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HOW RATES OF Lp-CONVERGENCE CARRY OVER TO
NUMERICAL APPROXIMATIONS OF SOME CONVEX,

NON-SMOOTH FUNCTIONALS OF SDES

HENRI SCHURZ

Abstract. The relation between weak and p-th mean convergence of numer-

ical methods for integration of some convex, non-smooth and path-dependent

functionals of ordinary stochastic differential equations (SDEs) is discussed. In

particular, we answer how rates of p-th mean convergence carry over to rates

of weak convergence for such functionals of SDEs in general. Assertions of

this type are important for the choice of approximation schemes for discounted

price functionals in dynamic asset pricing as met in mathematical finance and

other commonly met functionals such as passage times in engineering.
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1. Introduction

Suppose that the risky asset price (X(t))t≥0 is governed by systems of Itô-type
stochastic differential equations (SDEs) such as noisy ordinary differential equations

(1) dX(t) = a(t, X(t))dt +
m∑

j=1

bj(t,X(t))dWj(t)

driven by Wiener processes or martingale-type noises Wj with respect to the forward
filtration (Ft)t≥0 on the complete probability space (Ω,F ,P). For some overview
on the theory of SDEs, e.g. see Arnold [2], Gard [10], Oksendal [20] or Protter [21].

One obviously knows that the construction of efficient numerical approximations
of path-dependent functionals F of X such as discounted price functionals

(2) Fr,p,X(t, T ) = E

[
exp

(
−

∫ T

t

r(s)ds
)
p((X(s))0≤s≤T )

∣∣∣Ft

]

at exercise times 0 ≤ t ≤ T (T time of maturity) is important in the theory of
dynamic asset pricing. Here (r(t))t≥0 ≥ 0 is interpreted as an interest rate and p as
a Borel-measurable functional on the risky asset price (X(t))t≥0. The simplest and
most cited example in finance is that of constant nonrandom interest rate r (or r
satisfying SDEs such as (1)) and non-differentiable, but convex pricing functional

(3) p((X(s))0≤s≤T ) = (X(T )−K)+
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where K is the striking price, T time of maturity and (.)+ denotes the nonnegative
part of inscribed expression. This occurs in the European call and put options.
Others are given by look-back, Russian and Asian options.

Unfortunately, there are only very few models which allow to compute the price
functionals F analytically. So one has to resort to numerical techniques to approx-
imate F and p in general. Many authors have dealt with methods for numerical
integration of solutions of Itô-type SDEs (1) and its functions F (X(T )) at fixed
terminal time T . For example, see Allen [1], Artemiev and Averina [3], Bouleau
and Lépingle [6], Gard [10], Kloeden, Platen and Schurz [14], Milstein [17], Schurz
[25, 27, 31], Talay [33, 34, 35], Wagner and Platen [36]. Almost all of their meth-
ods are based on the classic Taylor expansion and its Runge-Kutta-type substi-
tutions. However, most of those methods sometimes lack of rigorous statements
on stability, positivity and convergence when complex nonlinearities, convexity or
path-dependence in F are present.

The aim of this paper is to show how one can have a “minimal guarantee” of
convergence and qualitative justification of numerical integration techniques which
are needed to approximate functionals F such as given by (2) or similar ones under
non-smooth assumptions or path-dependence. For this purpose, we shall exploit
known and more easily verifiable facts on Lp-convergence rates. There are several
good reasons why we prefer to use nonstandard implicit, strongly converging meth-
ods as originally introduced in [25, 18], studied in [23, 30] and continued by [19],
[11], or even for quasilinear random PDE by [5]. Their good stability, boundary
and positivity behavior is one of them. We shall justify these methods by studying
how the rates of p-th mean convergence carry over to the rates of weak convergence
along some functionals F despite non-smoothness or path-dependence. In particu-
lar, some new proof techniques come up by using integral representations of convex
functions involving positive Radon measures. Another advantage is seen by the
fact that we do not need to suppose very restrictive assumptions on the smooth-
ness and boundedness of the coefficients of underlying SDEs as commonly met in
the literature on stochastic numerics. This paper exhibits supplemental remarks to
the results presented in Kanagawa and Ogawa [13] and Talay [33, 34]. Moreover,
we do not focus too much on fairly known results which are supposed to be known
to the readership. See Allen [1], Schurz [27], Talay [34] or appendix A for a quick
overview on basic facts related to stochastic-numerical analysis.

The paper is organized as follows. Section 2 discusses how convergence rates
of Lp-approximations carry over to rates of weak approximations while dealing
with functionals involving convex functions. These estimates are only advanta-
geous when not so much smoothness can be imposed on the functional F and its
ingredients r, p and X (in contrast to standard requirements such as p ∈ C∞, p
continuously differentiable or Lipschitz-continuous drift and diffusion coefficients of
r and X). See [17, 34] for approximation rates of very smooth functions F (X(T ))
(actually they only consider functions F (X(T )), not real functionals) or those F
with non-degenerate infinitesimal generator of price process X. Section 3 proves
a general theorem to control the total L1-approximation error of path-dependent
functionals such as F in (2). We also state a theorem on convergence of Hölder-
continuous functionals. Eventually, we list numerous examples of functionals in-
volving convex structures in Section 4. An appendix (Sections A.1 - A.3) resumes
basic facts on numerical methods for Itô SDEs and its concepts convergence to in-
crease the understanding of a more general audience. All in all, this paper presents
just a supplemental discussion on some more complex issues related to numerical
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approximation of not-so-smooth functionals of strong solutions of SDEs with not
necessarily very smooth drift or diffusion coefficients.

2. Approximation of convex functionals of SDEs

An interesting question related to approximation of functionals is how the p-
th mean convergence orders can be carried over to the weak convergence order
during the approximation of functionals of SDE solutions. One important aim is
to approximate the functional

(4) Fρ(t,X) = E [f(t,X(t), inf
ρ≤s≤t

‖X(s)‖, sup
ρ≤s≤t

‖X(s)‖)|Fs]

where f = f(t, x, y, z) is a Borel-measurable function at t, x, y, z and 0 ≤ ρ ≤ t ≤ T
(or even more general functionals). Let us suppose that T is nonrandom throughout
this paper (despite of the fact that some of the herein presented results can be
generalized to finite stopping time τ = T which are uniformly bounded).

