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STABILIZATION OF NAVIER-STOKES EQUATIONS BY
BOUNDARY FEEDBACK

S. S. RAVINDRAN

Abstract. In this paper, we consider the stabilization of steady state solutions

to Navier-Stokes equations by boundary feedback control. The feedback control

is determined by solving a linear quadratic regulator problem associated with

the linearized Navier-Stokes equations. The control is effected through suction

and blowing at the boundary. We show that the linear feedback control provides

global exponential stabilization of the steady state solutions to the Navier-

Stokes equations for arbitrary Reynolds number. This feedback is shown to

provide global stability in both L2 and H1-norms.
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1. Introduction

Control of fluid flows for the purpose of achieving some desired objective is crucial
to many technological and scientific applications. The invention fast micro devises
such as MEMS to actually implement these controls has increased the interest in
this area. Control design for fluid dynamical systems is hindered by the intrinsic
difficulties caused by the nonlinearity and infinite dimensionality of the Navier-
Stokes equations that govern fluid flows. In the recent past, great advances have
been made in theoretical and computational analysis of optimal control of fluids,
see for e.g. [7, 21, 8, 9, 6, 12, 17, 11, 3, 16].

In this article, we address the stabilization problem for viscous flows modeled by
the Navier-Stokes equations which has applications in turbulence and drag reduc-
tion. It is well-known that the steady state solutions to Navier-Stokes equations
might be unstable for high Reynolds number. Our objective here is to develop a
boundary feedback control to stabilize the steady solutions of Navier-Stokes equa-
tions in bounded domain. The control is effected through suction and blowing on
the boundary and we do not make any distinction in our analysis here as to wall
normal blowing and suction [16, 17] or tangential velocity actuation [18] as we did
in those computational analysis works. We wish to find a boundary control in feed-
back form on a part of the boundary so that the corresponding system with this
control substituted is globally exponentially stable for arbitrary Reynolds number.
Motivated by the Lyapunov stability theory for finite dimensional nonlinear ordi-
nary differential equations, we propose a linear feedback control using the algebraic
Riccati equation associated with an infinite time horizon linear quadratic regulator
(LQR) problem.
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In order to state our problem more precisely, consider the abstract evolution
problem

dy
dt

= F (y, g) , y(0) = y0 , (i)

where g(t) is the control and F : X × U → V is a nonlinear mapping. The
corresponding steady state problem is

F (ȳ, ḡ) = 0 . (ii)

Suppose (ȳ, ḡ) ∈ X × U is a given steady state solution of (ii). The problem of
stabilizing the unsteady solution y of (i) near the steady state solution ȳ with a
prescribed rate σ > 0 is to find the control g(t) such that the solution y(t) of the
unsteady problem with this g(t) satisfies

‖y(t)− ȳ‖ ≤ ce−σt , t ∈ (0,∞) . (iii)

The control g(t) is called feedback if there is an operator K : X → U such that
g(t) = K(y). The feedback stabilization problem that we consider here can be
formulated, for the above abstract evolution equation (i), as follows:
Given a steady-state solution (ȳ, ḡ) of (ii), find an operator K : X → U such that
the solution y(t) of the problem

dy
dt

= F (y,K(y)) , y(0) = y0 (iv)

satisfies (iii).
Our objectives are to first derive a feedback control using the theory of optimal
linear quadratic regulator over an infinite time horizon for the linearized Navier-
Stokes equations when the control is on the boundary and to show that the resulting
linear feedback control globally stabilizes the nonlinear closed-loop problem in the
sense stated above for arbitrary Reynolds number. In particular we will derive
stability estimates in both L2 and H1-norms.

Other related works that use optimal feedback control theory to flow stabiliza-
tion can be found in [3, 5]. In [3] robust feedback control is used for stabilization of
Navier-Stokes equations by distributed control on the whole domain. In [5], stabi-
lization by boundary control of two dimensional Euler equations for incompressible
flow is considered.

The paper is organized as follows. In the rest of this section, we present the
notations that we will use and the mathematical preliminaries we will need to
present our results in the sequel. In Section 2, we formulate our stabilization
problem. In Section 3, we present the feedback control design and study the stability
of the nonlinear closed-loop system. The stability analysis is carried out with the
help of Lyapunov techniques and Galerkin methods. In Section 4, we conclude the
paper.

1.1. Notation and Preliminaries. We introduce the following standard nota-
tions over a bounded, connected, open set Ω in R2 with boundary Γ ∈ C2. Let
n denote the unit normal vector to Γ. For p ∈ [1,∞), let Lp(Ω) denote the mea-
surable real-valued functions v on Ω for which

∫
Ω
|v(x)|pdx < ∞. In addition, let

L∞(Ω) denote the measurable real-valued functions that are bounded, or at least
essentially bounded. For v ∈ Lp(Ω), we may define

‖v‖p ≡
(∫

Ω

|v(x)|pdx
) 1

p

, for 1 ≤ p < ∞ ,

‖v‖∞ ≡ ess supx∈Ω|v(x)| .
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For p = 2, L2(Ω) is a Hilbert space under the scalar product

(u, v) ≡
∫

Ω

u vdx, u, v ∈ L2(Ω)

and the norm ‖u‖ ≡
√

(u, u) . Let

H1(Ω) =
{
v ∈ L2(Ω) :

∂v

∂xi
∈ L2(Ω) for i = 1, 2

}
,

H1
0 (Ω) = {v ∈ H1(Ω) : v|Γ = 0}

and

Hm(Ω) =
{
v ∈ L2(Ω) :

∂|α|v
∂xα1

1 ∂xα2
2

∈ L2(Ω), ∀α = (α1, α2) , |α| ≤ m
}

.

