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SHOOTING METHODS FOR NUMERICAL SOLUTIONS OF
EXACT CONTROLLABILITY PROBLEMS CONSTRAINED BY
LINEAR AND SEMILINEAR 2-D WAVE EQUATIONS

SUNG-DAE YANG

This paper is dedicated to Max Gunzburger on the occasion of his 60th birthday

Abstract. Numerical solutions of exact controllability problems for linear and
semilinear 2-d wave equations with distributed controls are studied. Exact
controllability problems can be solved by the corresponding optimal control
problems. The optimal control problem is reformulated as a system of equa-
tions (an optimality system) that consists of an initial value problem for the
underlying (linear or semilinear) wave equation and a terminal value problem
for the adjoint wave equation. The discretized optimality system is solved
by a shooting method. The convergence properties of the numerical shooting
method in the context of exact controllability are illustrated through compu-

tational experiments.
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1. Introduction

In this paper, we consider an optimal distributed control approach for solving the
exact distributed controllability problem for two-dimensional linear or semilinear
wave equations defined on a time interval (0,7), and spatial domain € in R?. The
exact distributed controllability problem we consider is to seek a distributed control
fin L2((0,T) x Q) and a corresponding state u such that the following system of
equations hold:

ug —Au+P(uw)=f inQ=(0,T)xQ,

u‘t=0 =w and ut|t=0 =z in Q,

(1.1)

gz =W and wili=r =2 in Q,
’U/‘QQ =0 in (O,T),

where w and 2 are given initial conditions defined on Q, W € L?(Q2) and Z €
H~1(Q) are prescribed terminal conditions, f in L2((0,T) x Q) is the distributed
control, and ¥(u) is a given function on R.

The exact boundary controllability problems are well known for linear and semi-
linear cases; see e.g.,[5, 14, 15, 17, 18, 20, 21, 23, 24]. In these problems there are
basically two classes of computational methods in the literature. The first class is
known Hilbert Uniqueness Method (HUM); see, e.g., [9, 11, 14, 16, 22]. The ap-
proximate solutions obtained by the HUM-based methods in general do not seem
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to converge (even in a weak sense) to the exact solutions as the temporal and
spatial grid sizes tend to zero. Methods of regularization including Tychonoff regu-
larization and filtering that result in convergent approximations were introduced in
those papers on HUM-based methods. The second class of computational methods
for boundary controllability of the linear wave equation was those based on the
method proposed in [10]. One solves a discrete optimization problem that involves
the minimization of the discrete boundary L? norm subject to the undetermined
linear system of equations formed by the discretization of the wave equation and
the initial and terminal conditions. This approach was implemented in [8]. The
computational results demonstrated the convergence of the discrete solutions when
the exact minimum boundary L? norm solution is smooth. In the generic case of a
non-smooth exact minimum boundary L? norm solution the computational results
of [8] exhibited at least a weak L? convergence of the discrete solutions.

In this paper we develop an alternate numerical method which allows us to apply
distributed or boundary control to the exact controllability problems. Ultimately
we test the exact boundary controllability problems, but it is beyond the work, and
we will present the result in a separate paper. The results in [19] were limited to the
one dimensional case. In this paper, we extend those results to the two dimensional
case.

We will study numerical methods for optimal control and controllability prob-
lems associated with the linear and semilinear wave equations. We are particu-
larly interested in investigating the relevancy and applicability of high performance
computing (HPC) for these problems. As a prototype example of optimal control
problems for the wave equations we consider the following distributed optimal con-
trol problem: choose a control f and a corresponding u such that the pair (u, f)
minimizes the cost functional

o " B O)dx s ) dx
J(u,f)_z/o /QK(u)dxdt—i—Q [ @1 (u(T.x))a —1—2/Q<I>2(ut(T, ) d

1 /T )
+ = |f]* dx dt
2 Jo Ja

subject to the wave equation

ug —Au+P(uw)=f inQ=(0,T)xQ,
(1.3) ulgo =0, in (0,7),

u(0,x) = w(x) and u(0,x) = z(x) in .

Here Q is a bounded spatial domain in R? (d = 1 or 2 or 3) with a boundary 9Q; f
is a distributed control and u is the corresponding state. Also, K, ® and ¥ are C*
mappings (for instance, we may choose K(u) = (u—U)?, ¥(u) =0, ¥(u) = u® —u
and U (u) = e*, ®1(u) = (w(T,x)—W)?%, &3(u) = (u(T,x)— Z)?, where U, W, Z are
target functions). Moreover we assume that initial conditions w and z are smooth
enough to be well defined the given problem; see e.g.,[4]. Also we suppose that
nonlinearity ¥(u) does not alter the regularity of the solution in the wave equation.

Of particular interest to us is the case of large «, 8 and ~y; our computational
experiments of the proposed numerical method will be performed exclusively for
this case. Our interest in this case stems from the fact that the optimal control
problem can be viewed as an approximation to the exact distributed controllability
problem (1.1).