2.1. A review on some properties of convex functions. Here we assemble
some of the most useful properties of convex functions. First, recall this definition.

Definition 2.1. A set A ⊂ Rd is called convex iff

∀x, y ∈ A ∀λ ∈ [0, 1] ⇒ λx + (1− λ)y ∈ A .

A function f : R→ R is said to be convex on domain D ⊂ R iff

∀x, y ∈ D ∀λ ∈ [0, 1] ⇒ f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) .

For the statement of some properties, let f : R → R be a convex function on the
open set D ⊂ R. Let x, y ∈ D̄. Then one can verify the following properties.

(i) S(x, y) = S(y, x) =
f(y)− f(x)

y − x
is increasing in y, x fixed

(ii) ∃f ′−(x) = lim
h↑0

f(x + h)− f(x)
h

,∃f ′+(x) = lim
h↓0

f(x + h)− f(x)
h

(iii) f(y) ≥ f(x) + f ′+(x)(y − x) for all x ∈ o

D, y ∈ D̄
(iv) f(x∗) ≤ f(x) + S(x, y)(x∗ − y) for all x∗ ∈ [x, y]
(v) f convex on D ⇐⇒

∀x, y, z ∈ D;x < z < y : S(x, z) ≤ S(x, y) ≤ S(z, y)
(vi) f(z) = sup

x∈D
[f(x) + f ′+(x)(z − x)] for all z ∈ D

(vii) f(z) = sup
x∈D∩Q

[f(x) + f ′+(z)(z − x)] for all z ∈ D

where Q is the set of rational numbers
(viii) f ′+, f ′− are increasing, right-continuous with f ′−(x) ≤ f ′+(x)
(ix) f is differentiable at almost all points of D, except for a countable

set for which f ′+ 6= f ′−
(x) f ∈ C2(D) =⇒ f ′′ ≥ 0 .

A further useful result can be derived while involving second derivatives assumed
to be generalized functions. The proof is found in Revuz and Yor [22]. Let f be
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convex with its second derivative f ′′ in the distributional sense. Note that µ = f ′′

represents a positive Radon measure on R (whole line) for convex functions f .

Theorem 2.1. Assume D is open subset of R and f : R→ R convex on D. Then,
there are constants α0, α1 such that

f(x) =
1
2

∫

D
|x− a| µ(da) + α1x + α0, x ∈ D and(5)

f ′−(x) =
1
2

∫

D
sgn(x− a) µ(da) + α1, x ∈ D(6)

(
=

1
2

(
µ(a ∈ R : a ≤ x)− µ(a ∈ R : a > x)

)
+ α1

)
.

Hence we may exploit this integral representation of convex functions later. How-
ever, this representation is not unique (unique up to affine transformations). If∫ |x− a|µ(da) is finite for all x ∈ R, then one even has a global representation. A
more specific result is the following one which can also be generalized to s–convexity
(see Revuz and Yor [22]).

Theorem 2.2. Let D = [a, b] ⊂ R with a < b. Assume that f(a) = f(b) = 0. Set
G(x, y) = G(y, x) = (x−a)(b−y)

b−a for x ≤ y(x, y ∈ R). Then we have

(7) f(x) = −
∫ b

a

G(x, y)µ(dy)

where µ is the Radon measure generated by second derivative f ′′ of convex f .

2.2. Simple convex functionals. At first consider

(8) F0(t,X) = E f(T, X(t)) = E fT (X(t)) (t ∈ [0, T ], T fixed)

where f : [0, T ] × D −→ R is convex at x with its second space derivative µT =
f ′′T . Let Ynt be a right-continuous approximation as step function, Ft–adapted
numerical approximation of X(t), based on a numerical method generating random
values Yn and nt = sup{n : tn ≤ t}. The expression pX = pX(t, x) denotes the
probability density of process X = (X(t))0≤t≤T at point x ∈ D at time t, with
support supp(pX(t, x)). Let τ∆([0, T ]) denote the collection of Ft-adapted time
instants belonging to time discretization of [0, T ] with maximum step size ∆.

Theorem 2.3. Let I = [0, T ] or I = τ∆([0, T ]). Assume that

(0) D is an open, deterministic subset of R1,
(i) f = f(t, x) is convex at x ∈ D with second (weak) derivativeµT = f ′′T ,
(ii) ∀t ∈ I ∫

supp(pX(t,x))∩D |a|µT (da) < +∞,

(iii) ∃p ≥ 1(p ∈ R) ∀t ∈ I
(
E |X(t)|p

)1/p

+
(
E |Ynt |p

)1/p

≤ K0 < +∞,

(iv) P({ω ∈ Ω : ∀t ∈ IX(t)(ω) ∈ D}) = P({ω ∈ Ω : ∀t ∈ I Ynt(ω) ∈ D}) = 1,

(v) ∃Kp = Kp(T ) > 0∃γ ≥ 0 supt∈I
(
E |X(t)− Ynt |p

)1/p

≤ Kp ·∆γ ,

(vi) supp(pX = pX(t, x)) ∩ D is compact .

Then there is a real constant K = K(p, T ) > 0 such that

(9) ε := sup
t∈I

∣∣∣E f(T, X(t))− E f(T, Ynt)
∣∣∣ ≤ K ·∆γ .
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Proof. First, one verifies that∣∣∣∣E
∫

D
|X(t)− a|µT (da) + E

∫

D
|Ynt − a|µT (da)

∣∣∣∣ < +∞(10)

for all t ∈ [0, T ]. For this purpose consider the estimate∣∣∣∣E
∫

D
|X(t)− a|µT (da)

∣∣∣∣ ≤ E
∫

D
|X(t)|µT (da) +

∫

D
|a|µT (da)

≤ (
E |X(t)|2)

1
2 µT (D) +

∫

D
|a|µT (da)

< +∞
under hypotheses (ii) and (iii). Analogously one arrives at∣∣∣∣E

∫

D
|Ynt

− a|µT (da)
∣∣∣∣ < +∞ .