Here m > 0 is an integer. For the definition of fractional order Sobolev spaces
Hs(Ω) (s non-integer), see [1]. Negative ordered Sobolev spaces H−s(Ω) (s > 0) are
defined as the dual space, i.e., H−s(Ω) =

{
Hs(Ω)

}∗. Vector-valued counterparts
of these spaces are denoted by bold-face symbols, e.g., H1(Ω) = [H1(Ω)]d where
d = 2. We introduce the solenoidal spaces H(Ω) and V(Ω) as

H(Ω) = {u ∈ L2(Ω) : ∇ · u = 0 in Ω , u · n = 0 on Γ} ,

V(Ω) = {u ∈ H1
0(Ω) : ∇ · u = 0 in Ω} .

For functions that also depend on time, we introduce the space L2(0, T ; X) that
consists of square integrable functions from [0, T ] into the space X and which is
equipped with the norm (∫ T

0

‖f‖2Xdt

)1/2

.

Similarly we introduce the space C(0, T ;X) that consists of continuous functions
from [0, T ] into the space X and which is equipped with the norm

sup
t∈[0,T ]

‖f‖X .

We denote by A the Stokes operator, defined as an isomorphism from V onto the
dual V∗ of V such that, for u ∈ V, Au is defined by

〈Au,v〉 =
∫

Ω

∇u · ∇vdx ∀u,v ∈ V ,

where 〈·, ·〉 is the duality bracket between V∗ and V. It can be shown that D(A) =
H2(Ω)∩V. The Hodge orthogonal projector of the space L2(Ω) onto the divergence
free space H(Ω) is denoted by PH . The Stokes operator is related to PH by

Au = −PH(∆u) ∀u ∈ D(A).

Define a continuous trilinear form b(·, ·, ·) on V by

b(u,v,w) =
∫

Ω

(u · ∇)v ·wdx .

Then, by integration by parts, the following properties hold true

b(u,v,v) = 0 ∀u ∈ V , ∀v ∈ H1
0(Ω)

and
b(u,v,w) = −b(u,w,v) ∀u ∈ V, ∀v,w ∈ H1

0(Ω) .

We also define the bilinear mapping B by

〈B(u,v),w〉 = b(u,v,w) .
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The operator B is related to PH by

B(u,v) = PH((u · ∇)v) ∀u,v ∈ V .

It is well known that L2(Ω) = H⊕H⊥ , where H⊥ denotes the orthogonal comple-
ment of H and characterized by

H⊥ = {u ∈ L2(Ω) : u = ∇p , p ∈ H1(Ω)} .

1.2. Auxiliary Results. The estimates developed in this work involve several
standard inequalities that we summarize in this section for clarity. The Cauchy-
Schwarz inequality |(u, v)| ≤ ‖u‖‖v‖; Young’s inequality

ab ≤ ε

p
ap +

ε−
q
p

q
bq , 1 < p, q < ∞ ,

1
p

+
1
q

= 1 , a, b ≥ 0 .

Let Ω be any arbitrary two dimensional bounded domain with boundary Γ. If
u = 0 on Γ, then we have the Poincare inequality

‖u‖ ≤ λ
−1/2
1 ‖∇u‖ ∀u ∈ H1

0 (Ω) ,

where λ1 is the smallest positive eigenvalue of

∆u + λu = 0 in Ω , u = 0 on Γ .

In addition, we will use the following generalized Sobolev’s inequality [19, 15]:

‖w‖24 ≤
1√
2
‖w‖‖∇w‖ , ∀w ∈ V,

for any arbitrary two dimensional domain Ω.
We also recall the well known Gronwall’s lemma:

Lemma 1. If, for t0 ≤ t ≤ t1, φ(t) ≥ 0 and ψ(t) ≥ 0 are continuous functions
such that the inequality

φ(t) ≤ L1 + L2

∫ t1

t0

ψ(s)φ(s)ds

holds on t0 ≤ t ≤ t1, with L1 and L2 positive constants, then

φ(t) ≤ L1e
(L2

∫ t1
t0

ψ(s)ds)

on t0 ≤ t ≤ t1 .

2. Formulation of Flow Stabilization Problem

We consider a viscous incompressible fluid in Ω ⊂ R2, where Ω is a bounded open
domain with boundary Γ = ΓC ∪ ΓD. Let u(x, t) and p(x, t) denote the velocity
and pressure fields, respectively, and u0 the given initial velocity field. Moreover,
let b denote a specified boundary velocity. The initial boundary value problem
associated with the Navier-Stokes equations is then given by

(1)

∂u
∂t

− 1
Re

∆u + u · ∇u +∇p = 0 in Ω× (0,∞) ,

∇ · u = 0 in Ω× (0,∞) ,

u = b on ΓD × (0,∞) ,

u = l(t)h(x) on ΓC × (0,∞) ,

u(x, 0) = u0(x) in Ω .

These equations are non-dimensional and the only non-dimensional parameter is
the Reynolds number defined by Re = U0`0

ν , where ν, `0 and U0 are the kinematic
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viscosity, characteristic length and characteristic velocity, respectively. The func-
tion l(t)h(x) is the control input and the function h(x) is a distribution function
of control input at ΓC .

