on the three meshes but the discrepancy increases rather con-
tinuously. Obviously for K > 4, the more we refine, the greater the slope is. The
very clear change between K < 2.5 and K ≥ 4 enables us to guess that there exists
a threshold K0 such that if K > K0 the associated solution to (10) in an astroid is
no more regular close to I.
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Figure 6. More localized computations of the slopes versus K

A zoom leads us to the Figure 6. Yet, the Figure 6 is less precise than making a
linear regression from Figure 5 in the straight parts of the curves (almost exactly
linear). All these lines meet at the same point whose abscissa is 3 ± 0.2 which is
here the numerically estimated value of K0.

We also used a mesh uniformly as fine as mesh 2 close to I (∆x ' 1.E − 2).
Computations not provided here on this mesh gave a normal slope at I close to that
of mesh 2. It proves that only the precision in the vicinity of the point I is crucial.
Moreover, the number of evaluations of the cost function and time of computation
increases from K = 3 but this is not a serious criterion for finding K0.

One may find about the same value (3±0.2) from the difference of the numerically
measured normal slopes between mesh 2 and mesh 3 on Figure 7.

2.4. Dependence of the boundary layer on the regularization. An asymp-
totic analysis enables us to guess the order of the boundary layer from the equation.
First we need some preliminary results.

Introducing a new system of coordinates ; z = (x + y)/
√

2, t = (x− y)/
√

2 and
v(z, t) = uε(x, y), we state the following theorem.

THEOREM 1. The solution v(z, t) of the regularized equation (8)-(9) inside an
astroid has a trace along the axis of symmetry t = 0 that satisfies for all ε :

(11) ε

(
∂2v

∂z2
+

∂2v

∂t2

)
+

∂2v/∂z2

(
1 + (∂v/∂z)2

)3/2
+

∂2v/∂t2
(
1 + (∂v/∂z)2

)1/2
= 0.
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Figure 7. Difference of normal slopes between mesh 2 and mesh 3

Moreover, at the point I(
√

2,
√

2), any such function v(z, t) such that v|Γ1 = +K
and v|Γ2 = −K is odd in t and satisfies :

(12)
∂2v

∂t2
= −1/6

∂v

∂z
.

Sketch of the proof
The proof of (11) is straightforward. Concerning the proof of (12), it suffices to

make an expansion of the function v(z, t), to use the fact that derivatives of v odd
in t are zero along the segment t = 0 by symmetry. The symmetry of the geometry
proves that the solutions are odd in t.

The solution v(z, t) is constant on Γi. An expansion in θ − π/4 of the solution
leads to (12). By pursuing the expansion, one might even prove that

54
∂3v

∂z∂t2
(2, 0) + 9/2

∂2v

∂z2 (2, 0) + 54
∂4v

∂t4
(2, 0)− 30

∂2v

∂t2
(2, 0)− 13/4

∂v

∂z
(2, 0) = 0.

The equation (11) of Theorem 1 also reads :

(13) ε
(∂2v

∂z2
+

∂2v

∂t2

) (
1 + (

∂v

∂z
)2

)3/2

+
∂2v

∂z2
+

∂2v

∂t2

(
1 + (

∂v

∂z
)2

)
= 0, at t = 0.

Let us assume the boundary layer is of size εα. Then if we let z = εαZ
and use this in (12), one sees that the second derivative in t close to I will be
negligible with respect to ∂2v/∂z2 which is of order ε−2α. We thus recover the
well-known result that in a boundary layer the most important variation holds in
the normal direction (z direction in our case). But this negligibility is limited as
∂2v/∂t2 = −(ε−α/6) ∂v/∂Z and ∂2v/∂z2 = ε−2α∂2v/∂Z2.

Then the leading terms in the equation (13) are given by

(14) ε1−5α ∂2v

∂Z2

(
∂v

∂Z

)3

+ ε−2α ∂2v

∂Z2
+ ε−2α ∂2v

∂t2
(
∂v

∂Z
)2 = 0, at t = 0,

sufficiently close to I (to have (12)). One must notice that the equation (12)
makes the second term negligible with respect to the third one. Had we neglected
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all the t derivatives, we would have been led to a different result. Then by homo-
geneity we obtain 1− 5α = −3α or α = 1/2. Of course here we just intend to get
an order of magnitude of the boundary layer and a complete study of this problem
is postponed to a subsequent work.

Now, we are going to numerically check the value found by our simple asymp-
totic analysis. For this purpose, we look for the regularized solution, extract the
slope and draw its variation with the regularizing parameter ε in the left part of
Figure 8. The computations are done on mesh 3 and K is set equal to 20. The
normal slope as a function of ε varies approximatively as ε−α with α ' 0.4 for mesh
3 (astroid). This is compatible with what we expected from our asymptotic analysis.
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Figure 8. Dependence on ε of the normal slope in the astroid
(left-mesh 3) and the catenoid (right-mesh 4)

3. The case of the catenoid

In order to check our numerical method, we need a test case where the exact
value of the threshold is known exactly. This is the case for the (non-parametric)
catenoid where the exact value of K0 is K0 = R1 ln

(
(R2 +

√
R2

2 −R2
1)/R1

)
(see

for instance [9]). For R1 = 1, R2 = 2, it is about 1.32.

In order to find the catenoid, we mesh non-radially a fourth of an annulus and
solve (10) with DONLP2 (cf. [17], [18]). Then we read the normal gradient along
a section radially uniformly meshed with 20, 30, 50 or 100 points. The results are
reported on Figure 9. When one draws the four straight lines for each mesh after
the non-convergence, there is, like in the astroid case, only one intersection. Its
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abscissa is K ' 1.28. This numerical value is sufficiently close to the exact one
(about 1.32) to give confidence. A posteriori, it gives one more argument for the
study in the astroid.
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Figure 9. Normal gradient on the interior circle (catenoid)

Like in the astroid case, one may draw the difference of the computed slopes as
a function of K for the two best meshes. Such a curve is drawn in Figure 10. Like
for the astroid, it drives us to predict a value K ' 1.4 which is reasonable.
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Figure 10. Difference of normal gradient on the interior circle (catenoid)

Let us notice that even if the meshes had increasing number of points along one
section, the rest of the meshes was not equally refined. The data of these four
meshes are summarized in Table 3 in one fourth of the annulus. We also drew in
Figure (8b) the slope of the regularized catenoid as a function of the regularizing
parameter ε. While the theoretical value of the slope is 1/3 (see [9]) we found a
reasonable value of 0.38.

4. Conclusion

Some conclusions may be drawn from the preceding study. One may be convinced
that there exists no regular solution to the problem (10) in an astroid for K above
a certain value K0. An estimate for this threshold in an astroid is K0 = 3 ± 0.2.
The nature of the convergence of the regularized solution to the non-regularized
one can be seen on Figure 8.
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mesh summits triangles number of points on the radial section
mesh 1 985 1848 20
mesh 2 2161 4140 30
mesh 3 2482 4762 50
mesh 4 1650 3132 100

Table 3. Main data of the meshes of the catenoid

All these computations are checked in the case of the catenoid for which the exact
threshold K0 is known, see [9].

Last but not the least, “natural” approaches could be very deficient. Using the
numerical non-convergence as a sign of non-regularity is more powerful than any
extrapolation. This is confirmed by the study on the catenoid and should be taken
into account in future computations on these generalized solutions to the minimal
surface problem. Even outside the field of optimization, any numerical attempt to
characterize the regularity loss could use the numerical process given in this article.
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