Therefore, we have the right to apply Fubini’s theorem in the later context. From
Theorem 2.1, recall the existence of integral representation

f(x) =
1
2

∫

D
|x− a| µ(da) + α1x + α0, x ∈ D(11)

of any convex real-valued functions f with the positive Radon measure µ generated
by its second derivative f ′′ (such that µ([a, b]) = f ′(b)− f ′(a) for all a ≤ b), where
α1 and α2 are constants and D is an open subset of R. (Note this representation
is not unique (unique up to affine transformations)! If

∫ |x − a|µ(da) is finite
for all x ∈ R, then one even has a global representation on R.) Now, apply this
representation to fT . One encounters

|E f(T, X(t))− E f(T, Ynt)| = |E [fT (X(t))− fT (Ynt)]|
=

∣∣∣∣E
1
2

∫

D

{
|X(t)− a| − |Ynt − a|

}
µT (da) + α1(T )(X(t)− Ynt)

∣∣∣∣

≤ 1
2

∫

D
E

∣∣|X(t)− a| − |Ynt − a|∣∣µT (da) + |α1(T )|E |X(t)− Ynt |

≤ 1
2

∫

D
E |X(t)− Ynt |µT (da) + |α1(T )|E |X(t)− Ynt |

≤
(
E |X(t)− Ynt |2

) 1
2
(1

2
µT (D) + |α1(T )|

)

≤ K1(
1
2
µT (D) + |α1(T )|) ·∆γ =: K ·∆γ

for all t ∈ [0, T ]. Thereby, γ is the rate of convergence of approximate functionals
towards the exact ones. ¤

Remark 2.1. This result is not so surprising since convex functions are quasi-
linearizable and, on compact sets, even Lipschitz-continuous. However, it possesses
an interesting proof. For any Lipschitz-continuous function f the p-th mean con-
vergence rates γg carry over one to one to weak convergence rates β = γg. With this
result in hand, one can justify using numerical approximation with some guarantee
of a certain least rate of accuracy, depending on regularity of price process X, to
estimate European call and put options.
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2.3. Corollaries for distance and extreme value functionals.

Corollary 2.1. Assume conditions (0)− (v) of Theorem 2.3, that supp(p‖X−c‖ =
p‖X−c‖(t, z)) ∩ D is compact. Consider functionals of the form

F1(t) = f(t, ‖X(t)− c‖), c = const, t ∈ I(12)

where f(t, z) is convex with respect to the space coordinate z ∈ R1. Then, there is
a real constant K = K(p, T ) such that for all t ∈ [0, T ]

ε(t) = |E f(t, ‖X(t)− c‖)− E f(t, ‖Ynt − c‖)| ≤ K ·∆γ .(13)

For concave and some path-dependent functionals, similar results hold. More
general integral representations of functionals with signed measures can be ex-
ploited. The proof of Corollary 2.1 follows straight forward that of Theorem 2.3,
hence it can be omitted here.

Corollary 2.2. Assume conditions (0)− (v) of Theorem 2.3, that supp(psup ‖X‖ =
psup0≤s≤t ‖X(s)‖(t, z)) ∩ D is compact and X(t) − Ynt is a right-continuous sub-
martingale with respect to the natural filtration Ft = σ{W j

s : 0 ≤ s ≤ t, j =
1, 2, ...,m}. Consider functionals of the form

F2(T, t) = fT ( sup
0≤s≤t

‖X(s)‖)(14)

or F3(T, t) = fT ( sup
0≤s≤t

X(s)i)(i ∈ 1, 2, ..., d fixed)(15)

where fT (z) is convex with respect to the space coordinate z ∈ R1. Then, error
estimate (9) is also valid for F2, F3 (with a constant K > 0 which may differ from
that constant above, see (9)).

Proof. For simplicity, consider only the case (14). Analogously to Theorem 2.3, one
arrives at

ε(t) =
∣∣∣∣E

(
fT ( sup

0≤s≤t
‖X(s)‖)− fT ( sup

0≤s≤t
‖Yns‖)

)∣∣∣∣

≤ 1
2

∫

D
E

∣∣∣∣| sup
0≤s≤t

‖X(s)‖ − a| − | sup
0≤s≤t

‖Yns‖ − a|
∣∣∣∣ µ(da)

+|α1(T )|E
∣∣∣∣ sup
0≤s≤t

‖X(s)‖ − sup
0≤s≤t

‖Yns‖
∣∣∣∣

≤ (
1
2
|µT (D)|+ |α1(T )|)E

∣∣∣∣ sup
0≤s≤t

‖X(s)‖ − sup
0≤s≤t

‖Yns‖
∣∣∣∣

(∗)
≤ (

1
2
µT (D) + |α1(T )|)E sup

0≤s≤t
‖X(s)− Yns‖

(∗∗)
≤ 2(

1
2
µT (D) + |α1(T )|) sup

0≤s≤t

(
E ‖X(s)− Yns‖2

) 1
2 ≤ K ·∆γ

where K = K(T ) = 2K1(T )( 1
2µT (D)+|α1(T )|), hence the desired estimate has been

obtained. Note that we have used Lemma 2.1 (see below) to estimate (∗) above, and
Doob’s maximal inequality for right–continuous submartingales to receive (∗∗). ¤
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Lemma 2.1. Let Crc([0, t], D̄) be the set of right–continuous functions mapping
from [0, t] to D̄, D some open domain of Rd, ‖.‖ a vector norm in Rd.
Then we have ∣∣∣∣ sup

0≤s≤t
‖f(s)‖ − sup

0≤s≤t
‖g(s)‖

∣∣∣∣ ≤ sup
0≤s≤t

‖f(s)− g(s)‖

for all f, g ∈ Crc([0, t], D̄).