Such control problems are classical ones in the control theory literature; see, e.g.,
[12] for the linear case and [13] for the nonlinear case regarding the existence of

(1.2)
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optimal solutions as well as the existence of a Lagrange multiplier £ satisfying the
optimality system of equations. However, numerical methods for finding discrete
(e.g., finite element and/or finite difference) solutions of the optimality system
are largely limited to gradient type methods which are sequential in nature and
generally require many iterations for convergence. The optimality system involves
both initial value and terminal value problems at ¢ = 0 and ¢ = T and thus cannot
be solved by marching in time. Direct solutions of the discrete optimality system,
of course, are bound to be expensive computationally in 2 or 3 spatial dimensions
since the problem is (d + 1) dimensional (where d is the spatial dimension.)

The computational algorithms we propose here are based on shooting methods
for two-point boundary value problems for ordinary differential equations (ODEs);
see, e.g., [2, 3, 6, 7]. The algorithms we propose are well suited for implementation
on a parallel computing platform such as a massive cluster of cheap processors.

The rest of this paper is organized as follows. In Section 2 we establish the
equivalence between the limit of optimal solutions and the minimum distributed
L? norm exact controller; this justifies the use of the optimal control approach
for solving the exact controllability problem. In Section 3 we formally derive the
optimality system of equations for the optimal control problem and discuss the
shooting algorithm for solving the optimality system. In Section 4 we state the
discrete version of the shooting algorithm for solving the discrete optimality system.
Finally in Sections 5 we present computations of certain concrete controllability
problems by the shooting method for solving optimal control problems.

2. The solution of the exact controllability problem as the limit of opti-
mal control solutions

We can consider the exact distributed controllability problem (1.1) as the limit of
a sequence of optimal control problem. Under suitable assumptions on f, and using
Lagrange multiplier rules, we have the corresponding optimal control problem:

(2.4) minimize (1.2) with respect to the control f subject to (1.3).

The solution to the constrain equations (1.3) is understood in the following weak
sense: for any v € C2([0,T]; H*(2) N H} (),

/ / (v — Av) dxdt+/ / vdxdt+/v|t:TZ(x)dx

/v|t Ozdx—/W ) (Opv) |1= de+/(w8tv)|t 0dx=0.

In this section we establish the equivalence between the limit of optimal solu-
tions and the minimum distributed L? norm exact controller. We will show that if
a — 00, 3 — 00 and ¥ — oo, then the corresponding optimal solution (Uagy, fasy)
converges weakly to the minimum distributed L? norm solution of the exact dis-
tributed controllability problem (1.1). The same is also true in the discrete case.

Theorem 2.1. Assume that the exact distributed controllability problem (1.1) ad-
mits a unique minimum distributed L? norm solution (Uex, fox). Assume that for
every (a, B8,7) € Ry x Ry x Ry (where Ry is the set of all positive real numbers,)
there exists a solution (uagy, fapy) to the optimal control problem (2.4). Then

(2.6) [ faprllz2@) < [l fexllL2(@) V(a,B,7) €ERy xRy xRy .
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Assume, in addition, that for a sequence {(n, Bn,Yn)} satisfying a,, — 0o , By —
oo and Yy, — 00,

uanﬁn'Yn —u Zn L2 (Q) a’nd

(2.7) N 72 2 1 *
V(ta,p,r,) = W(@) in L7(0,T; [H(2) N Hy ()]").

Then

(2.8) fanBun = fox in LQ(Q) and Ua, 8, ~, — Uex i1 LQ(Q) asn — oo.

Furthermore, if (2.7) holds for every sequence {(cu,, Bn,vn)} satisfying o, — oo,
Bn — o0 and 7y, — oo, then

(2.9) fapy = fex i LQ(Q) and Uagy — Uex N L2(Q) as a, 3,7 — 0.

Proof. Since (tagy, fapy) is an optimal solution, we have that
o g gl
5 ltapy = Ullzz(@) + S lltasy(T) = WLz () + 5 10itapy (T) = Zlla-10)

1 1
+ §||faﬁ'yHL2(Q) = j(uaﬁ'wfaﬁ'y) < j(uex7fex) = §||fex||L2(Q)
so that (2.6) holds,
(2.10) Uapyli=r — W in L*(Q)  and  (Qptapy)|i=r — Z in H1(Q),

as a, 3,7 — 00. Let {(an, Bn,¥n)} be the sequence in (2.7). Estimate (2.6) implies
that a subsequence of {(an, Bn,7n)}, denoted by the same, satisfies

(2.11) Sanborn = Fin L*(Q) and  |[fllr2q) < Ifexllz2(q) -

(waBy, fapy) satisfies the initial value problem in the weak form:

T T
/ / Uapy (Ve — Av) dx dt + / / [V (Uapy) — fapylvdxdt
0 Q 0 Q
(2.12) + / (vOruasy)|t=T dx — / V|i=0z dx — / (UaBy0tV) 1= dx
Q Q Q

Jr/(w@tv)\tzodx:() Yo e C2([0,T); H2(Q) N HL(Q)).
Q

Passing to the limit in (2.12) as «, 8,7 — oo and using relations (2.10) and (2.11),

we obtain:
T T B
/0 /Qﬂ(vtthv)dxdtJr/O /Q[\Il(ﬂ)—f]vdxdt
+/qu\t:TZ(x) dxf/th:Ozdxf/QW(x)(atv)|t:de
+/(w5‘tv)|t:0dx:0 Vo e C*([0,T); H*(Q) N HY ().
Q

The last relation and (2.11) imply that (%, f) is a minimum distributed L? norm
solution to the exact controllability problem (1.1). Hence, & = ey and f = foy SO
that (2.8) and (2.9) follows from (2.7) and (2.11). O

Remark 2.2. If the wave equation is linear, i.e., U = 0, then assumption (2.7) is
redundant and (2.9) is guaranteed to hold. Indeed, (2.12) implies the boundedness
of {lluapyllz2(@)} which in turn yields (2.7). The uniqueness of a solution for the
linear wave equation implies (2.7) holds for an arbitrary sequence {(n, Bn,Yn)}-
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Theorem 2.3. Assume that i) for every (a,8,7) € Ry x Ry x Ry there exists a
solution (Uagy, fapy) to the optimal control problem (2.4);
il) the limit terminal conditions hold:

(2.13) Uapy|t=T — W in L*(Q) and (Oyttapy)|i=r — Z in H™(Q)
as a? 6’ ,7 — 0 ;

iii) the optimal solution (Uag~, fapy) satisfies the weak limit conditions as o, 3,7y —
00:

(2.14) fapy = F in L*(Q), uapy — 1 in L*(Q),
and
(2.15) U(uapy) — W(@) in L2(0,T; [H*(Q) N HH(Q)]*)

for some f € L*(Q) and w € L*(Q). Then (T, f) is a solution to the exact dis-
tributed controllability problem (1.1) with f satisfying the minimum distributed L?
norm property. Furthermore, if the solution to (1.1) admits a unique solution
(Uex, fex), then

(2.16) fapy = fex in LZ(Q) and Uagy — Uex N Lz(Q) as a, B3,y — 00.

Proof. (uagy, fapy) satisfies (2.12). Passing to the limit in that equation as «, 8,y —
oo and using relations (2.13), (2.14) and (2.15) we obtain:

/OT/QE(Utt — Av) dxdt+/0T/Q[\IJ(@)_7]vdxdt

—|—/Qv\t:TZ(x) dx—/Qv|t:0zdx—/QW(X)(atv)h:de
+/(w8tv)|t:0dX:0 Vo e C*([0,T); H*(Q) N Hy ().
Q

This implies that (%, f) is a solution to the exact distributed controllability problem
(L.1).

To prove that f satisfies the minimum distributed L? norm property, we proceeds
as follows. Let (uex, fex) denote an exact minimum distributed L? norm solution to
the exact controllability problem (1.1). Since (uagy, fagy) is an optimal solution,
we have that

o g gl
§Huaﬁ'y - U”%%Q) + §||uaﬂ'y(T) - W”%%Q) + §||atuaﬁ'v(T) - ZH?{*KQ)

1 1
+ §||f045’7H%2(Q) = T (vapy; fapy) < T (tex, fex) = §||fex||%2(Q)

so that

I fapr 132y < lfexlF2(o) -
Passing to the limit in the last estimate we obtain

(2.17) £ 72q) < fexlZoqq) -

Hence we conclude that (@, f) is a minimum distributed L? norm solution to the
exact distributed controllability problem (1.1).

Furthermore, if the exact controllability problem (1.1) admits a unique minimum
distributed L2 norm solution (tey, fex), then (T, f) = (tex, fox) and (2.16) follows
from assumption (2.14). O

Remark 2.4. If the wave equation is linear, i.e., ¥ = 0, then assumptions i) and
(2.15) are redundant.
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Remark 2.5. Assumptions ) and iii) hold if fasy and uapgy converges pointwise
as a, 3,y — 0o.

