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NUMERICAL ANALYSIS OF A HIGHER ORDER TIME

RELAXATION MODEL OF FLUIDS
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We dedicate this paper to Max Gunzburger on the occasion of his 60th birthday

Abstract. We study the numerical errors in finite element discretizations of a
time relaxation model of fluid motion:

ut + u · ∇u + ∇p − ν∆u + χu∗ = f and ∇ · u = 0

In this model, introduced by Stolz, Adams and Kleiser, u∗ is a generalized

fluctuation and χ the time relaxation parameter. The goal of inclusion of

the χu∗ is to drive unresolved fluctuations to zero exponentially. We study

convergence of discretization of the model to the model’s solution as h, ∆t → 0.

Next we complement this with an experimental study of the effect the time

relaxation term (and a nonlinear extension of it) has on the large scales of a

flow near a transitional point. We close by showing that the time relaxation

term does not alter shock speeds in the inviscid, compressible case, giving

analytical confirmation of a result of Stolz, Adams and Kleiser.

Key Words. time relaxation, deconvolution, turbulence

1. Introduction

A fluid’s velocity at higher Reynolds numbers contains many spatial scales not
economically resolvable on computationally feasible meshes. For this reason, many
turbulence models, large eddy simulation models, numerical regularization and com-
putational stabilizations have been explored in computational fluid dynamics. One
of the simplest such regularization and most recent has been proposed by Adams,
Stoltz and Kleiser [1, 2]. Briefly, if u represents the fluid velocity, h the char-
acteristic mesh width, and δ = O(h) a chosen length scale, let u∗ denote some
representation of the part of u varying over length scales < O(δ), i.e. the fluctu-
ating part of u. (This will be made specific in Section 2.) The fluid regularization
model of Adams, Stoltz and Kleiser, considered herein, arises by adding a simple,
linear, lower order time regularization term, χu∗, (where χ > 0 has units of 1/time)
to the Navier-Stokes equations, giving:

ut + u · ∇u + ∇p − ν∆u + χu∗ = f , ∈ Ω ,(1.1)

∇ · u = 0 , ∈ Ω .(1.2)

The term χu∗ is intended to drive unresolved velocity scales to zero exponentially
fast. Adams, Kleiser and Stoltz have performed extensive computational tests of
this time relaxation model on compressible flows with shocks and on turbulent
flows, for example, [1, 2] as has Guenanff [7] on aerodynamic noise. The originating
study of (1.1),(1.2) was the work of Rosenau [11] and Schochet and Tadmor [12]
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in which the time relaxation model was developed from a regularized Chapman-
Enskog expansion of conservation laws. Most recently, in [10] it was shown that
at high Reynolds number, solutions to (1.1),(1.2), possess an energy cascade which
terminates at the mesh scale δ with the proper choice of relaxation coefficient χ.

Our goal in this report is to connect the work studying (1.1)-(1.2) as a continuum
model with the computational experiments using (1.1)-(1.2) by a numerical analysis
of discretizations of (1.1)-(1.2). We thus consider stability and convergence of
finite element discretizations of (1.1)-(1.2) as h → 0. Our goal is to elucidate
the interconnections between δ, h, χ, ν, and the algorithms used to compute the
fluctuation u∗ as a discrete function.

In Section 2 we give a precise definition of the discrete averaging operator and
the de-convolution procedure that are used to define the generalized fluctuation u∗.
We also give preliminaries about the finite element discretizations studied. Section
3 gives the convergence analysis of this method. This analysis is for ν > 0. The
Euler equations, ν = 0 in (1.1),(1.2), include shocks – a phenomenon excluded when
ν > 0. In Section 5 we complement the case ν > 0 by considering a conservation law
in one space dimension. We show that adding the time relaxation term χu∗ does
not alter shock speeds – thus confirming theoretically a result of Stoltz and Adams
[1]. In Section 4 we give some numerical tests. Our primary goal in these tests is
to study the effect the time relaxation term has on O(1) scales. We study a flow
very close to its transition from one regime to another: from equilibrium to time
dependent via eddy shedding behind the forward-backward step. We investigate
experimentally which of several natural formulations of this time relaxation term
least retards this transition.

2. Analysis of the Time Relaxation Model

In order to discuss the effects of the regularization we introduce the following
notation. The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·).
Likewise, the Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp

and ‖ · ‖W k
p
, respectively. For the semi-norm in W k

p (Ω) we use | · |W k
p
. Hk is used to

represent the Sobolev space W k
2 , and ‖ · ‖k denotes the norm in Hk. For functions

v(x, t) defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=

(

∫ T

0

‖v(t, ·)‖m
k dt

)1/m

.

The following function spaces are used in the analysis:

Velocity Space : X := H1
0 (Ω) ,

Pressure Space : P := L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dΩ = 0

}

,

Divergence − free Space : Z :=

{

v ∈ X :

∫

Ω

q∇ · v dΩ = 0, ∀ q ∈ P

}

.

We denote the dual space of X as X ′, with norm ‖ · ‖−1.
A variational solution of the N-S equations may be stated as: Find w ∈ L2(0, T ;X)∩

L∞(0, T ;L2(Ω)), r ∈ L2(0, T ;P ) with wt ∈ L2(0, T ;X
′

) satisfying

(wt,v) + (w · ∇w,v) − (r,∇ · v) + ν(∇w,∇v) = (f ,v) , ∀v ∈ X ,(2.1)

(q,∇ · w) = 0 , ∀q ∈ P ,(2.2)

w(0,x) = w0(x) , ∀x ∈ Ω .(2.3)
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We consider in comparison to (2.1)-(2.3) the problem: Find u ∈ L2(0, T ;X) ∩
L∞(0, T ;L2(Ω)), p ∈ L2(0, T ;P ) with ut ∈ L2(0, T ;X

′

) satisfying

(ut,v) + (u · ∇u,v) − (p,∇ · v) + ν(∇u,∇v) + χ(u − GN ū,v)(2.4)

= (f ,v),∀v ∈ X,

(q,∇ · u) = 0 , ∀q ∈ P ,(2.5)

u(0,x) = w0(x) , ∀x ∈ Ω .(2.6)

In (2.4) ū denotes a spatially averaged function of u defined as: ū := G(u) satisfying

−δ2∆ū + ū = u , in Ω ,(2.7)

ū = 0 , on ∂Ω ,(2.8)

where δ represents the filter length scale. The operator GN in (2.4) represents the
Nth van Cittert approximate deconvolution operator defined by

(2.9) GNφ :=

N
∑

n=0

(I − G)nφ , N = 0, 1, 2, . . . .

Lemma 2.1. [3, 5] For φ ∈ L2(Ω) we have that

(2.10) φ − GN φ̄ = δ2N+2 (−∆G)N+1φ .

