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AN EXTENDED DOMAIN METHOD FOR OPTIMAL
BOUNDARY CONTROL FOR NAVIER-STOKES EQUATIONS

SANDRO MANSERVISI

Abstract. The matching velocity problem for the steady-state Navier-Stokes

system is considered. We introduce an extended domain method for solving

optimal boundary control problems. The Lagrangian multiplier method is ap-

plied to the extended domain with distributed controls and used to determine

the optimality system and the control over the boundary of the inner domain.

The existence, the differentiability and the optimality system of the optimal

control problem are discussed. With this method inflow controls are shown to

be numerical reliable over a large admissible control set. Numerical tests for

steady-state solutions are presented to prove the effectiveness and robustness

of the method for flow matching.

Key Words. optimal boundary control, optimal design, Navier-Stokes equa-

tions, velocity matching problem.

1. Introduction

Optimal boundary control problems associated with the Navier-Stokes equations
have a wide and important range of applications such as the design of cars, air-
planes and jet engines. Despite the fact that this field has been extensively studied,
determining the best boundary control or even a simple effective boundary control
for a system governed by the Navier-Stokes equations is still a difficult and time
consuming task.

Early studies devoted to optimal boundary control problems for the Navier-
Stokes equations can be found, for example, in [1, 8, 15, 16]. The optimal control of
the Navier-Stokes equations shows many challenges and has been considered by nu-
merous authors (see for exanple [4, 6, 9, 13, 35, 14, 20, 18, 19, 20, 21, 22, 23, 24, 25,
28, 38] and citations therein). The theoretical treatment of optimal boundary prob-
lems concerning with questions of existence, regularity of solutions, and differentia-
bility properties is in some extent satisfactory but the numerical implementation,
the analysis, and the consistency of discrete approximations still remain fundamen-
tal issues. Many results generally lack a coherent first-order necessary condition
and often the regularity assumed cannot be used in numerical algorithms. Other
papers deal with re-formulations of the problem, mainly to simplified situations
with finite dimension controls.

In order to simplify the description of the problem we consider the two-dimensional
steady-state incompressible flow of a viscous fluid with Dirichlet boundary condi-
tions in a region Ω with boundary Γ as shown on the left of Figure 1. The velocity
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~u and the pressure p satisfy the stationary Navier-Stokes system

−ν4~u + (~u · ∇)~u +∇p = ~h in Ω(1)
∇ · ~u = 0 in Ω(2)

along with the Dirichlet boundary conditions

(3) ~u = ~g =
{

0 on Γ1

~g on Γc ,

where ~h is the given body force. In (1) ν denotes the inverse of the Reynolds
number whenever the variables are appropriately nondimensionalized.

Along the uncontrolled part of boundary boundary Γ1 the velocity vanishes and
the function ~g must satisfy the compatibility condition

(4)
∫

Γ

~g · ~n ds = 0

where ~n is the unit normal vector along the surface Γ. If some other types of
boundary conditions, e.g., natural boundary conditions or outflow boundary con-
ditions, are specified along the left or right or bottom boundaries, the results given
in this paper are formally valid but some technical details in the analysis should be
carefully revised. There is a substantial literature discussing the set of all possible

Γc
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Figure 1. The flow domain Ω. Γc denotes the part of the bound-
ary whose velocity is to be determined by the optimization process.

boundary controls. Clearly, the function ~g must belong to H1/2(Γc), the Sobolev
space of order 1/2. However H1/2(Γc) or H1(Γc) may not be sufficient to enable
one to explicitly derive a first-order necessary condition or implement numerically
the boundary control. Thus in general the set of all admissible controls ~g must be
restricted to more regular spaces, namely, to belong to H3/2(Γc).

One could examine several practical objective functionals for determining the
boundary controls, e.g., the reduction of the drag due to viscosity or the identifica-
tion of the velocity at a fixed vertical slit downstream. To fix ideas, we focus on the
minimization of the cost functional that leads to matching velocity problems. In
literature the steady optimal control problem is formulated by using the following
functional (see for example [1, 25])

(5) J (~u,~g) =
1
2

∫

Ω

(~u− Û)2 d~x +
β

2

∫

Γc

(α~g 2
s + ~g 2) dx ,
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where ~u is the velocity field that solves the Navier Stokes system and ~U is the
desired velocity field defined on the domain Ω. The vector ~g and ~gs are respectively
the velocity and the derivative along the boundary of the control. The minimiza-
tion of the first term involving (~u − ~U) is the real goal of the velocity matching
problem and the other terms have been introduced in order to bound the control
function and prove the existence of the solution of the optimal control problem and
the optimality system. We may effectively limit the size of the control and prove
the existence of the first order necessary condition for optimality through an ap-
propriate choice of the positive coefficients β and α but the optimal control based
on this admissible set of solutions and the choice of β and α is not very friendly
from the numerical point of view and it turns out to be a very difficult task if
injection or suction boundary velocity is required to satisfy the integral constraint
(4). For β = 0, the functional (5) represents a sort of integral distance between the
desired and the solution velocity field. The term with the parameter α is needed
to impose regularity on the boundary control ~g. The assumption α positive allows
the application of the standard finite element theory for the Navier-Stokes system,
impose continuity of the control field and differentiability of the optimal problem.