Proof. First, it is not hard to verify that |‖f‖| := sup0≤s≤t ‖f(s)‖ is a norm on
Crc([0, t],Rd). Then, as an immediate consequence of an application of inverse
triangular inequality of norms, the assertion of Lemma 2.1 follows. ¤

Remark 2.2. If one replaces the assumption (v) of Theorem 2.3 by

(v′) ∃K1 = K1(T ) > 0∃γ > 0 E sup
t∈I

|X(t)− Ynt
| ≤ K1 ·∆γ ,

then analogous results as in Theorem 2.3, Corollaries 2.1 and 2.2 can be proved.
Thus, for path-dependent convex functionals and problems of optimal stochastic
control, clarification of the problem of practical construction of approximations with
a Ft-sub-martingale error process remains to be done. The latter problem seems to
be solvable for the class of X-subharmonic functionals f (but in general it is an
open question).

2.4. Remark on application to asset pricing. Asset- and option price pro-
cesses X for Randomly Exercised Exotic Options (American Look-back
Call Option) may cause the following payoff functionals

Fi(τ, X) = E

[
exp

(
−

∫ T

τ

r(s)ds
) (

sup
τ≤t≤T

|X(i)
t | −Ki(T, τ)

)

+

]

for calls of the i-th component of true observable price-process X (for puts respec-
tively), where Ki(T, τ) represents the strike price at randomly stopped moment
τ which is Fτ -adapted. Now, for example, there is the task of finding the opti-
mal stopping strategy 0 ≤ τ ≤ T < +∞ (i.e. random exercise time τ of the call
option with bounded deterministic maximal terminal time) such that the expected
discounted loss caused by the payoff at time τ is minimal under the amount of infor-
mation Ft at current time t and discounted by Fs-adapted random short interest
rate r(s), i.e. one wishes to approximate the optimal solution of the stochastic
control problem

c(τ∗) := inf
0≤τ≤T

E

[
exp

(
−

∫ T

τ

r(s)ds
) (

sup
τ≤t≤T

|X(i)
t | −Ki(T, τ)

)

+

∣∣∣Fτ

]
,

where c = c(τ∗) = E [Fi(τ∗, X)|Fτ∗ ]. This represents a composition of convex func-
tionals, and to apply our results from before, we have to construct a p-th mean
converging numerical approximation which is right-continuous and which has a Ft-
sub-martingale as its error process X(t) − Ynt . Then the convergence rate will
be β = γg, and numerical approaches reported in the literature on mathemati-
cal finance can be justified by our convergence approach, even for convex, path-
dependent functionals of X which can be non-continuously differentiable at some
countable points. The practical construction is still a problem since the construction
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procedure which guarantees the sub-martingale error process may strongly depend
on the structure of price process X. An alternative to control errors of numerical
approximations of path-dependent functionals such as F is given by Theorem 3.2
in Section 3.

3. Convergence theorems for approximations of Hölder-continuous and
path-dependent functionals F

For Hölder-continuous functionals one encounters the following result. Let D
denote an open, deterministic domain of Rd. Fix d, k ∈ N+. Define

C0
H(KH ,α)(D) :=

{
f : D ⊆ Rd −→ Rk : ‖f(x)− f(y)‖k ≤ KH‖x− y‖α

d

}

with Hölder constant KH and Hölder exponent α ∈ [0, 1]. One arrives at

‖E f(X(t))− E f(Y ∆
nt

)‖k ≤ E ‖f(X(t))− f(Y ∆
nt

)‖k

≤ KH E ‖X(t)− Y ∆
nt
‖α

d

≤ KH(E ‖X(t)− Y ∆
t ‖p

d)
α/p

≤ KH · [K(p, T )]α∆αγ

for f ∈ C0
H(KH ,α)(D) and strongly converging approximation Y with rate γ. Tak-

ing the supremum leads to the following uniform estimation of convergence order
determined by the Hölder exponent α, uniformly with respect to the class of Hölder-
continuous mappings, exhibiting a natural loss of convergence speed with decreasing
Hölder exponent α. Fix real constants α ∈ [0, 1] and KH ≥ 0.

Theorem 3.1. Assume that f ∈ C0
H(KH ,α)(D), processes X = (X(t))0≤t≤T and

Y = (Y ∆
nt

)0≤t≤T are two D-invariant (a.s.), Ft-adapted stochastic processes with
respect to the same stochastic basis (Ω,F , (Ft)0≤t≤T ,P) satisfying

sup
t∈I

(
E ‖X(t)− Y ∆

nt
‖p

d

)1/p

≤ K(p, T )∆γ .

with some γ ∈ R+. Then, there exists an appropriate deterministic constant
Kw(p, T, KH , α) = KH · [K(p, T )]α such that

sup
f∈C0

H(K,α)

sup
t∈I

‖E f(X(t))− E f(Y ∆
nt

)‖k ≤ Kw(p, T,KH , α)∆αγ .

Its proof is fairly standard and follows from the argumentation above, hence
more details can be omitted here.

The following theorem establishes a uniform estimate on the worst-case total
approximation error of discounted functionals F as given initially by (2). This
theorem also motivates some of our previous efforts to report on those results before
by Section 2. Let

1
p

+
1
q

= 1

for p ≥ 1 (for p = 1, set q = ∞). Hence, p = q/(q − 1) and q = p/(p − 1) Recall
that

‖f(t)‖∞ = sup
0≤t≤T

|f(t)|

for any function f : [0, T ] → R. Let B(S) denote the σ-algebra of Borel-sets of
inscribed set S, and µ the Lebesgue measure.
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Theorem 3.2. Assume that there is a rate γ ≥ 0 such that
(i) ∀t ≥ 0 : r(t), r̃(t) ≥ 0 with probability one,
(ii) ∃Kr ∈ Lp([0, T ],B([0, T ]), µ) ∀t ∈ [0, T ] :

E |r(t)− r̃(t)|p ≤ (Kr(t))p∆pγ
max,

(iii) ∃Kp ∈ L∞([0, T ],B([0, T ]), µ) ∀t ∈ [0, T ] :

E |p(X(t))− p(X̃(t))| ≤ Kp(t)∆γ
max,

(iv) ∃Kb ∈ L∞([0, T ],B([0, T ]), µ) ∀t ∈ [0, T ] :

E |p(X(t))|p∧q + E |p(X̃(t))|p ≤ (Kb(t))q,

where r̃ and X̃ denote the approximations of r and X along partitions 0 = t0 <
t1 < ... < tnT

with maximum step size ∆max = maxi=1,...,nT
|ti − ti−1|. Then, the

total error of related approximation satisfies

ε := sup
0≤t≤T

E
∣∣∣Fr,p,X(t)− Fr̃,p,X̃(t)

∣∣∣ ≤ K(T )∆γ
max(16)

where the constant K = K(T ) is bounded by

K(T ) ≤ T 1/q‖Kr‖Lp‖Kb‖∞ + ‖Kp‖∞.