Remark 2.6. A practical implication of Theorem 2.3 is that one can prove the exact
controllability problem for semilinear wave equations by examining the behavior of
a sequence of optimal solutions (recall that exact controllability problem was proved
only for some special classes of semilinear wave equations.) If we have found a
sequence of optimal control solutions {(Ua,, B+ fanBnye)} Where 0, Bn,Yn — 00
and this sequence appears to satisfy the convergence assumptions i) and iii), then
we can confidently conclude that the underlying semilinear wave equation is exactly
controllable and the optimal solution (Ua, 8,~,: fanBuy.) When n is large provides a
good approximation to the minimum distributed L? norm exact controller (tex, fox)-

3. An optimality system of equations and a continuous shooting method

Under suitable assumptions on f and through the use of Lagrange multiplier
rules, the optimal control problem

(3.18) minimize (1.2) with respect to the control f subject to (1.3)

may be converted into the following system of equations from which an optimal
solution may be determined:

uy —Au+T(u)=f inQ=(0,T)xQ,
ulgo =0 in (0, )

u(0,x) = w(x) and u(0,x) = 2(x) in Q,
Eoe — AL+ [V (u)]"€ = %K/(U) in @,
Elon=0 inQ,

§(T,x) = —FAH(®y(w(T,x))) inQ,
&(T,x) = - 5@ (u(T,x)) inQ,

f+&=0 @,

where the elliptic operator A : HE(Q) — H~(Q) is defined by Av = Aw for all
v € HE (). By eliminating f in the system the optimality system may be simplified
as

(3.19)

upg —Au+V(u)=—€¢ inQ=(0,T)xQ,
ulpo =0 in (0,7),

u(0,x) = w(x) and us(0,x) = 2(x) inQ,
(3.20) Eoo — AL+ [V (u)]"€ = %Kl(u) in @,
floa =0 inQ,

E(T,x) = =3 A H(P2(ue(T,x))) inQ,
&(T,x) = - 20| (w(T,x)) inQ.

Derivations and justifications of optimality systems are discussed in [12] for the
linear case and in [13] for the semilinear case.

The computational algorithm we propose in the paper is a shooting method for
solving the optimality system of equations. The basic idea for a shooting method
is to convert the solution of an initial-terminal value problem into that of a purely
initial value problem (IVP); see, e.g., [2] for a discussion of shooting methods for
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systems of ordinary differential equations. The IVP corresponding to the optimality
system (3.20) is described by

utt—Au—&—\IJ(u) =—¢ mQ=(0,T)xQ,
uloo =0 in (0,7),

u(0,x) = ()andut(Ox)—z() in Q,
S — AL+ [W(u)]"¢ = 5K (u)  inQ,
{lon =0 inQ,
£(0,x) = w(x) and £(0,x) =0(x) in 2,

with unknown initial values w and €. Then the goal is to choose w and # such that
the solution (u, &) of the IVP (3.21) satisfies the terminal conditions

Fi(w,0) = AE(T, ) + %@’2(@”@7 2)) =0,

B & _
§<I>1(u(T, x))=0.

(3.21)

(3.22)
F(w,0) =&(T,z) +

A shooting method for solving (3.20) consists of the following main steps:

choose initial guesses w and ;
for iter = 1,2,--- , maxiter
solve for (u,§) from the IVP (3.21)
update w and 0:
(WP, 7% = (w, 0) — [F'(w, )]~ F (w, 0);
if F'(w™eW, 6"V) = 0, stop; otherwise, set (w, ) = (W™, W),
A criterion for updating (w, #) can be derived from the terminal conditions (3.22).
A method for solving the nonlinear system (3.22) (as a system for the unknowns w
and #) will yield an updating formula and here we invoke the well-known Newton’s
method to do so. Also, a discrete version of the algorithm must be used in actual
implementations. For ease of exposition we describe in detail a particular problem.
We apply a shooting algorithm based on Newton’s method with finite difference
discretizations in two space dimension. A discussion of Newton’s method for an
infinite dimensional nonlinear system can be found in many functional analysis
textbooks, and for the suitable assumption convergence of Newton iteration for the
optimality system is guaranteed.

4. The discrete shooting methods for 2D control problems

Assume Q = [0, X]| x [0, Y] C R2. The basic idea for a shooting method in 2D is
exactly the same as in 1D;see, e.g., [19]. In two dimensional case, we replace u; by
Au. Lagrange multiplier rules provide the same optimality system of equations as
in the previous section except the replacement part. Thus the IVP corresponding
to the optimality system (3.20) is described by

uge — Au+ \I/(u) =—¢ in@Q=(0,T) % ([0,X] x[0,Y]),
ulpo =0 in (0,T),

u(0,x) = ( ) and u¢(0,x) = 2(x) in [0, X] x [0,Y],
S — AL+ [V (W)]"¢ = §K'(u) nQ,
€lon =0 in[0,X]x[0,Y],
£(0,x) = w(x) and &(0,x) = 6(x) in [0, X] x [0,Y],

(4.23)
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with unknown initial values w and €. Then the goal is to choose w and 6 such that
the solution (u, &) of the IVP (4.23) satisfies the terminal conditions

(424) S(Ta X) = 7’;A71((I)I2(ut(Ta X))) and gt(Tv X) = 7§@/1 (U(T, X)) :