Formally speaking the control problem is to find ~u and ~g such that the functional
(5) is minimized subject to the Navier-Stokes system (1)–(3). This optimal control
approach is rarely used in practical problems since the corresponding numerical
implementation is difficult. The resulting general optimality system includes the
Navier-Stokes system, the adjoint system, the partial differential equation for the
control and, for closed systems, the integral equation for the inflow boundary control
(4). In this situation only tangential control may be implemented with a certain
success.

In order to avoid these numerical problems we introduce an extended domain
and transform the boundary control problem into a distributed control problem over
the extended domain. Specifically, we extend the model domain of Figure 1 along
the line of control. As in Figure 1 on the right we assume that all the controlled
parts of Γc are contained in a simply connected extended domain Ω̂. This allows
the conservation of the mass in the extended domain which is a closed system. This
strategy is used to avoid theoretical technicalities but it is not the obvious choice
for many problems as we will discuss in the numerical section. Now we reformulate
the two-dimensional problem for a viscous incompressible flow over the region Ω̂ by
using distributed controls. The velocity û and the pressure p̂ satisfy the stationary
Navier-Stokes system

−ν4û + (û · ∇)û +∇p̂ = χΩ2

(
f̂ + α4f̂

)
in Ω̂(6)

∇ · û = 0 in Ω̂(7)

along with the Dirichlet boundary conditions û = ĝ = 0 on Γ1. The constant α

is nonnegative. The function f̂ is now the control and χΩ2 is the characteristic
function over Ω2 = Ω̂\Ω. The vectors ~g on Γ is the trace of û and satisfies automat-
ically the compatibility condition (4). The idea is very simple. We substitute the
boundary control with the trace of û which is to be determined by the associated
distributed optimal control over the extended domain. The new cost functional
becomes

(8) J (~u, f̂) =
1
2

∫

Ω

(û− ~U)2 d~x +
β

2

∫

Ω2

f̂ 2 + α |∇ f̂ | 2 d~x
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and the new control problem is to find û, f̂ and the trace of û over Γc such that
the functional (8) is minimized subject to the Navier-Stokes system (6)–(7).

This new approach is numerically more friendly than the previous one. The
resulting optimality system includes only the Navier-Stokes system and its adjoint.
The vector ~g obeys to the compatibility condition (4) and normal controls may be
included reducing the computational load. For α > 0 the set of admissible controls
is large and include some non-continuous control functions which are not included
in the set of admissible controls defined by the functional (5) and it may include the
use of controlled boundary corners. The introduction of corners in the boundary
Γc is an important issue for other optimal boundary control formulations since it
can be treated only by imposing extra conditions.

Although we deal with a specific, two-dimensional matching minimization prob-
lem, the approach used here is discussed in general terms and can be used for many
other optimal control problems involving different objective functionals and classes
of controls. Furthermore, although the geometry is somewhat simple, our results
can be extended to a general settings without further complications. Our aim here
is to provide a systematic analysis for the problem in which the matching distance
is minimized through the use of variational methods.

The plan of the rest of the paper is as follows. In the next section, we introduce
some notations and consider distributed optimal control associated to the boundary
value problem for the extended domain. We give a precise description of the model
optimization problem and then state and prove some results concerning the optimal
solutions and the relation with the original boundary problem. Finally in the section
3 we show numerical experiments and its multigrid implementation for which the
fluid motion is controlled by velocity forcing, i.e., injection or suction, along a
portion of the boundary, and the cost or objective functional is a matching type
objective functional.

2. The stationary boundary control problem

2.1. Notations. We denote by Hs(O), s ∈ <, the standard Sobolev space of order
s with respect to the set O , which is either the flow domain Ω, or its boundary Γ, or
part of its boundary. Whenever m is a nonnegative integer, the inner product over
Hm(O) is denoted by (f, g)m and (f, g) denotes the inner product over H0(O) =
L2(O). Hence, we associate with Hm(O) its natural norm ‖f‖m,O =

√
(f, f)m.

Whenever possible, we will neglect the domain label in the norm.
For vector-valued functions and spaces, we use boldface notation. For exam-

ple, Hs(Ω) = [Hs(Ω)]n denotes the space of <n-valued functions such that each
component belongs to Hs(Ω). Of special interest is the space

H1(Ω) =
{

vj ∈ L2(Ω)
∣∣∣ ∂vj

∂xk
∈ L2(Ω) for j, k = 1, 2

}

equipped with the norm ‖~v‖1 = (
∑2

k=1 ‖vk‖21)1/2.
For Γs ⊂ Γ with nonzero measure, we also consider the subspace

H1
Γs

(Ω) = {~v ∈ H1(Ω) | ~v = ~0 on Γs } .