Proof. First, note that the expression∣∣∣ exp(−x)p(u)− exp(−y)p(v)
∣∣∣

≤
∣∣∣(exp(−x)− exp(−y))p(u)

∣∣∣ +
∣∣∣ exp(−y)(p(u)− p(v))

∣∣∣
≤ |x− y||p(u)|+ |p(u)− p(v)|

is bounded as stated for all nonnegative values x, y ≥ 0. Set x =
∫ T

t
r(s)ds,

y =
∫ T

t
r̃(s)ds, u = (X(s))0≤s≤T and v = (X̃s)0≤s≤T . Thus, by means of triangle

and Hölder inequalities, we arrive at

ε ≤ E

[
|
∫ T

s

(r(s)−r̃(s))ds||p(X)|
]
+ E

[
|p(X)−p(X̃)|

]

≤
[
E |

∫ T

s

(r(s)−r̃(s))ds|p
]1/p

[E |p(X)|q]1/q+‖Kp‖∞∆γ
max

≤ sup
0≤t≤T

[
(T−t)p/q

∫ T

t

E [|r(s)−r̃(s)|p]ds

]1/p

‖Kb‖∞+‖Kp‖∞∆γ
max

≤
(
T 1/q‖Kr‖Lp‖Kb‖∞+‖Kp‖∞

)
∆γ

max ,

hence the assertion of Theorem 3.2 is confirmed. ¤

Remark 3.1. Of course, under sufficient smoothness conditions one may also ob-
tain uniform estimates on higher orders of errors of weak approximations as re-
ported in Milstein [17] and Talay [34] for the case of deterministic r. Assumption
(iii) of convexity of the price functional p can be relaxed too. We have just required
assumption (iii) in order to be consistent with our previous results in this paper (see
Section 2). Consequently, we can easily apply Theorem 3.2 to verify a least rate of
L1-convergence of nonstandard methods such as positivity-preserving balanced im-
plicit methods (called BIMs, see [24, 30]) with γ = 0.5 and balanced Milstein methods
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(called BMMs, see [11]) with γ = 1.0, respectively, or other implicit methods for
pricing functionals such as (2) involving SDEs (1). The occurring positive interest
rates r are numerically integrated by positivity-preserving methods as presented in
[11, 19, 24, 25]. Note that the positivity is important to guarantee the finiteness of
discount factors and the control on the dynamical behavior of functionals F such
as (2).

4. A(n) (incomplete) list of interesting examples of functionals

Some of the following examples might look somehow artificial. However, they
possess a countable set of points in the domain of definition of these functionals
where they are not infinitely continuously differentiable. They are also of some
practical interest in finance and engineering. Moreover, a considerable number has
the built-in property of convexity.

4.1. Absolute p–th mean process. One of the simplest non-continuously dif-
ferentiable functionals is the absolute norm of stochastic processes, i.e.

(17) F (t,X(t)) = ‖X(t)‖,
provided that X(t) can not be bounded away from zero (as e.g. for oscillators with
degenerate diffusion). More general, functionals of p–th absolute mean ‖X(t)‖p

have no ‘infinite smoothness’ everywhere (p not even). This functional occurs in
engineering and physics where one measures the distance of oscillations from its
rest point.

4.2. Occupation probabilities and probabilities of residence. The proba-
bilities of occupation (residence) of stochastic processes in a given real set are of
great interest in several disciplines. Let (Ω,F , (Ft)t≥0,P) represent the underlying
stochastic basis. The associated functional is representable as expectations

(18) rA(s) := P({ω ∈ Ω : X(s)(w) ∈ A}) = E IIA(X(s))

where II denotes the indicator function of Borel-measurable set A ⊂ Rd.

4.3. Exit probabilities and failure probabilities. Conversely, one has interest
in

(19) fA(s) = P({X(s) 6∈ A}) or fA(s) = P({‖X(s)‖ > a})
for Borel-measurable sets A ⊂ Rd and a > 0 some positive, significant, risky level
in earthquake engineering.

4.4. (Mean) passage times. In engineering sciences and physics one is interested
in the computation of

(20)
∫ t

0

IIA(X(s)) ds or E
∫ t

0

IIA(X(s)) ds

which represent the functionals of almost sure passage time and mean passage time
of the corresponding stochastic process X up to time t, respectively. Subscript
A ⊂ Rd in (20) denotes a certain Borel-measurable nonempty subset of interest in
Rd.

4.5. Maximum and minimum process. These processes are defined to be

E max(0, X(t)) in R1 or E max(0, Xi(t)), E max(a, ‖X(t)‖) in Rd,

E min(0, X(t)) in R1 or E min(0, Xi(t)), E min(a, ‖X(t)‖) in Rd.(21)

Obviously, they describe the extreme value behavior of processes X.



HOW RATES OF Lp-CONVERGENCE CARRY OVER 65

4.6. Cost and gain functionals in finance and investments. In option pric-
ing (European put and call options) it arises an interest to compute the expected
gain of the form

(22) g(s) := E (X(s)−K)+ = E max(0, X(s)−K)

where K > 0 is the striking price at maturity time T and X(s) describes the
underlying price process of an asset, market, product, etc. at time s.

4.7. Mean first entrance time. This functional takes the form

(23) pA(t) = E inf{0 ≤ s ≤ t : X(s) ∈ A|X(0) = X0 6∈ A}
where one assumes that P({X0 ∈ A}) = 0, otherwise we define pA(t) = +∞ for a
fixed Borel-measurable nonempty set A.