In two dimension, we discretize the spatial interval [0, X] x [0,Y] into 0 = 2o <
xl<x2<x3<---<x1+1:X,0:y0<y1<y2<y3<-~-<yJ+1:YWith
a uniform spacing h, = X/(I +1), h, = Y/(J + 1) respectively, and we divide the
time horizon [0, 7] into 0 =1 < to < t3 < --- < ty =T with a uniform time step
length 6 = T/(N — 1). We use the central difference scheme to approximate the
initial value problem (4.23): For i =1,2,--- ,I, j=1,2,--- ,J,

1o 2 o - 1 2 _ ¢l
Ui = Wig, uij—w”—i—&z”, gij_wmv gij_gij+§91j7

ultt = T A (ul gl )+ 2(1 = A — Ayl
(425) +)‘ ( 1] 1+u1]+1) 52571 762 ( zg)
f;;—‘rl = _gin’_l + )\ (61 1,5 + £z+1 j) + 2(1 - - )glj

+A (51] 1+£1j+1)+5 ( ) 52[ ( Z])] Z‘a

where A, = (6/hs)?, Ay = (6/hy)? (we also use the convention that uf; = &% = 0
ifi=0orI+1lorj=0o0rj=J+1.) A discrete shooting method concentrates

on the discrete terminal conditions: For ¢ =1,2,--- | I, j =1,2,--- ,J,
iy 1—%+%’( Ny=o,
(4.26) Fagpy = ( i1~ ig IRAS N &1 2%] +§m+1)
PlaptB Tt _§ug§1) ~0,

where (ij)* is a reordering of the nodes with respect to X,Y except boundary
points.

Let W(X) = {(.Ul,CUQ, e 7w1.]*} - {UJll,ng, e 7wIJ} ) and H(X) = {61,027 e ,HIJ*} =
{611,021, -+ ,075} where [J* =1 -J. By denoting

n
m = 01, w2, 0 010 = O
i)k = Q(ij)*k(wlv 1wz, b2, wrge, Org) = .
n Ou
Tlijy ke = Ty r Wi, 01, w2, 02, -+ s wr g+, Opg+) = 56,
k
ocn
n n v
Pligyk = Py (W1, 01, w2, 02, wr, 015) = 275
k
e =71 0 0 0 2
T(ij)*k - T(ij)*k(wla 1,W2,02, - ,Wrj*, IJ*) - 96, °
k
we may write Newton’s iteration formula as
T T
(W1, 07, Wy, 055 -+ WIS 0T )T = (w1, 01, w2, 02, ,wr g+, 015+)

— [F'(w1,01,w2,00, -+ ywrge,0r74 )] Fwr, 01, w2, 09, ,wrye, 07¢)
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where the vector F' and Jacobian matrix J = F” are defined by

& p

Foijy—1 = 75 + 2(1)’( ) =0,
N N N N N-1
_ z 1 5 §+1, ij—1 " 26;; + gi,‘+1 i Uij — Wij
FQ(”) = ( ] h2 J + J h2J J ) + 5(1)12( : (; ! ) = 07
x Y
N N—l
Plny ~ Pap; | B
Jagijy—1,26—1 = e Y 5 =+ §(I)lll(uﬁ)qgj)z ’
TN o TN._l
G~ Tay | B
Ja(ijy 1,2k = % + 2‘1’//( m)Té\z[J)k
N N N
. _ Py~ 2003y + Pli1,5)- N Plij—1)r ~ 2Pl + Plig+*
2(ij)*,2k—1 — h2 h2
x Y

— uN_l
" ] N N-1
+ 25‘1’ (= 5 Wi — ;)

Tiil’,* 27 *+T1+1 7'1’ 1 —orN *+7-Z 1)
Jaijye 2k = ( L) (2) (H1.g)r | ()" (2) (Li+1)"
hz h2
N _ N1
I/ 1] N N—1

2(5

Moreover, by differentiating (4.25) with respect to wy and 6, we obtain the
equations for determining qijy«x, 7(ij)«k»> P(ij)k and T(ij)=x:

Uijyer =0 ijyer =05 Tliper =05 T(ijyer =0,
p%ij)*k :5(ij)*k’ p%ij)*k :6(ij)*k’ ZaJ: 1723"' 717‘];
Tk =05 Tligyen = 005)n
+A (q(z j—1)*k + q(z,j+1 ) 6 p (¢5)
_52 ( 1j)q(7,])*k;a 7.]:1727"'717‘];
n+1l __ n
(ke = Ty T ATl gyon G gen) 200 = Ae = A1y
+ Ay (TG i1y T Tl 1)) — 5 T(ij)*k
=W (W)l i = 1,20 LT

r

Pliyete = —Pligyen + A (Plictjyon + Pliea jyok) T 201 = Aa = Ay)plijes
Xy (O gy + Pgnyei) + 02 S K (Wi allyye i — 320 ()]
= [ (gl =12, 1T
e = ~Tper T A (Tt ek + Thingyen) T 200 = Ao = AT
+A (T(ijl)*k + T(Ti j+1)*k) + 52%1{/(“%)7“&')*1@ - 52[‘I’I(UZ)]*P&')*1¢
— 07" ()l ek "€ i,j=1,2,---,1,.J;
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where d;; is the Chronecker delta. Thus, we have the following Newton’s-method-
based shooting algorithm:

Algorithm 2 — Newton method based shooting algorithm with Euler discretiza-
tions for distributed optimal control problems

choose initial guesses w;; and 6y, 4,5 =1,2,--- , 1, J;
% set initial conditions for v and &
fori,j=1,2,---,1,J

1 2
Uj; = Wij, u-j = wij + 0245,
U 2 ¢l

ij = Wijs +69117

% set initial condltlons for q(ijy«rs T(i5) k> Pli)* k> T(ij)*k
for k=1,2,--,(IJ)*
fori=1,2,--- 1
for j=1,2,---,J
Uipor =0 Qe =00 Tlajyer =00 7ijyer =0,
Plpyr =00 Plper =00 Thper =00 765 =0,
Pk = 1L, =1 T =6
% Newton iterations
form=1,2,--- M
% solve for (u,&)
forn=23,--- ,N—-1
u?j+1_ n1+)\(11j+u1+1j)+2(1_)\ _)‘y)u?]
+)\ ( 2] 1+u2]+1)

g’n-‘rl 7£n 1+>\ (z 1J+€l+1,j)+2(17>\ 7)\11) n

(%] 1] ()
+A (61] 1+£zj+1)+5 %K(U?) 52[ ( 7,])] 17;1
% solve for q,r, p, T
for j=1,2,---,1
form=23,--- ,N—-1
fori=2,---,N—1

n+1 _
Uipyer = Uiy T A (@1 yon T Wir o)

+2(1_)\m_)‘y)q(ij)*k+)‘y(q(i,jfl)*k+q(i,j+1)*k)
’52/)7(31)% — MW ()i

Tl = Tk Al gk + Tl gyn)
220 =2yt A G o1y k7))
_527'(7;‘]‘)% 52V (u Zj)r(”) s

n+1
Pliyk = —Pliy + A(Pl1 gy + Pl gyen)

+2(1 )\ —A ) zJ) k:—i_A (p(l_] 1)* k+p(z j+1)* k)
62&K,( ZJ)q(U) *k 62[\1’/( )] pz] 52[\11//( )qz]] YR
Tk = ek T ATl gyen + Tlirrgn)
2120 =) Ty F A (T 1)1y o)
RS~ )]ty (Y€l
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% (we need to build into the algorithm the following:

G =rf = =75 =0,
Q41 =TT = Pl = T141 = 0.)

% evaluate F and F’

fori,j=1,2,---,1,J
N—-1

Fyage 1 = S5 4+ faywh),
N-—-1

N R e R T IR S IR S L T uf—u
:( 1,5 h] +1,J_|_ J—1 hflj ,J+1)_|_’Y(I)/(f);

@

Fo(ig)-
for j=1,2,---,1

o _pN—l 5
(ij)*k Gij)*k B&!(, N
I #1

J2(ij)*—1,2k—1 = uij)q@]j)*ka

T(N')*k_"'(l\'jjlk ﬁ "
— (g ig)*
JQ(ij)*—LQk - 5 Q) ( Uij )T(’LJ) *ko

N N N
Torss _ (T(i—l,j)**QTW)**T(HLJ')*+T<i,y‘—1>**27<ij>*+'r(i,j+1>*)
2(ij)*,2k—1 — h2 h2
i Y/ u—ul ! N N-1
o Ui TUiy _ oN-
+ 25(1)2( 5 )(q(ij)z q(ij)z)’

N N N N N N
TG-1,0)* ~2TGn* T TG4 1.5* + TGg-1* ~2Tan* T TE+n* )
h2 h2

“‘ uN.*l !
+ (BT, — il

solve Jc = —F by Gaussian eliminations;
fori,j=1,2,---,1,J

JZ(ij)*,Qk = (

new
Wij = Wij + Co(ig)*—1>

O3 = 03 + caqijys

if max;; |wir™ — wij| + max; |07 — 0] < tol stop;

otherw1se reset w;j = w;™ and@w =0, i, =12,- 1 J;

As in the continuous case, we have the following convergence result for the shoot-
ing algorithm. This follows from standard convergence results for Newton’s method
applied to finite dimensional systems of nonlinear equations.

Remark 4.1. The algorithms we propose are well suited for implementations on a
parallel computing platform such as a massive cluster of processors. The shooting
algorithms of this chapter can be regarded as a generalization of their counterpart
for systems of ODE (see, e.qg., [2].) There has been a substantial literature on the
parallelization of shooting methods for ODEs [3, 6, 7]; these cited results will be
helpful in parallelizing the shooting algorithms of this chapter.