Also, we write H1
0(Ω) = H1

Γ(Ω). For any ~v ∈ H1(Ω), we write ‖∇~v‖ for the
seminorm. Let (H1

Γs
)∗ denote the dual space of H1

Γs
. Note that (H1

Γs
)∗ is a

subspace of H−1(Ω), where the latter is the dual space of H1
0(Ω). The duality

pairing between H−1(Ω) and H1
0(Ω) is denoted by < ·, · >.
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Let ~g be an element of H1/2(Γ). It is well known that H1/2(Γ) is a Hilbert space
with norm

‖~g‖1/2,Γ = inf
~v∈H1(Ω); γΓ~v=~g

‖~v‖1 ,

where γΓ denotes the trace mapping γΓ : H1(Ω) → H1/2(Γ). We let (H1/2(Γ))∗

denote the dual space of H1/2(Γ) and < ·, · >Γ denote the duality pairing between
(H1/2(Γ))∗ and H1/2(Γ). Let Γs be a smooth subset of Γ. Then, the trace mapping
γΓs : H1(Ω) → H1/2(Γs) is well defined and H1/2(Γs) = γΓs(H

1(Ω)).
Since the pressure is only determined up to an additive constant by the Navier-

Stokes system with velocity boundary conditions, we define the space of square
integrable functions having zero mean over Ω as

L2
0(Ω) = { p ∈ L2(Ω) |

∫

Ω

p d~x = 0 } .

In order to define a weak form of the Navier-Stokes equations, we introduce the
continuous bilinear forms

(9) a(~u,~v) = 2ν

∫

Ω

D(~u) : D(~v) d~x ∀ ~u,~v ∈ H1(Ω)

and

(10) b(~v, q) = −
∫

Ω

q∇ · ~v d~x ∀ q ∈ L2
0(Ω) , ∀~v ∈ H1(Ω)

and the trilinear form

(11) c(~w; ~u,~v) =
∫

Ω

~w · ∇~u · ~v d~x =
2∑

i,j=1

∫

Ω

wj

(
∂ui

∂xj

)
vi d~x ∀ ~w, ~u,~v ∈ H1(Ω) .

The tensor D is defined by Dij = 1/2(∂ui∂xj + ∂ui∂xj). Obviously, a(·, ·) is a
continuous bilinear form on H1(Ω)×H1(Ω) and b(·, ·) is a continuous bilinear form
on H1(Ω)×L2

0(Ω); also c(·; ·, ·) is a continuous trilinear form on H1(Ω)×H1(Ω)×
H1(Ω) which can be verified by the Sobolev embedding of H1(Ω) ⊂ L4(Ω) and
Holder’s inequality. We also have the coercivity property

a(~v,~v) ≥ C‖~v‖21 ∀~v ∈ H1
Γs

(Ω)

whenever Γs ⊂ Γ has positive measure and the inf-sup condition

inf
p∈L2

0(Ω)
sup

~v∈H1
0

b(~v, p)
‖~v‖1‖p‖ ≥ K .

For details concerning the function spaces we have introduced, one may con-
sult [2, 40, 11, 41] and for details about the bilinear and trilinear forms and their
properties, one may consult [29, 40].

2.2. The optimal boundary value problem. We consider the formulation of
the direct problem for the Navier-Stokes system (1)–(3) for which the boundary
and all the data functions are known. A weak formulation of the Navier-Stokes
system is given as follows:

Given ~h ∈ H−1(Ω) and ~g ∈ H1/2(Γ), find (~u, p) ∈ H1(Ω) × L2
0(Ω)

satisfying
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



a(~u,~v) + c(~u; ~u,~v) + b(~v, p) =< ~h,~v > ∀~v ∈ H1
0(Ω)

b(~u, q) = 0 ∀ q ∈ L2
0(Ω)

< ~u,~s >Γ = < ~g,~s >Γ ∀~s ∈ H−1/2(Γ) .

(12)

Existence and uniqueness results for solutions of the system (12) are contained
in the following theorems; see, e.g., [40].

Theorem 1. Let Ω be an open, bounded set of <2 with Lipschitz-continuous bound-
ary Γ. Let ~h ∈ H−1(Ω) and ~g ∈ H1/2(Γ) and let ~g satisfy the compatibility condition
(4). Then,

: i) there exists at least one solution (~u, p) ∈ H1(Ω)× L2(Ω) of (12);
: ii) the set of velocity fields that are solutions of (12) is closed in H1(Ω) and

is compact in L2(Ω); and
: iii) if

(13) ν > ν0(Ω,~h,~g)

for some positive ν0 whose value is determined by the given data, then the
set of solutions of (12) consists of a single element.

Note that solutions of (12) exist for any value of the Reynolds number. However,
iii) implies that uniqueness can be guaranteed only for “large enough” values of ν

or for “small enough” data ~h and ~g.

Theorem 2. Let the hypotheses of Theorem 1 hold. Let Γ be piecewise C1,1 with
convex corners, ~g ∈ H3/2(Γ), and ~h ∈ L2(Ω). Then,

: i) there exists at least one solution (~u, p) ∈ H2(Ω)×H1(Ω) ∩ L2
0(Ω);

: ii) the set of the velocity solutions is closed in H2(Ω) and compact in H1(Ω).