As the operator (I − GNG) is Symmetric Positive Definite (SPD), [10], the
operator B : L2(Ω) → L2(Ω) satisfying

(2.11) B2φ := δ−(2N+2) (I − GNG)φ = δ−(2N+2)(φ − GN φ̄)

is bounded and well defined, (i.e. B = δ−(N+1)
√

I − GNG).

(2.12) Let φ∗ := δ(N+1) Bφ (≈ φ − φ̄).

Then, from (2.10) we have

‖φ∗‖ = (φ − GN φ̄ , φ)1/2 =
(

δ2N+2(Bφ , Bφ)
)1/2

= δN+1‖Bφ‖ .

Letting e(x, t) := w(x, t) − u(x, t), subtracting (2.4) from (2.1) we have that

(et,v) + (e · ∇w,v) + (u · ∇e,v) + ν(∇e,∇v) + χ(e − GN ē,v)(2.13)

= χ(w − GN w̄,v) , ∀v ∈ Z .

With the choice v = e we obtain (using (u · ∇e, e) = 0)

1

2

d

dt
‖e‖2 + (e · ∇w, e) + ν‖∇e‖2 + χ (e − GN ē, e) = χ (w − GNw̄, e),

1

2

d

dt
‖e‖2 − |(e · ∇w, e)| + ν‖∇e‖2 + χ ‖e∗‖2 ≤ χ δ2N+2‖Bw‖ ‖Be‖ .(2.14)

With the estimate (using Young’s inequality),

|(e · ∇w, e)| ≤ C
√

‖e‖ ‖∇e‖ ‖∇w‖ ‖∇e‖ = C‖e‖1/2 ‖∇w‖ ‖∇e‖3/2

≤ 1

2
ν‖∇e‖2 + C1ν

−3‖∇w‖4 ‖e‖2 ,
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equation (2.14) becomes

d

dt
‖e‖2 − C1 ν−3‖∇w‖4 ‖e‖2 + ν‖∇e‖2 + χ ‖e∗‖2(2.15)

≤ C2 χ δ2N+2‖Bw‖2.

Proceeding as in Gronwall’s Lemma, multiplying through by the integrating factor
exp(−C1 ν−3

∫ τ

0
‖∇w‖4 ds) and using ‖e‖(0) = 0, we obtain

‖e‖2 +

∫ t

0

e(C1 ν−3
∫ t

τ
‖∇w‖4 ds)

(

ν‖∇e‖2 + χ ‖e∗‖2
)

dτ(2.16)

≤
∫ t

0

e(C1 ν−3
∫ t

τ
‖∇w‖4 ds)

(

C2 χ δ2N+2‖Bw‖2
)

dτ ,

i.e.,

‖e‖2 + ν

∫ t

0

‖∇e‖2 dτ +

∫ t

0

χ ‖e∗‖2 dτ(2.17)

≤ C2e
C1 ν−3 ‖w‖4

4,1 χ δ2N+2

∫ t

0

‖Bw‖2 dτ ,

from which the following lemma follows.

Lemma 2.2. With w ∈ L4(0, T ;W 1
4 ) satisfying (2.1)-(2.3) and u given by (2.4)-

(2.6) we have that there exists constants C1, C2 > 0, such that

‖w − u‖2 + ν

∫ t

0

‖∇(w − u)‖2 dτ + χ

∫ t

0

‖(w − u)∗‖2 dτ(2.18)

≤ C2e
C1 ν−3 ‖w‖4

4,1 χ δ2N+2

∫ t

0

‖Bw‖2 dτ .

3. Numerical Approximation of the Navier-Stokes equations using Time

Relaxation

In this section we address the error between the stabilized approximation com-
puted using equations (2.4)-(2.6) and the solution to the Navier-Stokes equations.
In view of estimate (2.18), and with the aid of the triangle inequality, the desired
error estimate reduces to finding the error between the numerical approximation of
(2.4)-(2.6) and its true solution.

We begin by describing the finite element approximation framework and listing
the approximating properties used in the analysis.

Let Ω ⊂ IRd́ (d́ = 2, 3) be a polygonal domain and let Th be a triangulation of Ω
made of triangles (in IR2) or tetrahedrals (in IR3). Thus, the computational domain
is defined by

Ω = ∪K; K ∈ Th.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the
greatest ball (sphere) included in K, and h = maxK∈Th

hK . Let Pk(A) denote the
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space of polynomials on A of degree no greater than k. Then we define the finite
element spaces as follows.

Xh :=
{

v ∈ X ∩ C(Ω̄)2 : v|K ∈ Pk(K), ∀K ∈ Th

}

,

Ph :=
{

q ∈ P ∩ C(Ω̄) : q|K ∈ Ps(K), ∀K ∈ Th

}

,

Zh := {v ∈ Xh : (q,∇ · v) = 0, ∀q ∈ Ph} .

We assume that the spaces Xh, Ph satisfy the discrete inf-sup condition, namely
there exists γ ∈ IR, γ > 0,

(3.1) γ ≤ inf
qh∈Ph

sup
vh∈Xh

∫

Ω
qh ∇ · vh dA

‖qh‖P ‖vh‖X
.

Let ∆t be the step size for t so that tn = n∆t, n = 0, 1, 2, . . . , NT , with T := NT ∆t,

and dtf
n := f(tn)−f(tn−1)

∆t . We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤NT

‖vn−1/2‖k ,

‖|v|‖m,k :=

(

NT
∑

n=0

‖vn‖m
k ∆t

)1/m

, ‖|v1/2|‖m,k :=

(

NT
∑

n=1

‖vn−1/2‖m
k ∆t

)1/m

.

In addition, we make use of the following approximation properties,[4]:

inf
v∈Xh

‖u − v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d́,

inf
v∈Xh

‖u − v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d́,

inf
r∈Ph

‖p − r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

We define the skew-symmetric trilinear form b∗(·, ·, ·) : X × X × X → IR as

(3.2) b∗(u,v,w) :=
1

2
(u · ∇v,w) − 1

2
(u · ∇w,v) .

Note that for u, v, w, ∈ X, with
∫

Ω
q∇ · u dA = 0 , ∀q ∈ P ,

b∗(u,v,w) = b(u,v,w) := (u · ∇v,w) .

For ease of notation in discussion the Crank-Nicolson temporal discretization we
let

ŭn =
un + un−1

2
.