5. 2-d computational experiments for controllability of the wave equa-
tion

We will apply Algorithm 1 to the special cases of exact controllability problems
with generic target functions. In other words, we will approximate the exact con-
trollability problems for the wave equation by optimal control problems. We will
test our algorithm with a smooth example (i.e., the continuous minimum L? norm
controller f and the corresponding state u are smooth) and with a generic example.
The convergence properties of the numerical shooting method in the context of the
exact controllability problems are illustrated through computational experiments.
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We consider the examples of the following types. K(u) = 0 is a form for the
distributed target, ®1(u) = (u(T,x) — W)? and ®(u) = (u(T,x) — Z)? are for
the terminal time ones. Therefore we seek the pair (u, f) that minimizes the cost
functional

T §) =5 [ @) = WePdx+ ] [ fux) - 260 dx

2
e )
+ = |f(t,x)|° dx dt
2 Jo Ja

subject to the wave equation

(5.27)

ug —Au+P(uw)=f inQ=(0,T)xQ,
(528) u‘aQ = Oa in (OaT) )
u(0,x) = w(x) and u(0,x) = z(x) in Q,

where  C R2.

5.1. Examples of the linear cases. We choose Q = [0,1] x ([0, 1] x [0, 1]) in the
linear cases(i.e. W(u) = 0) in the examples I, II, and consider two sets of C°°(£2)
initial data:

1. w=1 and 2z=0,

and two sets of the target functions in the linear examples I, IT are

I. W=uz(x—1Dyly—1)cos(l) and Z=z(z—1)y(y—1)sin(1),

(530) 11 w= and  Z=0.

The linear examples I and II have the initial data in (5.29) and the corresponding
target functions in (5.30) respectively. Computational results carried out for § =
1/8,1/16,1/32,1/64 and h, = h, = 6/2 with an increasing sequence of § = v =
1,102,104, 10%. Numerical results are illustrated in figures 1,3, 4 for example I and
2, 5, 6 for example II. In order to visualize the convergence of our method as control
parameters tend to infinity, we provide two kinds of plots of the approximations;one
for the three dimensional graph, one for the snapshot. The three dimensional graphs
are given in figures 1, 2. For the snapshots, we provide several graphs with fixed y-
coordinates in order to observe the computational results easily, so called snap-shot.
At t = T, we present three graphs with y-coordinates 0.25, 0.5, and 0.75 from left
to right. It seems that our method produces (pointwise) convergent approximations
for example I, IT without the need for reqularization, but the approximations are
not in general convergent in a pointwise sense. Of course, approximations that
do not converge in a pointwise sense may be of little practical use, even if they
converge in a root mean square sense. Also, note that the results obtained by our
method behave very similarly to those obtained in [8]. Finally we simply denote
the approximate solutions and target functions by superscript h. For example,
u™(T,-),uf(T,-) mean the approximations of a given optimal control problem at
the terminal time with h = h, = hy and § = 2h. Similarly Wh, Z" will stand for
the approximations of the target functions at the given mesh size.
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FIGURE 1. Images of approximations for linear example I with
initial data 1 in (5.29);u™(T, ), u?(T,-)(left) compared with targets
W, Zh(right);0 = 1/64,h, = h, = /2 and =~ = 105 ..

FIGURE 2. Images of approximations for linear example II with
initial data 2 in (5.29);(u"(T, ), ul(T,-)(left) compared with tar-
gets W, Zh(vight);0 = 1/64,h, = h, = §/2 and 3 = v = 10°
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FIGURE 3. Image of u”(T,-),W" for linear example I with
initial data 1 in (5.29); each row corresponds to (0,8) =
(1/8,1),(1/16,10%), (1/32,10%), (1/64,10°) from top to bottom
respectively;y = 3, hy, = hy = 6/2; .: optimal solution u(T, ")
—: target function W".
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FIGURE 4. Image of u}(T,-),Z" for linear example 1 with

initial data 1 in (5.29); each row corresponds to (0,8) =
(1/8,1),(1/16,10%), (1/32,10%), (1/64,10°) from top to bottom
respectively;y = 3, hy, = hy = 6/2; .. optimal solution ul (T, )
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FIGURE 6. Image of u}(T,-),Z" for linear example II with

initial data 2 in (5.29);
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5.2. Examples of the semilinear cases. We will again apply Algorithm 1 to
the special case of W =0, Z =0, « =0 and 8,7 >> 1 in the semilinear examples
I, IT for the experiments of the null controllability, and to the generic case of target
functions with the same values of the parameters in the semilinear example III. If
the nonlinear term W(u) satisfies a certain property such as being asymptotically
linear or superlinear, then the exact controllability problem of system (1.1) can be
solvable;see, e.g., [23]. In this section, we examine the performance of our method
for the asymptotically linear and superlinear cases.