Before continuing, we recall some notations and results about extended domains
that will be of use in the sequel. We say that a domain Ω has a cusp at x ∈ Γ if no
affine image in Ω of a finite cone has a vertex at x. If Ω is a Lipschitz continuous
domain, the possibility of there being a cusp is excluded and therefore the domain
Ω has the uniform extension property as the uniform Lipschitz sets are the open
sets satisfying the cone property; see [2]. We recall the following extension theorem
(Calderon’s extension theorem); see [2].

Theorem 3. For every uniform Lipschitz domain Ω ⊂ <2 and positive integer m,
there exists a linear continuous extension operator

E : Hm(Ω) → Hm(<2)

such that for every ~u ∈ Hm(Ω) we have ‖Eû‖m ≤ C‖~u‖m, where the positive
constant C depends only on the cone imbedded in Ω.

We recall also that a solenoidal extension to <2 of a solenoidal function defined
in Ω can be found as described in [7]. In the rest of the paper, whenever it is not
confusing, we denote the function and its extension by the ”hat” symbol.

We now formulate the mathematical model of the optimal boundary control
problem over the extended domain. In order to simplify the notation in the rest
of the paper we assume zero body force, i.e, ~h = 0 over Ω. As shown in Figure
1 let Ω̂ be an extended domain with boundary Γ̂ and Ω2 be Ω̂\Ω. The extended
domain Ω̂, which contains the controlled boundary Γc = Γ\Γ1, is assumed to be
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simply connected. Let Uad ⊆ H1(Ω) be the set of admissible desired velocity fields.
The optimal boundary control problem can then be stated by using the extended
domain Ω̂ and the distributed extended force f̂ in the following way:

given ~U ∈ Uad find (~u, p,~g) ∈ H1(Ω) × L2
0(Ω) ×H1/2(Γ) solution

of (12) such that ~g = 0 on Γ1 and ~u = û, p = p̂ over Ω where
(û, p̂, f̂) ∈ H1

0(Ω̂)× L2
0(Ω̂)× L2(Ω2) minimizes the functional

(14) J (~u, f̂) =
1
2

∫

Ω

|~u− ~U |2 d~x +
β

2

∫

Ω2

(
|f̂ |2 + α|∇f̂ |2

)
d~x ,

and satisfies




a(û, v̂) + c(û; û, v̂) + b(v̂, p) =
∫

Ω2

(
f̂ · v̂ + α∇f̂ · ∇v̂

)
d~x ∀ v̂ ∈ H1

0(Ω̂)

b(û, q̂) = 0 ∀ q̂ ∈ L2
0(Ω̂)

< û, ŝ >Γ = < ~g, ŝ >Γ ∀ ŝ ∈ H−1/2(Γ)

(15)

with α ≥ 0.
The corresponding boundary control ~g can be found after the solution of the above
optimal control problem as the trace of the extended solution û over Γc. We note
that the boundary control ~g automatically satisfies the compatibility condition (4).
For α > 0 we have f̂ ∈ H1(Ω2) with ~g ∈ H1/2(Γ) and the admissible set of states
and controls Aα+ is given by

Aα+ = {(~u, p,~g) ∈ H1(Ω)× L2
0(Ω)×H1/2(Γ)

with ~g = 0 on Γ1 and ~u = û, p = p̂ over Ω such that (û, p̂, f̂) ∈ H1
0(Ω̂)×

L2
0(Ω̂)×H1(Ω2) satisfies (15) with J (~u, f̂) < ∞} .

For boundary which are regular and α = 0 then f̂ ∈ L2(Ω2) with ~g ∈ H3/2(Γ) and
the admissible set of states and controls A0 can be defined as

A0 = {(~u, p,~g) ∈ H2(Ω) ∩V(Ω)×H1(Ω) ∩ L2
0(Ω)×H3/2(Γ)

with ~g = 0 over Γ1 and ~u = û, p = p̂ over Ω such that (û, p̂, f̂) ∈ H2(Ω̂) ∩V(Ω̂)×
H1(Ω̂) ∩ L2

0(Ω̂)× L2(Ω2) satisfies (15) with J (~u, f̂) < ∞} .

In the rest of the paper we will denote by Aα the set of admissible states
and controls Aα+ or A0 as needed. The existence of optimal solutions in these
admissible sets can be studied by using standard techniques (see for example
[1, 22, 14, 23, 24, 25, 21, 27]).

Theorem 4. i) For α > 0 there exists at least one optimal solution (ũ, p̃, g̃) ∈ Aα+

of the optimal control problem (14-15).
ii) Let Γ be piecewise C1,1 with convex corners and α = 0. Then there exists at
least one optimal solution (ũ, p̃, g̃) ∈ A0 of the optimal control problem (14-15).