4.8. Mean first exit time. A mathematical description is given by

(24) eA(t) = E inf{s ≥ 0 : X(s) 6∈ A}
for fixed (deterministic) X0 ∈ A and Borel-measurable nonempty set A.

4.9. Total maximum and minimum process. In R1 we set

(25) Xmax(t) = sup
0≤s≤t

{X(s)} , Xmin(t) = inf
0≤s≤t

{X(s)} .

These amounts (magnitudes) are useful for the computation of first entrance and
exit times. Furthermore, in Rd one is interested in the approximation of extreme
value processes defined by

(26) X∗(t) = sup
0≤s≤t

‖X(s)‖ , X∗(t) = inf
0≤s≤t

‖X(s)‖ .

Remark 4.1. This list of most interesting functionals is not complete, but it re-
flects somehow the importance of research on approximations of functionals F (X)
involving convex, path-dependent and non-smooth structures (instead of functions
f(X(T )) depending only on values of X at terminal time T ) as met in applica-
tions. Besides, we can easily recognize a number of challenging open problems from
this list in view of qualitative aspects of their numerical approximations, despite of
numerous results such as known from Bally and Talay [4] on the rate of approxima-
tions of measurable functions f(X(T )) (instead of more complex functionals) where
non-degeneracy conditions of Hörmander-type on the infinitesimal generator of pro-
cess (X(t))t≥0 are imposed additionally (which is violated in case of multiplicative
noise). We know that the presented results do not have to be most efficient in spe-
cific situations, but certainly it justifies the use of several approximation methods
for functionals with some convex, path-dependent or not-so-smooth structure.

Appendix A. Common numerical methods and convergence for Itô SDEs

A.1. Most used numerical methods. By truncation of Itô-Taylor expansions
[36] and locally implicit or explicit substitutions of occurring differential operators,
one arrives at numerical methods for (1). We state a selected list of the most com-
mon numerical methods which are indeed in use. Let (Yn)n∈N denote a sequence of
approximation values for the solution X(tn) at time tn along the time-discretization

0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tnT
= T(27)
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(for simplicity, we suppose that t0 = 0 and tnT
= T ). The time-discretization is

said to be equidistant if there is a number ∆ ∈ R+ (called the step size) such that
∆ = ti+1 − ti for all i = 0, 1, ..., nT − 1. In general, we define

∆ = max
i=0,1,...,nT−1

|ti+1 − ti|

as the step size, and ∆i = ti+1 − ti as the local step size. Consider ∆W j
n =

Wj(tn+1)−Wj(tn) as the current increment of the Wiener process component Wj .
The most well-known numerical method is given by the explicit Euler method

which has been introduced by Maruyama [16]. That is why it is sometimes called
Euler-Maruyama method. The scheme of explicit Euler method is defined by

(28) Yn+1 = Yn + a(tn, Yn)∆n +
m∑

j=1

bj(tn, Yn)∆W j
n .

Its convergence in L2 has been proved by Gikhman and Skorochod [9], and in Lp

by Kanagawa [12]. It represents the most-studied, best-understood and simplest-
implementable numerical method. Nowadays, it is even used to understand exis-
tence and uniqueness proofs of solutions of SDEs (Krylov [15]). A drawback of
method (28) can be seen in the lack of numerical stability (in fact “sub-stable”
behavior), the low convergence order, incorrect stationary laws and some problems
with the geometrical invariance properties (e.g. non-simplectic integrator). Despite
these facts it is a very popular and easily implemented, hence practical method. It
is natural to ask for a counterpart to the deterministic implicit Euler method. It is
given by

(29) Yn+1 = Yn + a(tn+1, Yn+1)∆n +
m∑

j=1

bj(tn, Yn)∆W j
n .

The use of this drift-implicit Euler method can control numerical stability of cer-
tain moments, boundary value replication and reduce variance-destabilizing ef-
fects. However, there are the drawbacks of “super-stability” [23], asymptotic non-
exactness of stationary laws to be replicated [25], and more computational effort
due to additional implementation of resolution algorithms of nonlinear algebraic
equations.

A first natural generalization of explicit and implicit Euler methods is presented
by stochastic Theta methods. They are convex linear combinations of explicit and
implicit Euler increment functions of the drift part, whereas the diffusion part is
explicitly treated due to the problem of adequate integration within one and the
same stochastic calculus. The scheme of an exterior drift-implicit Theta method is
written as
(30)

Yn+1 = Yn + (Θna(tn+1, Yn+1) + (I −Θn)a(tn, Yn))∆n +
m∑

j=1

bj(tn, Yn)∆W j
n,

where I represents the d× d real unit matrix, and Θn is a uniformly bounded pa-
rameter matrix in Rd×d, which is also called the matrix of implicitness parameters.
This family has been introduced by Schurz [25] as a generalization of deterministic
Theta methods. An important special sub-class is Θn = θnI with θn ∈ R1. If all
θn = 0 then its scheme reduces to classical (forward) Euler method, if all θn = 1 to
the backward Euler or often called implicit Euler method, and if all θn = 0.5 to the
implicit trapezoidal method. A detailed study of the qualitative behavior of these
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methods can be found in Schurz [25] in stochastics. Another generalization is given
by the interior drift-implicit Theta method following

(31) Yn+1 = Yn + a (tn + θn∆n, ΘnYn+1 + (I −Θn)Yn)∆n +
m∑

j=1

bj(tn, Yn) ∆W j
n

where θn ∈ R, Θn ∈ Rd×d such that local algebraic resolution can be guaranteed.
For the integration of conservation laws and Hamiltonian systems, it is recom-

mended to take derivates of the implicit midpoint method

(32) Yn+1 = Yn + a(
tn+1 + tn

2
,
Yn+1 + Yn

2
)∆n +

m∑

j=1

bj(tn, Yn)∆W j
n

which is a special case of interior drift-implicit Theta method with Θn = 1
2I. This

method seems to be very promising for the control of numerical stability, area-
preservation and boundary laws in stochastics as well. The drawback can be the
local resolution of nonlinear algebraic equations, which can be circumvented by
predictor-corrector methods (PCMs) or linear-implicit implementations (see Belin-
skiy and Schurz [5] for a complex example). A natural extension of trapezoidal
integration techniques is represented by the implicit trapezoidal method governed
by