The time relaxed, discrete approximation to (2.4)-(2.6) on the time interval
(0, T ], is given by:
For n = 1, 2, . . . , NT , find un

h ∈ Xh, pn
h ∈ Ph, such that

(un
h,v) + ∆t b∗(ŭn

h, ŭn
h,v) − ∆t (p̆n

h,∇ · v) + ∆t ν(∇ŭn
h,∇v)(3.3)

+∆t χ (ŭn
h − GN

¯̆un
h,v) = (un−1

h ,v) + ∆t (f̆n,v), ∀v ∈ Xh ,

(q,∇ · un
h) = 0 , ∀q ∈ Ph ,(3.4)

(u0
h,v) = (w0, v) , ∀x ∈ Ω .(3.5)

As the spaces Xh and Ph satisfy the discrete inf-sup condition (3.1), we can
equivalent consider the problem:
For n = 1, 2, . . . , NT find un

h ∈ Zh, ph ∈ Ph, such that

(un
h,v) + ∆t b∗(ŭn

h, ŭn
h,v) + ∆t ν(∇ŭn

h,∇v) + ∆t χ (ŭn
h − GN

¯̆un
h,v)(3.6)

= (un−1
h ,v) + ∆t (f̆n,v), ∀v ∈ Zh .
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The discrete Gronwall’s lemma plays an important role in the following analysis.

Lemma 3.1 (Discrete Gronwall’s Lemma). [9] Let ∆t, H, and an, bn, cn, γn (for
integers n ≥ 0) be nonnegative numbers such that

al + ∆t

l
∑

n=0

bn ≤ ∆t

l
∑

n=0

γn an + ∆t

l
∑

n=0

cn + H for l ≥ 0 .

Suppose that ∆t γn < 1, for all n, and set σn = (1 − ∆t γn)−1. Then,

(3.7) al + ∆t

l
∑

n=0

bn ≤ exp

(

∆t

l
∑

n=0

σn γn

){

∆t

l
∑

n=0

cn + H

}

for l ≥ 0 .

For the approximation scheme given by (3.6) we have that the iteration is com-
putable and satisfies the following a priori estimate.

Lemma 3.2. For the approximation scheme (3.6) we have that a solution ul
h,

l = 1, . . . NT , exists at each iteration and, for ∆t < 1, satisfies the following a
priori bounds:

(3.8) ‖ul
h‖2 + 2∆t χ

l
∑

n=1

‖ŭn ∗
h ‖2 + 2∆t ν

l
∑

n=1

‖∇ŭn
h‖2 ≤ C

(

‖|f‖|22,0 + ‖u0
h‖2
)

.

Proof : The existence of a solution un
h to (3.6) follows from the Leray-Schauder

Principle [16]. Specifically, with A : Zh → Zh, defined by y = A(w)

(y,v) := −∆t b∗((w + un−1
h )/2, (w + un−1

h )/2,v) − ∆tν(∇(w + un−1
h )/2,∇v)

+ ∆t χ((w + un−1
h )/2 − GN (w̄ + ūn−1

h )/2,v) + (un−1
h ,v) + ∆t(f̆n,v) ,

the operator A is compact and any solution of u = sA(u) , for 0 ≤ s < 1 ,
satisfied the bound ‖u‖ ≤ γ, where γ is independent of s.

To obtain the a priori estimates, in (3.6) setting v = ŭn
h we have

(3.9) ‖un
h‖2 − ‖un−1

h ‖2 + 2∆t ν‖∇ŭn
h‖2 + 2∆t χ ‖ŭn ∗

h ‖2 ≤ ∆t ‖ŭn
h‖2 + ∆t ‖f̆n‖2 .

Summing (3.9) from n = 1 to l, implies

‖ul
h‖2 + 2∆t χ

l
∑

n=1

‖ŭn ∗
h ‖2 + 2∆t ν

l
∑

n=1

‖∇ŭn
h‖2(3.10)

≤ ‖u0
h‖2 + ∆t

l
∑

n=1

‖ŭn
h‖2 + ∆t

l
∑

n=1

‖f̆n‖2 ,

≤ ‖u0
h‖2 + ∆t

l
∑

n=0

‖un
h‖2 + ∆t

l
∑

n=0

‖fn‖2 .

Applying (3.7) we obtain (3.8), with C explicitly given by C = exp(T/(1 − ∆t)).

For the approximation error between un
h satisfying (3.6) and un satisfying (2.4)

we have the following.

Theorem 3.1. For u ∈ L∞(0, T ;W k+1
4 ) ∩ W 3

2 (0, T ;L2) ∩ W 2
4 (0, T ;W 1

2 ), p ∈
L4(0, T ;W s+1

4 ) ∩ W 2
2 (0, T ;L2), f ∈ L2(0, T ;W 2

2 ), w0 ∈ W k+1
2 satisfying (2.4)-

(2.6), and uh given by (3.3)-(3.5) we have that for ∆t sufficiently small

‖|u − uh|‖∞,0 ≤ F(∆t, h, δ, χ) + Chk+1‖|u|‖∞,k+1 ,(3.11)
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(

ν∆t
l
∑

n=1

‖∇(un+1/2 − (un
h + un−1

h )/2)‖2

)1/2

≤ F(∆t, h, δ, χ)(3.12)

+Cν1/2(∆t)2‖∇utt‖2,0 + Cν1/2hk‖|u|‖2,k+1, for 1 ≤ l ≤ NT .

where

F(∆t, h, δ, χ) := Cν−1/2
(

hk‖|u|‖2
4,k+1 + hk+1/2‖|∇u|‖2

4,0 + hs+1‖|p1/2|‖2,s+1

)

+Cν−1/2 hk
(

‖|f |‖2,0 + ‖u0
h‖
)

+Cν1/2 hk‖|u|‖2,k+1 + Cχ1/2 hk+1‖|u|‖2,k+1

+C(∆t)2
(

‖uttt‖2,0 + ν−1/2‖ptt‖2,0 + ‖ftt‖2,0

+ ν1/2‖∇utt‖2,0 + ν−1/2‖∇utt‖2
4,0

+ ν−1/2‖|∇u|‖2
4,0 + ν−1/2‖|∇u1/2|‖2

4,0

+ χ1/2 δ2N+2‖utt‖2,0 + χ1/2 ‖utt‖2,0

)

.

Proof :
Let A : X × X → IR be defined by

(3.13) A(u,v) := ν(∇u ,∇v) + χ(u − GN ū , v) ,

and note that

(3.14) A(u,u) = ν‖∇u‖2 + χ‖u∗‖2 .

Then, (3.6) may be written as

(3.15) (un
h −un−1

h ,v) + ∆tA(ŭn
h,v) + ∆t b∗(ŭn

h, ŭn
h,v) = ∆t (f̆ ,v) , ∀v ∈ Zh .