Proof: i) For α > 0 then f̂ ∈ Aα+ implies f̂ ∈ H1(Ω2). Since the control problem
(15) over the domain Ω̂ is a distributed optimal control problem the proof follows
from standard techniques (see, e.g., [22] or [20]). The Laplacian in f̂ does not
present problems and there exists a distributed optimal solution over the extended
domain for (ũ, p̃, f̃) ∈ H1(Ω̂)×L2

0(Ω̂)×H1(Ω2). Now it is clear that the restriction
of (ũ, p̃) to the domain Ω is in H1(Ω) × L2

0(Ω̂) and g̃ = γΓ ũ is in H1/2(Γ) and
therefore g̃ ∈ H1/2(Γ).
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ii) If α = 0 and the boundary is regular then f̃ ∈ A0 which implies f̃ ∈ L2(Ω2)
and therefore (ũ, p̃) ∈ H2(Ω̂) ×H1(Ω̂). Again from standard techniques ( [22, 23,
24, 25, 21]) there exists an optimal solution (ũ, p̃, f̃) ∈ H2(Ω̂) ×H1(Ω̂) × L2(Ω2).
Their restriction (ũ, p̃) to the domain Ω gives the desired optimal solution. Since
ũ ∈ H2(Ω̂) then its trace over Γ is in H3/2(Γ). ¤

Finally we have two theorems on matching optimal solutions.

Theorem 5. Let (ũ1, p̃1, g̃1) ∈ Aα be an optimal solution for β = β1. If β2 < β1

then there is an optimal solution (ũ2, p̃2, g̃2) ∈ Aα for β = β2 such that

‖ũ2 − ~U‖Ω ≤ ‖ũ1 − ~U‖Ω .(16)

Proof: The result can be obtained by using the definition of minimum of the
functional for β = β1 and β = β2. ¤
Theorem 6. Let (ũ1, p̃1, g̃1) be an optimal solution of the problem in (1–4). Then,
for all ε > 0 there is an optimal solution (ũ2, p̃2, g̃2) ∈ A0 of the problem in (14–15)
with β > βε > 0 such that

‖ũ2 − ~U‖Ω ≤ ‖ũ1 − ~U‖Ω + ε .(17)

Proof: Let (~u1, p1, ~g1) be an optimal solution of the problem (1–4) then the
solution is in A0. By using the extension theorem the corresponding (û1, p̂1, f̂1)
is in H2(Ω̂) ∩H1

0(Ω̂) ×H1(Ω̂) ∩ L2
0(Ω2) × L2(Ω2). From the definition of optimal

solution (ũ2, p̃2, g̃2) we have

‖ũ2 − ~U‖Ω + β‖f̂2‖Ω2 ≤ ‖~u1 − ~U‖Ω + β‖f̂1‖Ω2 .(18)

For βε = ε/|‖f̂1‖Ω2 − ‖f̂2‖Ω2 | we have

‖ũ2 − ~U‖Ω ≤ ‖ũ1 − ~U‖Ω + ε .(19)

Theorem 5 completes the proof. ¤
2.3. The Euler condition for the optimal solution. In order to write the
optimality system we must introduce the Lagrangian map of the extended problem
([5, 27]). The Lagrangian map can be shown to be strictly differentiable for all
values of the distributed force over the extended domain and this allows us to
apply the Lagrange multiplier method to find the optimality system for the optimal
control solution.

Let B1 = H1
Γ1

(Ω)×L2
0(Ω)×H1/2(Γ), B2 = H−1(Ω)×L2

0(Ω)×H1/2(Γ). We define
the nonlinear mapping M : B1 → B2 by M(~u, p,~g) = (~l1, l2,~l3) for (~u, p,~g) ∈ B1

and (~l1, l2,~l3) ∈ B2 if and only if

(20)





νa(~u,~v) + c(~u; ~u,~v) + b(~v, p) =
∫

Ω

~l1 · ~v d~x ∀~v ∈ H1
0(Ω)

b(~u, z) =
∫

Ω

l2 z d~x ∀ z ∈ L2
0(Ω)

∫

Γ

(~u− ~g) · ~s ds =
∫

Γ

~l3 · ~s ds ∀~s ∈ H−1/2(Γ)

.

The set of equations in the direct problem formulated in the Theorem 1 can be
expressed as M(~u, p,~g) = (~0, 0,~0).

Let Ω̂ be an open bounded extension of Ω with boundary Γ̂. In order to transform
the boundary control problem into an extended distributed control problem we
introduce the distributed control variable f̂ . The function f̂ represents a distributed
control over the extended domain Ω2 and its contribution vanishes over Ω.
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For α > 0 let B̂1 = H1
0(Ω̂) × L2

0(Ω̂) ×H1(Ω2) ×H1/2(Γ) and B̂2 = H−1(Ω̂) ×
L2

0(Ω̂)×H1/2(Γ). For α = 0 we consider Γ̂ piecewise C1,1 with convex corners and
B̂1 = H1

0(Ω̂) ∩H2(Ω̂)× L2
0(Ω̂) ∩H1(Ω̂)× L2(Ω2)×H3/2(Γ).