We consider the problem of stabilizing solutions near a given steady state solution
ud by means of feedback control defined on a part Γc of the boundary Γ. The control
is effected by suction and blowing as defined in (1).

Suppose we would like to stabilize the steady state solutions (ud, pd) satisfying

(2)

− 1
Re

∆ud + ud · ∇ud +∇pd = 0 in Ω ,

∇ · ud = 0 in Ω ,

ud = b on ΓD ,

ud = 0 on ΓC .

The task can be formulated as the following infinite time horizon optimal boundary
control problem. That is to find l(t), or, rather its time derivative g(t) = dl

dt such
that the cost functional

J (u, g) =
∫ ∞

0

[‖u− ud‖2 + γ |g|2] dt ,

is minimized. Here ud is a smooth desired field, γ > 0 is some given number and
the second term in the cost functional represents the cost of control forcing. We
will next rewrite this control problem as one that is amenable to LQR designs and
has the control in the right-hand side of the state equation.

We will use the following well-known boundary extension to handle the non-zero
boundary conditions, see for e.g. [14, 22, 20].

Proposition 1. Let the flux distribution satisfy h ∈ H3/2(Ω) and
∫
Γc

h · nds = 0.
Then ∀δ > 0, there exists ul ∈ H2(Ω) such that ∇ · ul = 0, ul|Γc = h and

(3) |b(z,ul, z)| ≤ δ‖∇z‖2 ,

for all z ∈ H1
0(Ω) such that ∇ · z = 0.

Let us now write the velocity field u(x, t) in the Navier-Stokes equations (1) as
u(x, t) = ud(x) + [w(x, t) + l(t)ul(x)]. We will then get the following equations for
w with homogeneous boundary condition
(4)

∂w
∂t

− 1
Re

∆w + w · ∇w + (ud · ∇w + w · ∇ud) + l(t)(w · ∇ul + ul · ∇w)

+∇(p− pd) = −l(t)(ul · ∇ud + ud · ∇ul − 1
Re∆ul)

−l2(t)ul · ∇ul + ul g(t) in Ω× (0,∞) ,

∇ ·w = 0 in Ω× (0,∞) ,

w = 0 on Γ× (0,∞) ,

w(x, 0) = u0 − l(0)ul(x) in Ω .

In terms of the new variable w, the cost functional J takes the form

(5) J (w, l, g) =
∫ ∞

0

[‖w(x, t) + l(t)ul(x)‖2 + γ|g|2] dt .
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Let us now apply the Hodge orthogonal projection, PH : L2(Ω) → H(Ω) to the
system (4) to get

(6)

dw
dt

+
1

Re
Aw + B(w,w) + B1(w) + lB2(w)

= f1 l + f2 l2 + f3 g , t ∈ (0,∞),

w(0) = w0 ,

where Bi ∈ L(V,H), for i = 1, 2, are defined by

(B1(w),v) = b(w,ud,v) + b(ud,w,v) ∀v ∈ H(Ω) ,

(B2(w),v) = b(w,ul,v) + b(ul,w,v) ∀v ∈ H(Ω) ,

fi ∈ H(Ω), for i = 1, 2, 3, are defined by

f1 = −PH(ud · ∇ul − 1
Re

∆ul + ul · ∇ud) ,

f2 = −PH(ul · ∇ul) , f3 = PH(ul) ,

and w0 ∈ H(Ω) is defined by w0 = PH(u0− l(0)ul(x)) . Setting y =
(

w
l

)
in (4)

and (5), we obtain the desired infinite time horizon optimal control problem

(7) min
g

{
J (y0, g) =

∫ ∞

0

[(y, Qy) + γ|g|2] dt

}
,

subject to the nonlinear equation

(8)
dy
dt +Ay + N(y) = B g(t) , t ∈ (0,∞) ,

y(0) = y0 ∈ H,

where

A =
(

1
Re A 0

0 1

)
, N(y) =

(
B(w,w) + B1(w) + l B2(w)− f1 l − f2 l2

−l

)

and

Q =
(

1 ul

ul u2
l

)
, B =

(
f3
1

)
.

Note that the weighting function Q can be any positive definite self-adjoint operator.
Suitable working function space for the problem is the Hilbert space H = H(Ω)×R.
The control set G is defined as

G =
{

g(t) ∈ R : |l(t)| ≤ l̂
}

for some l̂ > 0.

3. Feedback Control and Stability Results

3.1. LQR Feedback Control. The optimal linear quadratic regulator control
problem for the infinite dimensional Navier-Stokes system is to minimize

(9) J (y0, g)

over all controls g ∈ L2(0,∞; G) subject to the linear equation

(10)
dy
dt

+Ay = B g(t) , t ∈ (0,∞) ,

y(0) = y0 .
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Note that the input operator B ∈ L(G,H) and A : D(A) → H generates an analytic
semi-group on H.
Finite Cost Condition: For every y0 ∈ H, there exists g(t) ∈ L2(0,∞;G) such
that the cost function defined in (7) is finite.

Theorem 1. Let A and B be the operators defined above. There exists a self-
adjoint, nonnegative definite operator Π ∈ L(H,H) that satisfies the Algebraic
Riccati Equation (ARE)

(11) 〈Πy,Aw〉+ 〈Ay,Πw〉 − 1
γ
〈B∗Πy,B∗Πw〉+ 〈Qy,w〉 = 0 .