Also, at time t = (n − 1/2)∆t, u given by (2.4)-(2.5) satisfies

(un − un−1,v) + ∆tA(ŭn,v) + ∆t b∗(ŭn, ŭn,v) − ∆t (p̆n,∇ · v)(3.16)

= ∆t (f̆ ,v) + ∆t Intp(un, pn;v),

for all v ∈ Zh, where Intp(un, pn;v), representing the interpolating error, denotes

Intp(un, pn;v) =
(

dtu
n − u

n−1/2
t ,v

)

+ A(ŭn − un−1/2,v)(3.17)

+ b∗(ŭn, ŭn,v) − b∗(un−1/2,un−1/2,v) − (p̆n − pn−1/2,∇ · v) + (fn−1/2 − f̆ ,v) .

Subtracting (3.15) from (3.16), we have for en = un − un
h,

(en − en−1,v) + ∆tA(ĕn,v) + ∆t (b∗(ĕn, ŭn,v) + b∗(ŭn
h, ĕn,v))(3.18)

= ∆t(p̆n,∇ · v) + ∆t Intp(un, pn;v) ,

for all v ∈ Zh.
Let en = un − un

h = (un − Un) + (Un − un
h) := Λn + En , where Un ∈ Zh.

With the choice v = Ĕn, and using (q,∇ · Ĕn) = 0, ∀q ∈ Ph, equation (3.18)
becomes

(En − En−1, Ĕn) + ∆tA(Ĕn, Ĕn) + ∆t
(

b∗(Ĕn, ŭn, Ĕn) + b∗(ŭn
h, Ĕn, Ĕn)

)

= −(Λn − Λn−1, Ĕn) − ∆tA(Λ̆n, Ĕn) − ∆t
(

b∗(Λ̆n, ŭn, Ĕn) + b∗(ŭn
h, Λ̆n, Ĕn)

)

+∆t(p̆n − q,∇ · Ĕn) + ∆t Intp(un, pn; Ĕn) ,
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i.e.,

1

2

(

‖En‖2 − ‖En−1‖2
)

+ ∆t
(

ν‖∇Ĕn‖2 + χ‖Ĕn ∗‖2
)

(3.19)

= −∆t b∗(Ĕn, ŭn, Ĕn) − (Λn − Λn−1, Ĕn) − ∆tA(Λ̆n, Ĕn)

−∆t
(

b∗(Λ̆n, ŭn, Ĕn) + b∗(ŭn
h, Λ̆n, Ĕn)

)

+∆t(p̆n − q,∇ · Ĕn) + ∆t Intp(un, pn; Ĕn) .

Next we estimate the terms on the RHS of (3.19).

Using b∗(u,v,w) ≤ C(Ω)
√

‖u‖ ‖∇u‖ ‖∇v‖ ‖∇w‖, for u, v, w ∈ X, and Young’s
inequality,

b∗(Ĕn, ŭn, Ĕn) ≤ C‖Ĕn‖1/2 ‖∇Ĕn‖3/2 ‖∇ŭn‖(3.20)

≤ ν

10
‖∇Ĕn‖2 + C ν−3‖Ĕn‖2‖∇ŭn‖4 .

By choosing U to be the L2 projection of u in Zh, i.e. (u−U,v) = 0 for all v ∈
Zh we have

(3.21) (Λn − Λn−1, Ĕn) = 0 .

A(Λ̆n, Ĕn) = ν(∇Λ̆n,∇Ĕn) + χ (Λ̆n − GN
¯̆
Λn, Ĕn)(3.22)

≤ ν

10
‖∇Ĕn‖2 + C ν‖∇Λ̆n‖2 + χδ2N+2‖BΛ̆n‖‖BĔn‖

≤ ν

10
‖∇Ĕn‖2 + C ν‖∇Λ̆n‖2 + χ

1

2
(Λ̆n − GN

¯̆
Λn, Λ̆n) + χ

1

2
‖Ĕn ∗‖2

≤ ν

10
‖∇Ĕn‖2 + C ν‖∇Λ̆n‖2 + χ

1

4
‖Λ̆n − GN

¯̆
Λn‖2

+χ
1

4
‖Λ̆n‖2 + χ

1

2
‖Ĕn ∗‖2.

b∗(Λ̆n, ŭn, Ĕn) ≤ C

√

‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖ ‖∇Ĕn‖(3.23)

≤ ν

10
‖∇Ĕn‖2 + ν−1 C ‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖2 .

b∗(ŭn
h, Λ̆n, Ĕn) ≤ ν

10
‖∇Ĕn‖2 + ν−1 C ‖ŭn

h‖ ‖∇ŭn
h‖ ‖∇Λ̆n‖2 .(3.24)

(p̆n − q,∇ · Ĕn) ≤ ‖p̆n − q‖ ‖∇ · Ĕn‖(3.25)

≤ ν

10
‖∇Ĕn‖2 + ν−1 C ‖p̆ − q‖2 .
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Substituting (3.20)-(3.25) into (3.19), and summing from n = 1 to l (assuming
that ‖E0‖ = 0), we have

‖El‖2 + ∆t

l
∑

n=1

ν‖∇Ĕn‖2 + ∆tχ

l
∑

n=1

‖Ĕn ∗‖2(3.26)

≤ ∆t
l
∑

n=1

C ν−3‖∇ŭn‖4‖Ĕn‖2 + 2∆t
l
∑

n=1

C ν‖∇Λ̆n‖2

+ ∆t χ
1

2

(

l
∑

n=1

‖Λ̆n − GN
¯̆
Λn‖2 +

l
∑

n=1

‖Λ̆n‖2

)

+ 2∆t

l
∑

n=1

C ν−1
(

‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖2 + ‖ŭn
h‖ ‖∇ŭn

h‖ ‖∇Λ̆n‖2
)

+ 2∆t
l
∑

n=1

C ν−1‖p̆n − q‖2

+ 2∆t

l
∑

n=1

|Intp(un, pn; Ĕn)| .

The next step in the proof is to bound the terms on the RHS of (3.26). We have
that

2∆t

l
∑

n=1

C ν‖∇Λ̆n‖2 ≤ 2∆t C ν

l
∑

n=0

‖∇Λn‖2 ≤ 2C ν ∆t

l
∑

n=0

h2k|un|2k+1(3.27)

≤ 2C ν h2k‖|u|‖2
2,k+1 .