We choose @ = [0,2] x ([0,1] x [0,1]) in the semilinear examples I, II, III, and
consider three sets of semilinear term W (u):

L. (u) = uln®(u? 4 1)
1I. U(u) =sinu
III. U(u) =u® —u

(5.31)

associated with two sets of C'°°(€2) initial data:

(5.32) 1. w=0 and z=z(z—Dy(l—1y),
2. w=ux(r—1yly—1) and z=0.

The target functions in the semilinear examples I, IT are
W=0, Z=0,
and in the semilinear example III are
W =z(x—1yly —1)cos(l), Z=uz(x—1)y(y—1)sin(1).

Note that we choose T' = 2 for existence of control in the problems; see e.g.,
[14, 15, 20, 21, 22, 23, 24]. As the linear examples, computational results carried
out for 6 =1/8,1/16,1/32,1/64 and h, = h, = 6/2 with an increasing sequence
of B3 = v = 1,10%,10%,10% for the semilinear cases I, II, III. Numerical results
are illustrated in figures 7,8 for example I, in figures 9, 10 for example II, and in
figures 11, 12 for example III. Figures 7- 12 show that the computational results
for semilinear cases in term of the terminal matchings W, Z at t = T when control
parameters 3 and v are 10° in the full distributed controllability problems provide
the good approximations in each case. This is the similar behavior as the linear
case, i.e. the shooting method produces convergent (in L?(Q)) approximations
for semilinear example I, II and III without the need for regularization but the
approximations are not in general convergent in a pointwise sense. Of course,
approximations that do not converge in a pointwise sense may be of little practical
use, even if they converge in a root mean square sense.

Remark 5.1. Note that for the linear cases, the number of iterations of the shoot-
ing methods is just one since the Newton method finds the exact solution for one
iteration, but in practice it is about 2 or 3, according to the tolerance and the accu-
racy of the machines we used. The semilinear cases are different and we need more
iterations than the linear cases. However the number of iterations for semilinear
cases is not more than 4 iterations in the experiments when we apply the shooting
algorithm to the given examples.
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FIGURE 7. Images of sequence of u”(T,-) and target W" for
semilinear example I with initial data 1 in (5.31) with (6,8) =
(1/8,1),(1/16,102),(1/32,10%), (1/64,10°);y = B, hy = hy = 6/2;

U(u) = uln®(u? + 1).
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FIGURE 8. Images of sequence of uf(T,-) and target Z" for
semilinear example I with initial data 1 in (5.31) with (4,5) =
(1/8,1),(1/16,102), (1/32,10%), (1/64,10°);y = B3, hy = hy = 0/2;

U(u) = uln®(u® 4 1).
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FIGURE 9. Images of sequence of u”(T,-) and target W" for
semilinear example IT with initial data 1 in (5.31) with (4,8) =
(1/8,1),(1/16,102),(1/32,10%), (1/64,10°);y = B, hy = hy = 6/2;
U(u) = sinu.
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FIGURE 10. Images of sequence of uf(7T,-) and target Z” for
semilinear example IT with initial data 1 in (5.31) with (4,8) =
(1/8,1),(1/16,102),(1/32,10%), (1/64,10°);y = B, hy = hy = 6/2;
U(u) = sinu.
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FIGURE 11. Images of sequence of u"(T,-) and target W" for
semilinear example III with initial data 2 in (5.31) with (4,3) =
(1/8,1),(1/16,102),(1/32,10%), (1/64,10°);y = B, hy = hy = 6/2;
U(u) =u? — u.
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FIGURE 12. Images of sequence of ul'(T,-) and target Z" for
semilinear example III with initial data 2 in (5.31) with (4,3) =
(1/8,1),(1/16,102),(1/32,10%), (1/64,10°);y = B, hy = hy = 6/2;
U(u) =u? — u.
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6. Conclusion and remarks

In the paper, we discussed and successfully implemented shooting methods for
solving optimal control problems constrained by linear wave equations, semilinear
wave equations. The shooting algorithms for optimal control problems were also
utilized effectively to find approximate solutions to the exact controllability prob-
lems for these equations. Distributed controls in two dimensional case were treated.
The boundary control cases will be discussed in a separate paper. The convergence
of the algorithms were numerically demonstrated when the smooth target functions
are given.

However, a host of issues regarding this algorithm still need be addressed in
future work; these include other control objectives, a thorough study of parallel im-
plementations and a analysis of computing complexity, rigorous numerical analysis.
Moreover, we may consider generalizations to control other types of equations. For
example, we consider equations of linear and nonlinear elasticity. Wave equations
of the form (1.3) are special cases of PDE systems modeling elastic materials and
structures. It is of significant practical interest to study optimal control problems
for elasticity. We will attempt to extend the results of the tasks we applied into
numerical solutions of control problems for elasticity. We are confident about the
successes of research on such problems in one or two space dimensions. We are
currently working on these issues and will present the results in separate papers.
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