Moreover,
(i) 1

γB∗Π ∈ L(H, G) ,

(ii) J (y0, gopt) = 〈Πy0,y0〉 .
The LQR problem has a solution of the form

gopt = − 1
γ
B∗Πyopt,

where yopt is the corresponding solution to (9) with g = gopt.

Proof. We observe that since our problem satisfies the assumption (1.5) found on
[13] and the finite cost condition, the results follow from Theorem 2.1 in [13]. ¤

3.2. Stability Results. By employing the linear feedback control gopt = − 1
γB∗Πyopt

in the nonlinear evolution equation (8), we obtain the nonlinear closed-loop system

(12)
dy
dt

+ (A+ BK)y + N(y) = 0 , t ∈ (0,∞)

y(0) = y0 ,

where K : H → G is a bounded linear operator defined by K = 1
γB∗Π and BK ∈

L(H,H).

Definition 1. A function y =
(

w
l

)
∈ L2(0, T ;V)× L2(0, T ;R) is a weak solu-

tion of (12) if

(13) (
dy
dt

, φ) + (Ay, φ) + (BKy, φ) + (N(y),φ) = 0

is satisfied for all φ ∈ V × R and y(0) = y0 =
(

w(0)
l(0)

)
.

Let us next choose Π = β(BB∗)−1, where β ∈ R is a positive constant. It is easy
to check to see that it is a solution to ARE (11) for a suitable weight function Q.
For this choice of Π, the feedback control

g = −β

γ
B∗(BB∗)−1y

can be shown to be exponentially stabilizing. More precisely we will prove the
following regarding the closed-loop system (12).

Theorem 2. The followings results hold true for the closed-loop system (12) with
K = β

γB∗(BB∗)−1.
(i) For arbitrary initial data y0 ∈ H × R, there exists a unique weak solution



STABILIZATION OF NAVIER-STOKES EQUATIONS BY BOUNDARY FEEDBACK 615

y ∈ [L2(0,∞;V) ∩ L∞(0,∞;H)]× L2(0,∞;R) that satisfies the following stability
estimate

(14) ‖y‖ ≤ ‖y0‖e−σt .

(ii) For arbitrary initial data y0 ∈ V × R, there exists a unique weak solution
y ∈ [L2(0,∞;H2 ∩ V) ∩ L∞(0,∞;V)] × L2(0,∞;R) that satisfies the following
stability estimate

(15) ‖∇y‖ ≤ M(σ,Re, ‖y0‖, ‖∇y0‖)e−σt ,

where σ > 0.
The solutions in parts (i)-(ii) depend continuously on the initial data in the L2 −
norm.

Proof. Let us begin with the proof of the stability estimates followed by the exis-
tence and uniqueness results.
Proof of estimate (14):
The weak form equations (13) for y, taking as the test function φ = y, have the
form

(16) (
dy
dt

,y) + (Ay,y) + (BKy,y) + (N(y),y) = 0 .

There are several alternative forms for the time derivative term,

(
dy
dt

,y) =
1
2

d

dt
‖y‖2 = ‖y‖ d

dt
‖y‖ .

So by the definition of the operators A and A, we obtain

(17)
1
2

d

dt
‖y‖2 +

1
Re
‖∇w‖2 + l2 +

β

γ
‖y‖2 = −(N(y),y) .

Using the definition of the nonlinear mapping N(y), it holds that

(Ny,y) = (B(w,w),w) + (B1(w),w) + l(B2(w),w)− l(f1,w)− l2(f2,w)− l2 .

Due to the properties of the trilinear form b(·, ·, ·), we obtain

(18) (N(y),y) = lb(w,ul,w)− l(f1,w)− l2(f2,w)− l2 + b(w,ud,w) ,

since b(w,w,w) = b(ud,w,w) = b(ul,w,w) = 0. Let us next estimate the terms
in (18). Using the inequality (3), we obtain

|b(w,ul,w) ≤ 1
4Re

‖∇w‖2 .

Now using the well-known generalized Sobolev’s inequality,

‖w‖24 ≤
1√
2
‖w‖‖∇w‖ , ∀w ∈ V,

for any arbitrary two dimensional domain Ω, we obtain

|b(w,ud,w)| ≤
√

3‖w‖24‖∇ud‖ ≤
√

3/2‖w‖‖∇w‖‖∇ud‖ .

By Cauchy-Schwarz inequality, we obtain

|l(f1,w) + l2(f2,w)| ≤ |l|‖f1‖‖w‖+ |l2|‖f2‖‖w‖ .
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Using all these estimates in (18), it holds that

|(N(y),y)| ≤
√

3/2‖∇ud‖‖w‖‖∇w‖+ 1
4Re‖∇w‖2 + |l|‖f1‖‖w‖

+l2‖f2‖‖w‖+ l2

≤ 3Re‖∇ud‖2‖w‖2 + 1
4Re‖∇w‖2 + 1

4Re‖∇w‖2 + |l|‖f1‖‖w‖

+l2‖f2‖‖w‖+ l2

Using this in (17), it holds that

(19)

1
2

d
dt‖y‖2 + 1

2Re‖∇w‖2 + l2 + β
γ ‖y‖2 ≤ 3Re‖∇ud‖2‖w‖2 + |l|‖f1‖‖w‖

+l2‖f2‖‖w‖+ l2

≤ 3Re‖∇ud‖2‖y‖2 + ‖f1‖‖y‖2

+l̂‖f2‖‖y‖2 + l2 .