Using (2.10), and that GNG is a bounded operator from L2(Ω) → L2(Ω),

∆t χ
1

2

(

l
∑

n=1

‖Λ̆n − GN
¯̆
Λn‖2 +

l
∑

n=1

‖Λ̆n‖2

)

(3.28)

≤ C∆t χ

l
∑

n=1

‖Λ̆n‖2 + ∆t χ

l
∑

n=1

‖GNGΛ̆n‖2

≤ C∆t χ

l
∑

n=0

‖Λn‖2 + ∆t χ

l
∑

n=1

CN‖Λ̆n‖2

≤ C∆t χ
l
∑

n=0

C h2k+2|un|2k+1 + ∆t χ CN

l
∑

n=0

‖Λn‖2

≤ C χ h2k+2∆t

l
∑

n=0

|un|2k+1

≤ C χ h2k+2‖|u|‖2
2,k+1 .
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For the term

2∆t

l
∑

n=1

C ν−1‖Λ̆n‖ ‖∇Λ̆n‖ ‖∇ŭn‖2(3.29)

≤ C ν−1 ∆t
l
∑

n=1

(

‖Λn‖ ‖∇Λn‖ + ‖Λn−1‖ ‖∇Λn−1‖

+ ‖Λn−1‖ ‖∇Λn‖ + ‖Λn‖ ‖∇Λn−1‖
)

‖∇ŭn‖2

≤ C ν−1 h2k+1

(

∆t

l
∑

n=1

|un|2k+1 ‖∇ŭn‖2

+ ∆t
l
∑

n=1

|un|k+1|un−1|k+1 ‖∇ŭn‖2 + ∆t
l
∑

n=1

|un−1|2k+1 ‖∇ŭn‖2

)

≤ C ν−1 h2k+1

(

∆t

l
∑

n=0

|un|4k+1 + ∆t

l
∑

n=0

‖∇un‖4

)

= C ν−1 h2k+1
(

‖|u|‖4
4,k+1 + ‖|∇u|‖4

4,0

)

.

Using the a priori estimate for ‖un
h‖, (3.8),

2∆t

l
∑

n=1

C ν−1
(

‖ŭn
h‖ ‖∇ŭn

h‖ ‖∇Λ̆n‖2
)

(3.30)

≤ C ν−1 ∆t
l
∑

n=1

‖∇ŭn
h‖ ‖∇Λ̆n‖2

≤ C ν−1 ∆t

l
∑

n=1

(

‖∇Λn‖2 + ‖∇Λn−1‖2
)

‖∇ŭn
h‖

≤ C ν−1 h2k ∆t

l
∑

n=1

(

|un|2k+1 + |un−1|2k+1

)

‖∇ŭn
h‖

≤ C ν−1 h2k

(

∆t
l
∑

n=0

‖un‖4
k+1 + ∆t

l
∑

n=1

‖∇ŭn
h‖2

)

≤ C ν−1 h2k
(

‖|u|‖4
4,k+1 + ν−1 (‖|f |‖2

2,0 + ‖u0
h‖2)

)

.

From (6.1),

2∆t

l
∑

n=1

C ν−1‖p̆n − q‖2 ≤ C ν−1 ∆t

l
∑

n=1

‖pn−1/2 − q‖2 + ‖p̆n − pn−1/2‖2(3.31)

≤ C ν−1

(

h2s+2 ∆t

l
∑

n=1

‖pn−1/2‖2
s+1 + ∆t

l
∑

n=1

1

48
(∆t)3

∫ tn

tn−1

‖ptt‖2 dt

)

≤ C ν−1
(

h2s+2 ‖|p1/2|‖2
2,s+1 + (∆t)4 ‖ptt‖2

2,0

)
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We now bound the terms in Intp(un, pn; Ĕn). Using (6.1),(6.2),(6.3),

(

dtu
n − u

n−1/2
t , Ĕn

)

(3.32)

≤ 1

2
‖Ĕn‖2 +

1

2
‖dtu

n − u
n−1/2
t ‖2

≤ 1

2
‖En‖2 +

1

2
‖En−1‖2 +

1

2

(∆t)3

1280

∫ tn

tn−1

‖uttt‖2 dt ,

(p̆n − pn−1/2,∇ · Ĕn) ≤ ǫ1ν‖∇Ĕn‖2 + C ν−1‖p̆n − pn−1/2‖2(3.33)

≤ ǫ1ν‖∇Ĕn‖2 + C ν−1 (∆t)3

48

∫ tn

tn−1

‖ptt‖2 dt ,

(fn−1/2 − f̆n, Ĕn) ≤ 1

2
‖Ĕn‖2 +

1

2
‖fn−1/2 − f̆n‖2(3.34)

≤ 1

2
‖En‖2 +

1

2
‖En−1‖2 +

(∆t)3

48

∫ tn

tn−1

‖ftt‖2 dt ,

A(ŭn − un−1/2, Ĕn) = ν(∇(ŭn − un−1/2) ,∇Ĕn)(3.35)

+χ ((ŭn − un−1/2) − GN (ŭn − un−1/2) , Ĕn)

≤ ǫ2ν ‖∇Ĕn‖2 + C ν‖∇(ŭn − un−1/2)‖2 + χ
1

4
‖Ĕn ∗‖2

+χ
(

(ŭn − un−1/2) − GN (ŭn − un−1/2), ŭn − un−1/2
)

≤ ǫ2ν ‖∇Ĕn‖2 +
χ

4
‖Ĕn ∗‖2 + C ν

(∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt

+χ
1

2
δ4N+4‖B2(ŭn − un−1/2)‖2 + χ

1

2
‖ŭn − un−1/2‖2

≤ ǫ2ν ‖∇Ĕn‖2 +
χ

4
‖Ĕn ∗‖2 + C ν

(∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt

+C χδ4N+4 (∆t)3
∫ tn

tn−1

‖utt‖2 dt + C χ(∆t)3
∫ tn

tn−1

‖utt‖2 dt ,
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where in the estimate for the last term, in the last step, we use that B is a bounded
operator from L2 → L2 and (6.1).

b∗(ŭn, ŭn, Ĕn) − b∗(un−1/2,un−1/2, Ĕn)(3.36)

= b∗(ŭn − un−1/2, ŭn, Ĕn) + b∗(un−1/2, ŭn − un−1/2, Ĕn)

≤ C ‖∇(ŭn − un−1/2)‖ ‖∇Ĕn‖
(

‖∇ŭn‖ + ‖∇un−1/2‖
)

≤ C ν−1
(

‖∇ŭn‖2 + ‖∇un−1/2‖2
) (∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt + ǫ3ν‖∇Ĕn‖2

≤ C ν−1 (∆t)3

48

(

∫ tn

tn−1

2(‖∇ŭn‖4 + ‖∇un−1/2‖4) dt

+

∫ tn

tn−1

‖∇utt‖4 dt

)

+ ǫ3ν‖∇Ĕn‖2

≤ C ν−1 (∆t)4(‖∇ŭn‖4 + ‖∇un−1/2‖4)

+C ν−1 (∆t)3
∫ tn

tn−1

‖∇utt‖4 dt + ǫ3ν‖∇Ĕn‖2 .