We define the nonlinear mapping M̂ : B̂1 → B̂2 by M̂(û, p̂, f̂ , ~g) = (l̂1, l̂2, l̂3) for
(û, p̂, f̂ , ~g) ∈ B̂1 and (l̂1, l̂2, l̂3) ∈ B̂2 if and only if

(21)





νa(û, v̂) + c(û; û, v̂) + b(v̂, p̂)−
( ∫

Ω2

f̂ · v̂ d~x + α

∫

Ω2

∇f̂ · ∇v̂ d~x
)

=
∫

Ω̂

l̂1 · v̂ d~x ∀ v̂ ∈ H1
0(Ω̂)

b(û, ẑ) =
∫

Ω̂

l̂2 ẑ d~x ∀ ẑ ∈ L2
0(Ω̂)

∫

Γ

(û− ~g) · ~s ds =
∫

Γ

l̂3 · ~s ds ∀~s ∈ H−1/2(Γ)

The constant α is non negative. The restriction of the map M̂ over the domain Ω
gives the map M . We note that in the problem M̂(û, p̂, f̂ , ~g) = (0̂, 0̂, 0̂) the third
equation is independent and gives ~g as the trace of û over the boundary Γ.

Also we consider the nonlinear map Q̂ : B̂1 → <× B̂2 defined by

Q̂(û, p̂, f̂ , ~g) =

(
J (û, f̂)− J (ũ, f̃)

M̂(û, p̂, ~g)

)
(22)

where (ũ, p̃, f̃ , g̃) is an optimal solution. In order to find the explicit form of the
optimal solution we must prove strict differentiability (see [12, 42]).

Let X and Y denote Banach spaces, then the mapping ϕ : X → Y is strictly
differentiable at x ∈ X if there exists a bounded, linear mapping D from X to Y
such that for any ε > 0 there exists a δ > 0 such that whenever ‖x− x1‖X < δ and
‖x− x2‖X < δ for x1, x2 ∈ X, then

‖ϕ(x1)− ϕ(x2)−D(x1 − x2)‖Y ≤ ε‖x1 − x2‖X .

The strict derivative D at the point x ∈ X, if it exists, will often be denoted by
D = ϕ′(x). The value of this mapping on an element x̃ ∈ X will often be denoted
by ϕ′(x) · x̃. In the next theorem we can identify X = B̂1 and Y = B̂2.

Lemma 1. Let the nonlinear mappings M̂ : B̂1 → B̂2 and Q : B̂1 → <× B̂2 be de-
fined by (21) and (22), respectively. Then, these mappings are strictly differentiable
at a point (û, p̂, f̂ , ~g) ∈ B̂1 and its strict derivative is given by the bounded linear
operator M̂ ′(û, p̂, f̂ , ~g) : B̂1 → B̂2, where M̂ ′(û, p̂, f̂ , ~g) · (ũ, p̃, f̃ , g̃)= (l1, l2, l3) for
(ũ, p̃, f̃ , g̃) ∈ B̂1 and (l1, l2, l3) ∈ B̂2 if and only if

(23)





νa(ũ, v̂) + c(ũ; û, v̂) + c(û; ũ, v̂) + b(v̂, p̃) =
∫

Ω2

(
f̃ · v̂ + α∇f̃ · ∇v̂

)
d~x +

∫

Ω̂

l1 · v̂ d~x ∀ v̂ ∈ H1
0(Ω̂)

b(ũ, ẑ) =
∫

Ω̂

l2 ẑ d~x ∀ ẑ ∈ L2
0(Ω̂)

∫

Γ

(ũ− g̃) · ~s ds =
∫

Γ

l3 · ~s ds ∀~s ∈ H−1/2(Γ)

.

Moreover, the strict derivative of Q at a point (û, p̂, f̂ , ~g) ∈ B̂1 is given by the
bounded linear operator Q̂′(û, p̂, f̂ , ~g) : B̂1 → <×B̂2, where Q̂′(û, p̂, f̂ , ~g)·(ũ, p̃, f̃ , g̃) =
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(a, l1, l2, l3), for (ũ, p̃, f̃ , g̃) ∈ B̂1 and (a, l1, l2,l3) ∈ < × B̂2 if and only if

(24)

(
J ′(û, f̂) · (ũ, p̃, f̃ , g̃)

M ′(û, p̂, f̂ , ~g) · (ũ, p̃, f̃ , g̃)

)
=

(
a

(l1, l2, l3)

)
,

where

J ′(û, f̂) · (ũ, f̃) =
∫

Ω

(û− ~U) · ũ d~x + β

∫

Ω2

(
f̂ f̃ + α(∇f̂ · ∇f̃)

)
d~x .