That is
1
2

d

dt
‖y‖2 +

1
2Re

‖∇w‖2 +
[
β

γ
− (3Re‖∇ud‖2 + ‖f1‖+ l̂‖f2‖)

]
‖y‖2 ≤ 0 .

Let us choose β large enough and define a constant σ = [β
γ − (3Re‖∇ud‖2 + ‖f1‖+

l̂‖f2‖)] > 0. For this σ, we have

(20) 1
2

d
dt‖y‖2 + 1

2Re‖∇w‖2 + σ‖y‖2 ≤ 0 .

Dropping 1
2Re‖∇w‖2 from the left-side of inequality (20) and integrating it from 0

to t yields

‖y‖ ≤ ‖y0‖ − σ

∫ t

0

‖y‖ds .

Finally by Gronwall’s lemma, we obtain the desired stability estimate (14) in L2-
norm:

‖y‖ ≤ ‖y0‖e−σt .

Proof of estimate (15):
We begin with the derivation of some auxiliary estimates which we will need in
the sequel. Dropping σ‖y‖2 from the left-side of equation (20), we obtain the
differential inequality

(21) 1
2

d
dt‖y‖2 + 1

2Re‖∇w‖2 ≤ 0 .

Integrating this from 0 to t, we obtain

‖y‖2 + 1
Re

∫ t

0
‖∇w‖2ds ≤ ‖y0‖2 .

Because of this inequality, it holds that

(22)
∫ t

0

‖∇w‖2ds ≤ Re‖y0‖2 .

Multiplying (21) by eσt and using the stability estimate (14), we obtain
d
dt (e

σt‖y‖2) + 1
Reeσt‖∇w‖2 ≤ σeσt‖y‖2 ≤ σe−σt‖y0‖2 .
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Integrating this inequality from 0 to t, it holds that

eσt‖y‖2 +
1

Re

∫ t

0

eσs‖∇w‖2ds ≤ (2− e−σt)‖y0‖2 .

Therefore we get the a priori estimate

(23)
∫ t

0

eσs‖∇w‖2ds ≤ Re‖y0‖2 .

Inner-product between (12) and (Aw, 0)T yields

(
dw
dt

, Aw) +
1

Re
‖Aw‖2 +

β

γ
(w, Aw) + (N(y), (Aw, 0)T ) = 0 .

It follows from the identity

(
dw
dt

,Aw) =
1
2

d

dt
(w, Aw) =

1
2

d

dt
‖∇w‖2

that

(24)
1
2

d

dt
‖∇w‖2 +

1
Re
‖Aw‖2 +

β

γ
‖∇w‖2 = −(N(y), (Aw, 0)T ) .

Using the definition of the nonlinear map N(·), we can write the right-hand side as

(25)

(N(y), (Aw, 0)T ) = b(w,w, Aw) + b(w,ud, Aw) + b(ud,w, Aw)

+l[b(w,ul, Aw) + b(ul,w, Aw)]− l(f1, Aw)

−l2(f2, Aw) .

Let us estimate the terms in the right-hand side of equation (25). Using Cauchy-
Schwarz and Young’s inequalities, we obtain

|l(f1, Aw) + l2(f2, Aw)| ≤ ‖f1‖|l|‖Aw‖+ |l|2‖f2‖‖Aw‖

≤ C0(Re)(|l|2 + |l|4) + 1
12Re‖Aw‖2 .

For the other terms, we have the following estimates. First we estimate the term

|b(w,w, Aw)| ≤ ‖w‖4‖∇w‖4‖Aw‖ .

We have the following estimate, see [14]:

‖∇w‖4 ≤ C‖w‖ 1
2 {‖∇v‖+ ‖D2w‖} 1

2 , ∀w ∈ H2(Ω) .

Therefore, by the properties of the Stokes operator, we obtain

‖∇w‖4 ≤ C‖∇w‖ 1
2 {‖∇w‖+ ‖Aw‖} 1

2 , ∀w ∈ H2(Ω) ∩V .

We thus obtain

|b(w,w, Aw)| ≤ C‖w‖ 1
2 ‖∇w‖ 3

2 ‖Aw‖+ C‖w‖ 1
2 ‖∇w‖‖Av‖ 3

2 .

Now, using Young’s inequality, we obtain

|b(w,w, Aw)| ≤ C1(Re)‖w‖‖∇w‖3 + C2(Re)‖w‖2‖∇w‖4 +
1

12Re
‖Aw‖2 .

Similarly, we obtain the estimates

|b(w,ud, Aw)| ≤ C3(Re)‖w‖2 +
1

12Re
‖Aw‖2 .

|b(w,ul, Aw)| ≤ C4(Re)‖w‖2 +
1

12Re
‖Aw‖2 ,
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|b(ul,w, Aw)| ≤ C5(Re)‖∇w‖2 +
1

12Re
‖Aw‖2 ,

and

|b(ud,w, Aw)| ≤ C6(Re)‖∇w‖2 +
1

12Re
‖Aw‖2 .