Combining (3.32)-(3.36) we have that

2∆t
l
∑

n=1

|Intp(un, pn; Ĕn)| ≤ ∆t C
l
∑

n=0

‖En‖2 + ∆t χ
1

2

l
∑

n=1

‖Ĕn ∗‖2(3.37)

+ (ǫ1 + ǫ2 + ǫ3)∆t ν

l
∑

n=0

‖∇Ĕn‖2

+C(∆t)4
(

‖uttt‖2
2,0 + ν−1‖ptt‖2

2,0 + ‖ftt‖2
2,0 + ν‖∇utt‖2

2,0

+ ν−1‖∇utt‖4
4,0 + ν−1‖|∇u|‖4

4,0 + ν−1‖|∇u1/2|‖4
4,0

+ χ δ4N+4‖utt‖2
2,0 + χ‖utt‖2

2,0

)

.

Thus, with (3.27)-(3.31) and (3.37), from (3.26) we obtain

‖El‖2 + ∆t

l
∑

n=1

ν‖∇Ĕn‖2 + ∆t χ
1

2

l
∑

n=1

‖Ĕn ∗‖2(3.38)

≤ ∆t
l
∑

n=0

C( ν−3‖∇ŭn‖4 + 1)‖En‖2

+Cν−1
(

h2k‖|u|‖4
4,k+1 + h2k+1‖|∇u|‖4

4,0 + h2s+2‖|p1/2|‖2
2,s+1

)

+Cν−1 h2k(‖|f |‖2
2,0 + ‖u0

h‖2) + C χ h2k+2‖|u|‖2
2,k+1 + C ν h2k‖|u|‖2

2,k+1

+C(∆t)4
(

‖uttt‖2
2,0 + ν−1‖ptt‖2

2,0 + ‖ftt‖2
2,0

+ ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

+ χ δ4N+4‖utt‖2
2,0 + χ‖utt‖2

2,0

)

.
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Hence, with ∆t sufficiently small, i.e. ∆t < C(ν−3‖|∇u|‖4
∞,0 +1)−1, from Gron-

wall’s Lemma (see (3.7), we have

‖El‖2 + ∆t
l
∑

n=1

ν‖∇Ĕn‖2 + ∆t χ
1

2

l
∑

n=1

‖Ĕn ∗‖2(3.39)

≤ Cν−1
(

h2k‖|u|‖4
4,k+1 + h2k+1‖|∇u|‖4

4,0 + h2s+2‖|p1/2|‖2
2,s+1

)

+Cν−1 h2k(‖|f |‖2
2,0 + ‖u0

h‖2) + C χ h2k+2‖|u|‖2
2,k+1 + C ν h2k‖|u|‖2

2,k+1

+C(∆t)4
(

‖uttt‖2
2,0 + ν−1‖ptt‖2

2,0 + ‖ftt‖2
2,0

+ ν‖∇utt‖2
2,0 + ν−1‖∇utt‖4

4,0

+ ν−1‖|∇u|‖4
4,0 + ν−1‖|∇u1/2|‖4

4,0

+ χ δ4N+4‖utt‖2
2,0 + χ‖utt‖2

2,0

)

.

Estimate (3.11) then follows from the triangle inequality and (3.39).
To obtain (3.12), we use (3.39) and

‖∇
(

un+1/2 − (un
h + un−1

h )/2
)

‖2 ≤ ‖∇(un+1/2 − ŭn)‖2 + ‖∇Λ̆n‖2 + ‖∇Ĕn‖2

≤ (∆t)3

48

∫ tn

tn−1

‖∇utt‖2 dt + Ch2k|un|2k+1 + Ch2k|un−1|2k+1 + ‖∇Ĕn‖2 .

Corollary 3.1. Under the assumptions of Lemma 2.2 and Theorem 3.1 we have
that

‖|w − uh|‖∞,0 ≤ C2e
C1 ν−3/2 ‖w‖2

4,1 χ1/2 δN+1 ‖Bw‖∞,0(3.40)

+F(∆t, h, δ, χ) + Chk+1‖|u|‖∞,k+1

with F(∆t, h, δ, χ) defined as in Theorem 3.1.

Proof : Equation (3.40) follows immediately from Lemma 2.2, Theorem 3.1, and
the triangle inequality.

4. A Numerical Illustration

We study herein a simple, underresolved flow with recirculation: the flow across
a step. The most distinctive feature of this flow is a recirculating vortex behind the
step, see Figure 4.1 for illustration.
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Figure 4.1. NSE at T = 40, ν = 1/600 and level 3 grid
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Figure 4.2. SM at T = 40, ν = 1/600, δ = 1.5 and level 1 grid

We will study a flow in the transition via shedding of eddies behind the step
using Navier-Stokes equations + Time Relaxation, i.e. (2.4)-(2.6) with N = 0 (
NSE + TR0 ), (2.4)-(2.6) with N = 1 ( NSE + TR1 ) and NSE + nonlinear Time
Relaxation with N = 0 (NSE + NTR0), [10]. We will compare these models with
a LES model - the Smagorinsky model. The difference between NSE + TR0 and
NSE + NTR0 is in the time relaxation term which has the form:

χ|u − u|(u − u)

in the NSE + NTR0. In this notation, by | · | we mean the Euclidean norm of
the corresponding vector. We used χ = 0.01 in the computations presented in this
section. The only difference between the Navier-Stokes equations (NSE) and the
Smagorinsky model (NSE + SMA) is in the viscous term, which has the following
form:

∇ · ((2ν + csδ
2||D(u)||F )D(u)) .

Here, cs is a positive constant (usually cs ∼ 0.01, see [18]), D(u) is the deformation
tensor and || · ||F denotes the Frobenius norm of a tensor. We used cs = 0.01 in
the computations presented in this section. Although the Smagorinsky model is
widely used, it has some drawbacks. These are well documented in the literature,
e.g. see [20]. For instance, the Smagorinsky model constant cs is an á priori input
and this single constant is not capable of representing correctly various turbulent
flows. Another drawback of this model is that it introduces too much diffusion into
the flow, e.g., see [19] or Figure 4.2.

Figure 4.3. Boundary conditions

The domain of the two-dimensional flow across a step is presented in Figure 4.3.
We present results for a parabolic inflow profile, which is given by u = (u1, u2)

T
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, with u1 = y(10 − y)/25, u2 = 0. No-slip boundary condition is prescribed on
the top and bottom boundary as well as on the step. At the outflow we have “do
nothing” boundary condition, an accepted outflow condition in CFD.

The computations were performed on various grids. For instance, for the fully
resolved NSE simulation, which is our “truth” solution, we used a fine grid level
3, with number of degrees of freedom Ndof = 41502, whereas much coarser grids
(level 0 with Ndof = 2072 and level 1 with Ndof = 6903) have been used for NSE
+ TR0, NSE + TR1, NSE + NTR0 and NSE + SMA. The point is obviously to
compare the performance of the various options in underresolved simulations by
comparison against a “truth”/fully-resolved solution.