(33) Yn+1 = Yn +
1
2

(a(tn+1, Yn+1) + a(tn, Yn))∆n +
m∑

j=1

bj(tn, Yn) ∆W j
n

which is a special case of exterior drift-implicit Theta method with Θn = 1
2I. Both

the trapezoidal and midpoint method have an improved local mean consistency
behavior (they are of mean convergence order 2, locally considered of mean order
3, under enough smoothness of a ∈ C3,3

b ([0, T ]×Rd)), compared to the explicit and
implicit Euler methods. The trapezoidal method has problems when one integrates
high-dimensional systems with boundary conditions, as reported by numerous de-
terministic numerical analysts. However, it is the only numerical method from the
class of Theta methods with Θn = θI, θ ∈ R1 which asymptotically integrates lin-
ear stochastic systems without bias in stationary laws (i.e. asymptotically exact
method with respect to stationary laws), see Schurz [25], [26].

For the control on the almost sure path-behavior, the incremental growth and on
the error propagation, Milstein, Platen and Schurz [18] have introduced the class
of balanced implicit methods (BIMs) determined by
(34)

Yn+1 = Yn + a(tn, Yn) ∆n +
m∑

j=1

bj(tn, Yn)∆W j
n +

m∑

j=0

Cj(tn, Yn)(Yn+1− Yn)|∆W j
n|

with appropriate weight matrices Cj(t, x) such that the inverse of d× d matrix

M(t, x) = I +
m∑

j=0

θjC
j(t, x)

exists and is uniformly bounded for all values θj ∈ R1
+, 0 ≤ θ0 ≤ θ̂0 < +∞ and

(t, x) ∈ [0, T ] × Rd. This class has been studied in Schurz [24], [25], [29], [30]. It
represents a linear-implicit integration technique, and hence local resolution can be
guaranteed and made very simple as well. However, the choice of the matrix weights
Cj(t, x) is still a challenge for future research and exhibits a very problematic and
practically oriented question (basically Cj has to be chosen according to the desired
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qualitative properties of discussed discretization, and thanks to Schurz [23], [25],
[26], [29], [30], it is proved that the coefficients Cj with j = 1, 2, ...,m are not really
needed to have asymptotically exact control on the moments of approximation Y .
However, all these coefficients Cj are needed in context of (almost sure) path-wise
control, see [11], [24], [25], [30]).

The simplest higher order method is due to Milstein [17]. It has the scheme

(35) Yn+1 = Yn + a(tn, Yn)∆n +
m∑

j=1

bj(tn, Yn)∆W j
n+

+
m∑

j,k=1

Lkbj(tn, Yn)
∫ tn+1

tn

∫ s

tn

dW k
u dW j

s .

This method has limited use when numerical stability is an important issue and
multidimensional Wiener processes (m > 1) drive the dynamics (except for very
restricted condition of commutative noise). The generation of multiple integrals
I(i,j) =

∫ ∫
dW kdW j is described in Kloeden, Platen and Schurz [14] by using

Karhunen-Loeve expansion. There is an idea to make the Milstein method implicit
(see [14]). This idea is realized by the family of drift-implicit Milstein methods
following the scheme

(36) Yn+1 = Yn +(θna(tn+1, Yn+1) + (I − θn)a(tn, Yn)) ∆n +
m∑

j=1

bj(tn, Yn)∆W j
n

+
m∑

j,k=1

Lkbj(tn, Yn)
∫ tn+1

tn

∫ s

tn

dW k
u dW j

s

where θn ∈ R is a sequence of implicitness parameters to be chosen carefully. The
convergence orders are as that of explicit Milstein method. However, the numerical
stability behavior cannot be improved compared to corresponding Theta methods
with the same θ. For more details in this respect, see Schurz [23], [25]. Thus, the
balance between convergence and stability requirements is already a problem here
with growing order of convergence. More generally, one might think of the usage
of exterior drift-implicit Theta–Milstein methods governed by

(37) Yn+1 = Yn+(Θna(tn+1, Yn+1) + (I −Θn)a(tn, Yn))∆n+
m∑

j=1

bj(tn, Yn) ∆W j
n

+
m∑

j,k=1

Lkbj(tn, Yn)
∫ tn+1

tn

∫ s

tn

dW k
u dW j

s

where Θn ∈ Rd×d is a certain matrix of implicitness parameters, and the usage of
interior drift-implicit Theta–Milstein methods

(38) Yn+1 = Yn + a (tn + θn∆n, ΘnYn+1 + (I −Θn)Yn)∆n +
m∑

j=1

bj(tn, Yn) ∆W j
n

+
m∑

j,k=1

Lkbj(tn, Yn)
∫ tn+1

tn

∫ s

tn

dW k
u dW j

s

where θn ∈ R,Θn ∈ Rd×d, as before, are such that the local resolution of implicit
algebraic equations can be guaranteed. But the meaningfulness of the last two
methods (37) and (38) is still in question.
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There are other methods such as Taylor- or Runge-Kutta methods of local higher
order of convergence. However, their efficient use is not quite clear in general since
there is a lack of mathematically rigorous studies of their qualitative behavior apart
from the knowledge on their local consistency under very restrictive assumptions
and the problem of efficient generation of iterated stochastic integrals. We call these
methods as standard ones (such as Euler-, Milstein-, Taylor-methods as listed in
the books [14] and [17]) and others as nonstandard ones. The construction of
nonstandard stochastic methods is still in its infancy, however one can consult [25]
as its origin. The classes of balanced implicit methods (BIMs, see [30]), balanced
Milstein methods (BMMs, see [11]) or linear-implicit methods (LIMs, see [5]) count
as nonstandard methods.

A.2. Most common convergence concepts. In the statements below, let || · ||
be a vector norm of Rd and K0, Kp(p ∈ [1, +∞]) be deterministic, real constants
which may depend on smoothness and boundedness parameters of the explicit so-
lution, as well as initial values, the length of time-interval [0, T ], the dimensions
d,m and some parameter of the corresponding numerical method. Recall

∆ = sup{|tn+1 − tn| : n = 0, 1, 2, ..., nT − 1}.
Fix the finite deterministic start instant t0 ∈ [0, T ] with fixed terminal time T > t0
where T ∈ R1. Let Y = (Yt)0≤t≤T denote a right-continuous time approximation
of process X = (X(t))0≤t≤T based on values Yn at instants tn along partitions (27).