Using all these estimates in (25) yields

|(N(y), (Aw, 0)T )| ≤ C1(Re)‖w‖‖∇w‖3 + C2(Re)‖w‖2‖∇w‖4

+C3(Re)‖w‖2 + C4(Re)‖w‖2

+(C5(Re) + C6(Re))‖∇w‖2

+C0(Re){|l|2 + |l|4}+ 1
2Re‖Aw‖2 .

With the help of this estimate, it follows from (24) that

1
2

d
dt‖∇w‖2 + 1

2Re‖Aw‖2 + [β
γ − (C5(Re) + C6(Re))]‖∇w‖2

≤ {C1(Re)‖w‖‖∇w‖+ C2(Re)‖w‖2‖∇w‖2}‖∇w‖2

+(C3(Re) + C4(Re))‖w‖2 + C0(Re){|l|2 + |l|4}.

Let us choose β such that (β
γ − (C5(Re) + C6(Re)) > 0. Then, we obtain

1
2

d
dt‖∇w‖2 ≤ {C1(Re)‖w‖‖∇w‖+ C2(Re)‖w‖2‖∇w‖2}‖∇w‖2

+(C3(Re) + C4(Re))‖w‖2 + C0(Re){|l|2 + |l|4}.

Multiplying this by eσs and integrating from 0 to t yields

(26)

∫ t

0
eσs 1

2
d
ds‖∇w‖2ds ≤ ∫ t

0
eσs‖∇w‖2{C1(Re)‖w‖‖∇w‖

+C2(Re)‖w‖2‖∇w‖2}ds

+
∫ t

0
eσs(C3(Re) + C4(Re))‖w‖2

+eσsC0(Re){|l|2 + |l|4}ds .

We now estimate the last two terms in the right-hand side of inequality (26). Be-
cause of the stability estimate (14), it holds that

∫ t

0
eσs(C3(Re) + C4(Re))‖w‖2ds ≤ ∫ t

0
e−σs(C3(Re) + C4(Re))‖y0‖2ds

= (C3(Re) + C4(Re))‖y0‖2
σ (1− e−σt)

≤ (C3(Re) + C4(Re))‖y0‖2
σ .
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Similarly the right-most term in inequality (26) can be estimated as
∫ t

0
eσsC0(Re){|l|2 + |l|4}ds ≤ ∫ t

0
eσsC0(Re){‖y‖2 + ‖y‖4}ds

≤ C0(Re)
∫ t

0
{‖y0‖2e−σs + ‖y0‖4e−3σs}ds

≤ C0(Re)
σ [‖y0‖2(1− e−σt) + 1

3‖y0‖4(1− e−3σt)]

≤ C0(Re)
σ {‖y0‖2 + 1

3‖y0‖4} .

Using these two estimates in (26), we obtain
(27) ∫ t

0
eσs 1

2
d
ds‖∇w‖2ds ≤ ∫ t

0
eσs‖∇w‖2{C1(Re)‖w‖‖∇w‖

+C2(Re)‖w‖2‖∇w‖2}ds + (C3(Re) + C4(Re))‖y0‖2
σ

+C0(Re)
σ {‖y0‖2 + 1

3‖y0‖4} .

Denoting
h(s) ≡ 2(C1(Re)‖w‖‖∇w‖+ C2(Re)‖w‖2‖∇w‖2)

and

h0(σ,Re, ‖y‖0) ≡ 2((C3(Re) + C4(Re))
‖y0‖2

σ
+

C0(Re)
σ

{‖y0‖2 +
1
3
‖y0‖4}) ,

we can rewrite equation (27) as

(28)
∫ t

0
eσs d

ds‖∇w‖2ds ≤ h0 +
∫ t

0
eσs‖∇w‖2h(s)ds .

Integrating the identity

eσt d

dt
‖w‖2 =

d

dt
(eσt‖∇w‖2)− σeσt‖∇w‖2 .

from 0 to t yields

(29)
∫ t

0

eσs d

ds
‖∇w‖2ds = eσt‖∇w‖2 − ‖∇w0‖2 − σ

∫ t

0

eσs‖∇w‖2ds .

Combining equations (28) and (29), we get

(30) eσt‖∇w‖2 ≤ h0 + ‖∇w0‖2 + σ

∫ t

0

eσs‖∇w‖2ds +
∫ t

0

eσs‖∇w‖2h(s)ds .

Using the estimate (23) in the last estimate, it holds that

(31) eσt‖∇w‖2 ≤ [
h0 + ‖∇w0‖2 + σRe‖y0‖2

]
+

∫ t

0

eσs‖∇w‖2h(s)ds .

This is an integral inequality, so that by Gronwall’s lemma, it holds that

(32) eσt‖∇w‖2 ≤ [
h0 + ‖∇w0‖2 + σRe‖y0‖2

]
e
∫ t
0 h(s)ds .

Let us next estimate
∫ t

0
h(s)ds. By the definition of h(s), we obtain with the help

Poincare inequality that
∫ t

0

h(s)ds = 2
∫ t

0

(C1(Re)λ−1/2
1 + C2(Re)‖w‖2)‖∇w‖2 ds
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Using the estimate (14), we obtain

(33)

∫ t

0
h(s)ds ≤ 2

∫ t

0
(C1(Re)λ−1/2

1 + C2(Re)‖y0‖2)‖∇w‖2ds

= 2(C1(Re)λ−1/2
1 + C2(Re)‖y0‖2)

∫ t

0
‖∇w‖2ds .