Figure 4.4. Mesh at level 1

The computations were performed with the software FreeFem++; see [17] for
its description. The models were discretized in time with the Crank Nicolson (an
implicit scheme of second order) and in space with the Taylor Hood finite-element
method, i.e., the velocity is approximated by continuous piecewise quadratics and
the pressure by continuous piecewise linears. The coarse grid level 1 which was
used in the computations is given in Figure 4.4. The background color represents
the norm of the velocity vectors.
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Figure 4.5. NSE + TR0 at T = 50, ν = 1/600, δ = 1.5 and
level 1 grid

The results pictured in Figure 4.5 give strong, although admittedly very prelim-
inary, support for the general form of the Time Relaxation. Comparing the Figures
4.7, 4.8, 4.9, 4.10 with 4.6 we conclude that the NSE + TR0, NSE + TR1 and NSE
+ NTR0 tests replicate the shedding of eddies and the Smagorinsky eddy remains
attached. Clearly, the Smagorinsky model is too stabilizing: eddies which should
separate and evolve remain attached and attain steady state. However, regarding
the main point of study, the effects of the Time Relaxation on the truncation of
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scales, it is clear that this approach of regularization of NSE improved the simu-
lation results for this transition problem. On the coarsest grid level 0 (see Figure
4.11) we obtained that NSE+NTR0 gives the best results out of all time relaxation
forms tested on the grid level 1. Further studies and tests of this approach are thus
well merited!
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Figure 4.6. NSE at ν = 1/600 and level 3 grid
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Figure 4.7. NSE + SM at ν = 1/600, δ = 1.5 and level 1 grid



664 V. ERVIN, W. LAYTON, AND M. NEDA

0 10 20 30 40
0

2

4

6

8

10
 T=10 

0 10 20 30 40
0

2

4

6

8

10
 T=20

0 10 20 30 40
0

2

4

6

8

10
 T=30 

0 10 20 30 40
0

2

4

6

8

10
T=40

Figure 4.8. NSE + TR0 at ν = 1/600, δ = 1.5 and level 1 grid
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Figure 4.9. NSE + TR1 at ν = 1/600, δ = 1.5 and level 1 grid
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Figure 4.10. NSE + NTR0 at ν = 1/600, δ = 1.5 and level 1 grid
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Figure 4.11. NSE+SM (left) and NSE+NTR0 (right) at ν =
1/600, δ = 3.0, level 0 grid

5. Influence of Time Relaxation on Shocks

When one passes from the incompressible, viscous Navier-Stokes equations to
the compressible, inviscid Euler equations, the new physical phenomenon of shocks
is introduced. Often a first idea of the behavior of a model or numerical method
when shocks are present is developed by considering the model or numerical method
applied to 1-d conservation laws (or even Burger’s equation) in the absence of
boundaries. For such equations a clear understanding for the correct behavior of
the shock is well known. We follow this precedent and consider the shock position,
velocity, and jump conditions of solutions to

wt +
∂

∂x
q(w) + χw′ = 0 , −∞ < x < ∞ , t > 0 ,(5.1)

w(x, 0) = w0(x) , −∞ < x < ∞ .(5.2)
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Here χ > 0 (and we intend to compare the χ > 0 case to the χ = 0 case),
w′ := w − w̄, and w̄ is the differential filtered function −δ2w̄xx + w̄ = w, given
explicitly by

(5.3) w̄(x, t) =
1

2δ

∫ ∞

−∞

e−|x−y|/(2δ) w(y, t) dy .

Stolz, Adams and Kleiser [1], [13], [14], [15] have shown in extensive tests that
χ > 0 does not alter the shock speed from χ = 0 in (5.1),(5.2). We give in this
section a theoretical justification for this result of Stolz, Adams and Kleiser.

Definition 5.1. Let QT := IR × [0, T ].
(1) φ is a test function if φ ∈ C∞(QT ) with compact support ⊆ QT .
(2) w is a weak solution of (5.1),(5.2) if for any test function φ,

(5.4)

∫

QT

w φt dx dt +

∫

IR
w0(x) φ(x, 0) dx +

∫

QT

q(w)
∂

∂x
φ + χ w (φ− φ̄) dx dt = 0 .

If w is a weak solution of (5.1),(5.2) with χ = 0, the Rankine-Hugoniot jump
condition at the shock can be calculated by an argument which is well known for
conservation laws, e.g. see [21], [22]. The results is that if Γ is the shock curve
X = X(t) and [·] denotes the jump across Γ of the indicated variable then

(5.5) [w]
dX

dt
= [q(w)] , or, shock speed =

dX

dt
=

[q(w)]

[w]
.

We now (briefly – since it is standard) review this argument for χ > 0 and verify
that the same relation (5.5) holds for any χ > 0.

Consider a test function φ with support strictly inside QT and which crosses a
curve of discontinuity Γ. Partition the support(φ) into that lying to the left of Γ,
denoted DL, that lying to the right of Γ, denoted DR, and I the portion of Γ inside
support(φ),

support(φ) = DL ∪ I ∪ DR .

Split the integral over QT (which can be restricted to the support(φ)) into integral
over DL, DR, and I. Integrate by parts the integrals over DL and DR. This gives,
letting wL / R denote the left and right limits of w on I, and n = [nx , nt]

T the unit
normal on Γ pointing from DL to DR,

0 = −
∫

DL

(

wt +
∂

∂x
q(w) + χ(w − w̄)

)

φ dx dt

+

∫

I

(

wL φ nt + q(wL)φ nx

)

ds

−
∫

DR

(

wt +
∂

∂x
q(w) + χ(w − w̄)

)

φ dx dt

−
∫

I

(

wR φ nt + q(wR)φ nx

)

ds .

The integrals over DL and DR vanish, and the remaining integrals over I can be
grouped to yield the jump terms

∫

I

(

(wL − wR)nt + (q(wL) − q(wR))nx

)

φ ds = 0 .

No jump terms arise from the time relaxation as the χ w term requires no integration
by parts and w̄ is continuous across I when w has a jump discontinuity across I.
Since Γ is the shock curve X = X(t), the shock speed is dX/dt = −nt/nx and
(5.5) follows.
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The above is a calculation. To complement it we give now a more intuitive
explanation. Note that by the definition of w̄, ( −δ2w̄xx + w̄ = w ), w′ =
w − w̄ = −δ2w̄xx. Thus (5.1) can be rewritten in conservation law form (with a
modified flux)

wt +
∂

∂x

(

q(w) − χ δ2w̄x

)

= 0 .