Definition A.1. A stochastic process Y = (Y ∆
t )0≤t≤T (method, scheme, etc.) is

called a p-th mean approximation of X = (X(t))t∈[t0,T ] with order (rate)
γ ≥ 0 if

sup
0≤t≤T

(
E ||X(t)− Y ∆

t ||p)1/p ≤ Kp ·∆γ ,(39)

a mean square approximation of X = (X(t))t∈[t0,T ] with order (rate) γ ≥ 0
if

sup
0≤t≤T

(
E ||X(t)− Y ∆

t ||2)1/2 ≤ K2 ·∆γ ,(40)

a strong approximation of X = (X(t))t∈[t0,T ] with order (rate) γ ≥ 0 if

sup
0≤t≤T

E ||X(t)− Y ∆
t || ≤ K1 ·∆γ(41)

a strong mean square approximation of X = (X(t))t∈[t0,T ] with order (rate)
γ ≥ 0 if

(
E sup

0≤t≤T
||X(t)− Y ∆

t ||2
)1/2

≤ K2 ·∆γ ,(42)

a strong p-th mean approximation of X = (X(t))t∈[t0,T ] with order (rate)
γp ≥ 0 if

(
E sup

0≤t≤T
||X(t)− Y ∆

t ||p
)1/p

≤ Kp ·∆γ ,(43)

a double Lp-approximation of (X(t))t∈[t0,T ] with order (rate) γ ≥ 0 if
(
E

∫ T

0

K(t)||X(t)− Y ∆
t ||p µ(dt)

)1/p

≤ Kp ·∆γ ,(44)
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with positive, µ-integrable kernel K(t) where µ is a positive, finite measure on
([0, T ],B([0, T ])) (B([0, T ]) denotes the σ-field of Borel sets of [0, T ]), a weak ap-
proximation of X = (X(t))t∈[t0,T ] with order (rate) β ≥ 0 if

sup
g∈F

sup
0≤t≤T

||E g(X(t))− E g(Y ∆
t ) || ≤ K0 ·∆β(45)

and a weak τ-convergent approximation of X = (X(t))t∈[t0,T ] with order
(rate) β ≥ 0 if

sup
g∈F

sup
0≤τ≤T

||E g(X(τ))− E g(Y ∆
τ ) || ≤ K0 ·∆β(46)

for all time–discretizations of [t0, T ] with ∆ < δ0 < +∞, where the supremum is
taken over all finite stopping times τ and F is an appropriate class of functions.

Remarks. One also speaks of p-th mean, mean square, strong, strong p-th
mean, double Lp, and weak orders (rates) γ, β ∈ R+ of convergence. The
function class is frequently chosen to be

Fr =
{

f : Rd −→ Rk, f ∈ C∞(D), ∃K ∀x ∈ D ‖f(x)‖ ≤ K(1 + ‖x‖r)
}

where r ∈ R+, r ≥ 1, and d, k ∈ N are fixed, but there are also attempts to relax
conditions in F to certain classes of Lebesgue-measurable functions. The weak τ -
convergence is introduced for the delicate problem of convergence and convergence
rates for functionals involving random stopping times instead of deterministic ter-
minal times. This concept is of great use and very reasonable in optimal stochastic
control problems related to diffusions X. Note also that, for p-th mean conver-
gence, it suffices to evaluate the error expressions at discretization points tn under
the commonly met assumptions on SDE coefficients and on approximating inte-
grands arising by the related numerical method. This becomes clear from looking
at the continuous time behavior of remainder terms of stochastic Taylor expansions
and natural continuous continuation of discrete time approximations. Recall that
p-th mean convergence analysis has importance for estimation of non-continuously
differentiable or path-dependent functionals of SDEs as seen in previous sections.

Let us briefly summarize the rates of convergence of standard numerical methods
such as Euler-, Milstein-type and balanced methods. The families of drift-implicit
Euler-, Theta-methods and BIMs have the rate γ = 0.5 of p-th mean convergence
in general. For systems with additive noise, this rate rises to γ = 1.0. The rate of
p-th mean convergence can be improved by Milstein-type methods in general. The
families of drift-implicit Theta-Milstein methods and balanced Milstein methods
(called BMMs, see [11]) possess the rate γ = 1.0 of p-th mean convergence. The
above mentioned methods have the rate β = 1.0 of weak convergence with respect to
sufficiently smooth classes F of test functions. Only the drift-implicit midpoint-type
Theta-methods from forementioned methods can achieve the rate β = 2.0 of weak
convergence for some appropriate test functions. In general, there are maximum
bounds on the rate of convergence. For example, Clark and Cameron [8] showed
that the maximum possible L2-rate along classical nonrandom partitions (such as
along discrete time filtrations of increments of Wiener processes) is 1.0 for systems
with additive noise in general. So to speak of higher order of convergence than
1.0 in Lp-sense does not make a lot of sense in general. For more details, see also
Allen [1], Artemiev and Averina [3], Burrage, Burrage and Mitsui [7], Kanagawa
and Ogawa [13], Schurz [25], [27], [28], [31], and Talay [34], [35].
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A.3. On key relations between convergence concepts. As a consequence
of the Lyapunov inequality and fast Lp-convergence (Borel-Cantelli Theorem), for
p ≥ 1, we may establish the following relationship.

Theorem A.1. Assume that F = C1
Lip(Rd,Rk), sup0≤t≤T E [||X(t)||p] < +∞.

Then the following implications hold
Strong p-th mean =⇒ p-th mean conv. =⇒ strong conv. =⇒ weak conv.
Strong p-th mean =⇒ double Lp

Strong p-th mean =⇒ a.s. convergence
Weak τ -convergence =⇒ weak convergence

where the related convergence orders are carried over one to one.

The detailed proof is left to the reader as an exercise.
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