Proof: The linearity of the operator M̂ ′(û, p̂, f̂ , ~g) is obvious and its boundedness
follows from the continuity of the forms a(·, ·), b(·, ·), and c(·, ·, ·) combined with the
trace theorem for Sobolev spaces. The fact that M̂ ′(û, p̂, f̂ , ~g) is the strict derivative
of the mapping M̂(û, p̂, f̂ , ~g) also follows from the continuity of the trilinear form
c(·, ·, ·). Indeed, we have that for any (û, p̂, f̂ , ~g) ∈ B̂1 and for all (ŵ, r̂, θ̂, ~η) ∈ B̂∗

2,〈
(ŵ, r̂, θ̂, ~η),M(û1, p̂1, f̂1, ~g1)−M(û2, p̂2, f̂2, ~g2)

−M ′(û, p̂, f̂ , ~g) · (û1 − û2, p̂1 − p̂2, f̂1 − f̂2, ~g1 − ~g2)
〉

=

νa(û1, ŵ) + c(û1; û1, ŵ) + b(ŵ, p̂1)− (f̂1, ŵ)Ω2 − α(∇f̂1,∇ŵ)Ω2 + b(û1, r̂)

−
(
νa(û2, ŵ) + c(û2; û2, ŵ) + b(ŵ, p̂2)− (f̂2, ŵ)Ω2 − α(∇f̂2,∇ŵ)Ω2 + b(û2, r̂)

)

−
(
νa(û1 − û2, ŵ) + c(û1 − û2; û, ŵ) + c(û; û1 − û2, ŵ) + b(ŵ, p̂1 − p̂2)

+b(û1 − û2, r̂)− (f̂1 − f̂2, ŵ)Ω2 − α(∇(f̂1 − f̂2),∇ŵ)Ω2

)

+
∫

Γ

~η · (û1 − ~g1) ds−
∫

Γ

~η · (û2 − ~g2) ds−
∫

Γ

~η · (û1 − û2 − (~g1 − ~g2)) ds .

Therefore, we have

|
〈
(ŵ, r̂, θ̂, ~η), M(û1, p̂1, f̂1, ~g1)−M(û2, p̂2, f̂2, ~g2)

−M ′(û, p̂, f̂ , ~g) · (û1 − û2, p̂1 − p̂2, f̂1 − f̂2, ~g1 − ~g2)
〉
| ≤

|c(û1 − û2, û− û1, ŵ) + c(û− û2, û1 − û2, ŵ)|
Then, by using the continuity of the form c(·, ·, ·), the Sobolev imbedding theorem,
and the trace theorem, we have, for some constants C1, C2 > 0, that

‖M̂(û1, p̂1, f̂1, ~g1)− M̂(û2, p̂2, f̂2, ~g2)− M̂ ′(û, p̂, f̂ , ~g) · (û1 − û2, p̂1 − p̂2, f̂1 − f̂2, ~g1 − ~g2)‖B̂1
≤

C1(‖û1 − û2‖1 ‖û− û1‖1 + ‖û1 − û2‖1 ‖û− û2‖) ≤
C2‖(û1 − û2, p̂1 − p̂2, f̂1 − f̂2, ~g1 − ~g2)‖B̂1(

‖(û− û1, p̂− p̂1, f̂ − f̂1, ~g − ~g1)‖B̂1
+ ‖(û− û2, p̂− p̂2, f̂ − f̂2, ~g − ~g2)‖B̂1

)
.

Then, for any ε > 0, by choosing δ = εC2/2, we have that, whenever ‖(û− û1, p̂−
p̂1, f̂ − f̂1, ~g − ~g1)‖B̂1

< δ and ‖(û− û2, p̂− p̂2, f̂ − f̂2, ~g − ~g2)‖B̂1
< δ,

‖M̂(û1, p̂1, f̂1, ~g1)− M̂(û2, p̂2, f̂2, ~g2)

−M̂ ′(û, p̂, f̂ , ~g) · (û1 − û2, p̂1 − p̂2, f̂1 − f̂2, ~g1 − ~g2)‖B̂2

≤ ε‖(û1 − û2, p̂1 − p̂2, f̂1 − f̂2, ~g1 − ~g2))‖B̂1
.

Thus, the mapping M̂ is strictly differentiable on all of B̂1 and its strict derivative
is given by M ′.
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Likewise, the linearity and boundedness of the operator Q̂′(û, p̂, f̂ , ~g) are obvious.
Using the strict differentiability of the mapping M̂ it is then easy to show that the
mapping Q̂ is also strictly differentiable and that its strict derivative is given by
Q̂′. ¤

Next, we prove some further properties of the derivatives of the mappings M̂

and Q̂ that are necessary to find the Euler-equations for the optimal solution.

Lemma 2. Let (û, p̂, f̂ , ~g) ∈ B̂1 denote a solution of the optimal control problem.
Then we have

: i) the operator M̂ ′(û, p̂, f̂ , ~g) has closed range in B̂2;
: ii) the operator Q̂′(û, p̂, f̂ , ~g) has closed range in <× B̂2;
: iii) the operator Q̂′(û, p̂, f̂ , ~g) is not onto <× B̂2.