Now applying the estimate (22), in the last equality we obtain

(34)
∫ t

0

h(s)ds ≤ h1(λ1, Re, ‖y0‖) ,

where
h1(λ1, Re, ‖y0‖) ≡ 2Re(C1(Re)λ−1/2

1 + C2(Re)‖y0‖2)‖y0‖2 .

Employing the estimate (34) in (32), we obtain

eσt‖∇w‖2 ≤ [
h0(σ,Re, ‖y0‖) + ‖∇w0‖2 + σRe‖y0‖2

]
eh1(λ1,Re,‖y0‖) .

Therefore we obtain the desired estimate (15)

‖∇w‖2 ≤ e−σt
[
h0(σ,Re, ‖y0‖) + ‖∇w0‖2 + σRe‖y0‖2

]
eh1(λ1,Re,‖y0‖) .

or by setting

M(σ, λ1, Re, ‖y0‖, ‖∇y0‖) ≡ [h0(σ,Re, ‖y0‖) + ‖∇w0‖2

+σRe‖y0‖2]eh1(λ1,Re,‖y0‖)

that
‖∇w‖2 ≤ M(σ, λ1, Re, ‖y0‖, ‖∇y0‖)e−σt .

Existence: We prove the existence of a weak solution by invoking the method of
Galerkin to approximate (13) by a finite dimensional problem. Let {ψi}∞i=1 be a
complete orthonormal set of eigenfunctions of A, i.e., the set {ψi}∞i=1 forms a Riesz
basis in D(A). Let Yl denote the finite dimensional space spanned by {ψi}l

i=1. We
now seek an approximate solution of (13) in the form

yl =
l∑

j=1

αl
j(t)ψj .

We require yl to satisfy (13) restricted to Yl, i.e.

(35)
(dyl

dt ,φ) + (Ayl, φ) + (BKyl, φ) + (N(yl), φ) = 0 , ∀φ ∈ Yl

yl(0) = yl
0 ,

where yl
0 denotes the projection of y0 on Yl, i.e., yl

0 =
∑l

j=1 y0jψj for y0 =∑∞
j=1 y0jψj . Taking k ≤ l and φ = ψk in (35), we obtain

dαl
k

dt
(t) +

l∑

i=1

akiα
l
i(t) +

β

γ
αl

k(t) +
l∑

i,j=1

ak,i,jα
l
i(t)α

l
j(t) = 0 , k = 1, . . . , l,

αl
k(0) = y0k .

This is a nonlinear system of ordinary differential equations for the functions
{αl

k(t)}l
k=1 and by the standard existence theory, there exists a unique solution

that exists on some time interval [0, Tl). In order to show that we can take T = Tl

and that we can let l →∞, we need to show the boundedness of αl
k(t). Replacing
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φ by yl in (35) and arguing as we did for the derivation of the a priori estimates
(14)-(15), we obtain

(36)

‖yl(t)‖ ≤ ‖yl
0‖e−σt ≤ ‖y0‖e−σt ,

and

∫ T

0
eσs‖∇yl(s)‖2ds ≤ M‖yl

0‖ ≤ M‖y0‖
for t ∈ [0, T ]. The next step in showing the existence is to show that a subse-
quence of approximating solutions {yl}∞l=1 converges to y as l → ∞. As a con-
sequence of the a priori estimates (36), {yl}∞l=1 is bounded in L2(0, T ;V) and
L∞(0, T ;H). Therefore there exists a subsequence {yl}∞l=1 such that yl con-
verges to y ∈ L2(0, T ;V)∩L∞(0, T ;H), albeit weakly in L2(0, T ;V) and weak∗ in
L∞(0, T ;H). But by compactness [14], we can obtain a subsequence that converges
to y strongly in L2(0, T ;H). We can use these convergence properties to prove that
the limiting function y is indeed a weak solution of (12). In fact we can show using
the standard arguments in the theory of Navier-Stokes equations that each term of
equation

(37) (dyl

dt ,φ) + (Ayl, φ) + (BKyl, φ) + (N(yl), φ) = 0 ,

converges to the corresponding term of equation

(38) (dy
dt , φ) + (Ay,φ) + (BKy, φ) + (N(y), φ) = 0 ,

as l →∞, except for the term β
γ (yl,φ). But by convergence of yl to y in L2(0, T ;H)

we have that
β

γ

∫ T

0

(yl, φ)dt → β

γ

∫ T

0

(y, φ)dt

as l →∞. This proves the existence of a weak solution to (12).

Continuous Dependence and Uniqueness: Let y1 and y2 be two solutions of
(13) corresponding to initial conditions y0

1 and y0
2, respectively. Let ỹ = y1 − y2

then ỹ satisfies

(39)
(dỹ

dt , φ) + (Aỹ, φ) + (BKỹ,φ) + (N(y1)−N(y2),φ) = 0 , ∀φ ∈ V × R ,

ỹ(0) = y0 .

Setting φ = ỹ in (39) and proceeding as before, we obtain

(40)
1
2

d

dt
‖ỹ‖2 +

1
Re
‖∇w̃‖2 + l̃2 +

β

γ
‖ỹ‖2 = −(N(y1)−N(y2), ỹ) .