The shock speed is then formally

shock speed =
[q(w) − χ δ2 w̄x]

[w]
.

For w piecewise continuous, by (5.3), w̄x will be continuous. Thus [q(w)−χ δ2 w̄x] =
[q(w)] and the shock speeds are unchanged. Clearly, modification of a conservation
law’s flux function by something continuous across the shock will not alter shock
speeds. Thus, we would expect averaging by second order differential filters, or by
convolution with C1 filter kernels, in (5.1) not to effect shock speeds (while filtering
with a top-hat filter might).

6. Appendix

Lemma 6.1.

(6.1)
∥

∥

∥
ŭn − un−1/2

∥

∥

∥

2

≤ 1

48
(∆t)3

∫ tn

tn−1

‖utt‖2
dt .

Proof of Lemma 6.1:
∥

∥

∥
ŭ

n − u
n−1/2

∥

∥

∥

2

=

∥

∥

∥

∥

1

2
(un + u

n−1) − u
n−1/2

∥

∥

∥

∥

2

=
1

4

∫

Ω

[

∫ tn

tn−1/2

utt(·, t) (tn − t) dt +

∫ tn−1/2

tn−1

utt(·, t) (t − tn−1) dt

]2

dx

≤
1

4

∫

Ω

2

[(

∫ tn

tn−1/2

utt(·, t) (tn − t) dt

)2

+

(

∫ tn−1/2

tn−1

utt(·, t) (t − tn−1) dt

)2]

dx

≤
1

2

∫

Ω

[

∫ tn

tn−1/2

(utt(·, t))
2

dt

∫ tn

tn−1/2

(tn − t)2 dt

+

∫ tn−1/2

tn−1

(utt(·, t))
2

dt

∫ tn−1/2

tn−1

(t − tn−1)
2
dt

]

dx

=
1

2

∫

Ω

[

1

3

(

∆t

2

)3 ∫ tn

tn−1/2

(utt(·, t))
2

dt +
1

3

(

∆t

2

)3 ∫ tn−1/2

tn−1

(utt(·, t))
2

dt

]

dx

=
1

48
(∆t)3

∫

Ω

∫ tn

tn−1

(utt(·, t))
2

dt dx

=
1

48
(∆t)3

∫ tn

tn−1

‖utt‖
2

dt .

Lemma 6.2.

(6.2)
∥

∥

∥
dtu

n − u
n−1/2
t

∥

∥

∥

2

≤ 1

1280
(∆t)3

∫ tn

tn−1

‖uttt‖2
dt .
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Proof of Lemma 6.2:

∥

∥

∥
dtu

n − u
n−1/2
t

∥

∥

∥

2

=

∥

∥

∥

∥

1

∆t
(un − u

n−1) − u
n−1/2
t

∥

∥

∥

∥

2

=

(

1

4 ∆t

)2 ∫

Ω

[

∫ tn

tn−1/2

uttt(·, t) (tn − t)2 dt +

∫ tn−1/2

tn−1

uttt(·, t) (t − tn−1)
2
dt

]2

dx

≤

(

1

4 ∆t

)2 ∫

Ω

2

[(

∫ tn

tn−1/2

uttt(·, t) (tn − t)2 dt

)2

+

(

∫ tn−1/2

tn−1

uttt(·, t) (t − tn−1)
2
dt

)2]

dx

≤ 2

(

1

4∆t

)2 ∫

Ω

[

∫ tn

tn−1/2

(uttt(·, t))
2

dt

∫ tn

tn−1/2

(tn − t)4 dt

+

∫ tn−1/2

tn−1

(uttt(·, t))
2

dt

∫ tn−1/2

tn−1

(t − tn−1)
4
dt

]

dx

= 2

(

1

4∆t

)2 ∫

Ω

[

1

5

(

∆t

2

)5 ∫ tn

tn−1/2

(uttt(·, t))
2

dt

+
1

5

(

∆t

2

)5 ∫ tn−1/2

tn−1

(uttt(·, t))
2

dt

]

dx

=
1

1280
(∆t)3

∫

Ω

∫ tn

tn−1

(uttt(·, t))
2

dt dx

=
1

1280
(∆t)3

∫ tn

tn−1

‖uttt‖
2

dt .

For the vector u, u(i), i = 1, . . . d́, denotes the ith component of the vector.

Lemma 6.3.

(6.3)
∥

∥

∥
∇(ŭn − un−1/2)

∥

∥

∥

2

≤ (∆t)3

48

∫ tn

tn−1

‖∇utt‖2
dt .

Proof of Lemma 6.3:

∥

∥

∥
∇(ŭn − u

n−1/2)
∥

∥

∥

2

=
1

4

∫

Ω

∇

{

∫ tn

tn−1/2

utt(·, t) (tn − t) dt +

∫ tn−1/2

tn−1

utt(·, t) (t − tn−1) dt

}

: ∇

{

∫ tn

tn−1/2

utt(·, t) (tn − t) dt +

∫ tn−1/2

tn−1

utt(·, t) (t − tn−1) dt

}

dx
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interchanging differentiation and integration

=
1

4

∫

Ω

{

∫ tn

tn−1/2

∇utt(·, t) (tn − t) dt +

∫ tn−1/2

tn−1

∇utt(·, t) (t − tn−1) dt

}

:

{

∫ tn

tn−1/2

∇utt(·, t) (tn − t) dt +

∫ tn−1/2

tn−1

∇utt(·, t) (t − tn−1) dt

}

dx

=

d́
∑

i,j=1

1

4

∫

Ω

(

∫ tn

tn−1/2

u
i
ttxj

(·, t) (tn − t) dt +

∫ tn−1/2

tn−1

u
i
ttxj

(·, t) (t − tn−1) dt

)2

dx

≤

d́
∑

i,j=1

1

4

∫

Ω

2

[(

∫ tn

tn−1/2

u
i
ttxj

(·, t) (tn − t) dt

)2

+

(

∫ tn−1/2

tn−1

u
i
ttxj

(·, t) (t − tn−1) dt

)2]

dx

≤

d́
∑

i,j=1

1

4

∫

Ω

2

[

∫ tn

tn−1/2

(

u
i
ttxj

(·, t)
)2

dt

∫ tn

tn−1/2

(tn − t)2 dt

+

∫ tn−1/2

tn−1

(

u
i
ttxj

(·, t)
)2

dt

∫ tn−1/2

tn−1

(t − tn−1)
2
dt

]

dx

=

d́
∑

i,j=1

1

4

∫

Ω

2
1

3

(

∆t

2

)3 ∫ tn

tn−1

(

u
i
ttxj

(·, t)
)2

dt dx

=
(∆t)3

48

∫ tn

tn−1

‖∇utt‖
2

dt .
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