By the definition of the nonlinear map N(·), we have

(41)

(N(y1)−N(y2), ỹ) = b(w1,w1, w̃)− b(w2,w2, w̃) + b(w1,ud, w̃)

+b(ud,w1, w̃)− b(w2,ud, w̃)− b(ud,w2, w̃)

+l1[b(w1,ul, w̃) + b(ul,w1, w̃)]

−l2[b(w2,ul, w̃) + b(ul,w2, w̃)]

−l̃(f1, w̃)− l21(f2, w̃) + (f2, w̃)l22 + l̃2 .
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Because of the properties of the trilinear form b(·, ·, ·), it follows that

(N(y1)−N(y2), ỹ) = b(w̃,w2, w̃) + b(w̃,ud, w̃)

+l̂b(w̃,ul, w̃)− l̃(f1, w̃)− l21(f2, w̃) + (f2, w̃)l22 + l̃2 .

The right-hand side of this equality can be mojorized as follows

(42)
|(N(y1)−N(y2), ỹ)| ≤ |b(w̃,w2, w̃)|+ |b(w̃,ud, w̃)|+ l̂|b(w̃,ul, w̃)|

+|l̃|‖f1‖‖w̃‖+ ‖f2‖‖w̃‖|l̂||l̃|+ |l̃|2.
Let us next estimate the terms in the right-hand side of this inequality. Because of
the generalized Sobolev’s inequality and the Young’s inequality the first term can
be majorized as

|b(w̃,w2, w̃)| ≤
√

3/2‖w̃‖‖∇w2‖‖∇w̃‖

≤ 9
4Re‖w̃‖2‖∇w2‖2 + 1

6Re‖∇w̃‖2 .

Similarly, we obtain the estimates

|b(w̃,ud, w̃)| ≤
√

3/2‖w̃‖‖∇w̃‖‖∇ud‖

≤ 9
4Re‖w̃‖2‖∇ud‖2 + 1

6Re‖∇w̃‖2 ,

and
l̂|b(w̃,wl, w̃)| ≤ 1

6Re
‖∇w̃‖2 .

Using these estimates in (42) we obtain

|(N(y1)−N(y2), ỹ)| ≤ 9
4Re‖w̃‖2‖∇w2‖2 + 9

4Re‖∇ud‖2‖w̃‖2 + ‖f1‖‖ỹ‖2

+l̂‖f2‖‖ỹ‖2 + l̃2 + 1
2Re‖∇w̃‖2 .

Employing this in the right-hand side of the identity (40), we obtain

(43)

1
2

d
dt‖ỹ‖2 + 1

2Re‖∇w̃‖2 + l̃2 + β
γ ‖ỹ‖2 ≤ 9

4Re‖w̃‖2‖∇w2‖2

+ 9
4Re‖∇ud‖2‖w̃‖2 + ‖f1‖‖ỹ‖2

+l̂‖f2‖‖ỹ‖2 + l̃2 .

It follows from this inequality that
(44)

1
2

d
dt‖ỹ‖2 +

[
β
γ − ( 9

4Re‖∇ud‖2 + ‖f1‖+ l̂‖f2‖)
]
‖ỹ‖2 ≤ 9

4Re‖∇w2‖2‖ỹ‖2 .

Now choosing β such that [β
γ − (9

4Re‖∇ud‖2 + ‖f1‖+ l̂‖f2‖)] > 0, we arrive at the
inequality

d
dt‖ỹ‖2 ≤ 9

2Re‖∇w2‖2‖ỹ‖2 .

Integrating this from 0 to t we get

‖ỹ‖2 ≤ ‖ỹ0‖2 +
9
2
Re

∫ t

0

‖∇w2‖2‖ỹ‖2ds .

Finally applying the Gronwall’s lemma and estimate (22), we obtain the desired
continuous dependence inequality

(45) ‖ỹ‖2 ≤ ‖ỹ0‖2e 9
2 Re

∫ t
0 ‖∇w2‖2ds ≤ ‖ỹ0‖2e( 9

2 Re2‖y0
2‖2) .
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This proves the continuous dependence of solutions on the initial data in L2-norm.

Remark 1. It is possible to show that ỹ → 0 as t →∞ by taking the parameter β
large enough that

β

γ
>

9
4
Re‖∇ud‖2 + ‖f1‖+ l̂‖f2‖+

9
4
Re M(σ,Re, ‖y0‖, ‖∇y0‖) .

In fact because of the estimate (15), the inequality (44) becomes

(46)
d

dt
‖ỹ‖2 + 2σ̃‖ỹ‖2 ≤ 0 ,

where

σ̃ ≡ β

γ
−

(
9
4
Re‖∇ud‖2 + ‖f1‖+ l̂‖f2‖+

9
4
Re M(σ,Re, ‖y0, ‖∇y0‖)

)
> 0 .

Therefore by Gronwall’s lemma applied to (46), we obtain

‖ỹ‖ ≤ ‖ỹ(0)‖e−σ̃t .

¤

4. Concluding Remarks

In this paper, we considered the problem of stabilizing the steady states of
Navier-Stokes equations in bounded domains using boundary feedback control. In-
spired by the Lyapunov stability theory for finite dimensional nonlinear systems, we
proposed a linear feedback control using the algebraic Riccati equation associated
with an infinite time horizon linear quadratic regulator problem. The resulting feed-
back control was proven to be globally exponentially stabilizing the steady states of
the Navier-Stokes equations for arbitrary Reynolds number. This feedback control
was shown to guarantee global stability in both L2 and H1 -norms.
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