Proof: First we prove the theorem for α = 0. In order to show i), we shall show
that the range of the map M̂ ′ is close. The question of the closedness of the range
of the operator M̂ ′ : B̂1 → B̂2 reduces to the like question for the inhomogeneous
Stokes operator S̃ : H2(Ω̂) ∩H1

0(Ω̂) ×H1(Ω̂) ∩ L2
0(Ω̂) → H−1(Ω̂) × L2

0(Ω̂) defined
as follows: S̃ · (w̃, p̃) = (l̃1, l̃2, l̃2) if and only if

(25)





νa(w̃, ~v) + b(~v, p̃)− (~v, f̃) =< l̃1, ~v > ∀~v ∈ H1
0(Ω̂)

b(w̃, z) = (l̃2, z) ∀ z ∈ L2(Ω̂) ,

where f̃ ∈ L2(Ω2), ~g ∈ H3/2(Γ), and Γ is piecewise C1,1 with convex corners. The
fact that the operator S̃ has closed range in H−1(Ω̂) × L2

0(Ω̂) follows easily from
well-known results for the Stokes equations; see, e.g., [40]. We can then conclude
that the operator S̃ has closed range in B̂2, and, since the operator M̂ ′(û, p̂, f̂ , ~g)
is a compact perturbation of the operator S̃, we have, from the Fredholm theory,
that M̂ ′(û, p̂, f̂ , ~g) itself has closed range in B̂2. Starting from i), the proof of ii)
and iii) can be found easily by using the standard techniques in [18, 19, 20, 25].

For α > 0 the operator M̂ ′(û, p̂, f̂ , ~g) is a compact perturbation of the corre-
sponding operator S̃ : H1

0(Ω̂) × L2
0(Ω̂) → H−1(Ω̂) × L2

0(Ω̂) and the proof can be
found in a similar way. ¤

The first-order necessary condition follows easily from the fact that the operator
Q̂′(û, p̂, f̂ , ~g) is not onto <× B̂2; see, e.g., [18, 24, 25].

Theorem 7. Given (û, p̂, f̂ , ~g) ∈ Aα. If (û, p̂, f̂ , ~g) ∈ B̂1 is a solution of the optimal
control problem, then there exists a nonzero Lagrange multiplier
(λ, ŵ, r̂, ~θ, ~η) ∈ < × B̂∗

2 satisfying the Euler equations

(26)
λ J ′(û, f̂) · (ũ, f̃) +

〈
(ŵ, r̂, ~θ, ~η), M̂ ′(û, p̂, f̂ , ĝ) · (ũ, p̃, f̃ , g̃)

〉
= 0

∀ (ũ, p̃, f̃ , g̃)) ∈ B̂1 ,

where 〈·, ·〉 denotes the duality pairing between B̂2 and B̂∗
2.

2.4. The optimality system. In this section we compare our optimality system
for boundary control with those available in literature. The non-extended domain
solution (~u, p,~g, ~w, σ, k) ∈ H2(Ω)∩H1

Γ1
(Ω)×L2

0(Ω)∩H1(Ω)×H3/2(Ω)×H2(Ω)∩
H1

0(Ω)×L2
0(Ω)∩H1(Ω)×< of the problem in (1-4) with the functional (5) solves the
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following optimality system which consists of the Navier-Stokes system [20, 18, 19]




νa(~u,~v) + c(~u; ~u,~v) + b(~v, p) = 0 ∀~v ∈ H1
0(Ω)

b(~u, q) = 0 ∀ q ∈ L2
0(Ω)

< (~u− ~g) · ~s >= 0 ∀~s ∈ H−1/2(Γ)

,(27)

the adjoint system



νa(~w,~v) + c(~w; ~u,~v) + c(~u; ~w,~v) + b(~v, σ) =
∫

Ω

(~u− ~U) · ~v d~x ∀~v ∈ H1
0(Ω)

b(~w, q) = 0 ∀ q ∈ L2
0(Ω) ,

(28)

with the control equation

(29) < ~g,~s >Γ +α < ~gs, ~ss >Γ +k < ~n,~s >Γ=
1
β

< γ1 ~w,~s >Γ ∀~s ∈ H1/2(Γ) ,

and the compatibility equation

(30)
∫

Γ

~g · ~n ds = 0 .

The operator γ1 is the trace operator of order one. The use of standard finite
element approximation in H1 gives γ1 ~w ∈ H−1/2. In order to compute numerically
~g we must choose α positive. This determines the admissible set of ~g in H3/2(Γ)
for the problem (1-4) with the functional (5). If ~g is desired in H1/2(Γ) then
the equation (30) must be solved with non standard methods or ∇~w must be
approximated in H1(Ω) with a mixed finite element method. This implementation
is rather demanding and therefore the control ~g must be assumed in H3/2(Γ). Also
we remark that, in some cases of Dirichlet boundary conditions and normal control
the constant k should be computed by enforcing the compatibility condition (30).

Now we focus on our new extended approach. The Theorem 7 implies that opti-
mal control solutions must satisfy a first-order necessary condition. The solutions
(û, p̂, ĝ, f̂ , ŵ, σ̂) ∈ H1

0(Ω̂)×L2
0(Ω̂)×H1/2(Γ)×L2(Ω̂)×H1

0(Ω̂)×L2
0(Ω̂) must satisfy

the following Navier-Stokes system




νa(û, v̂) + c(û; û, v̂) + b(v̂, p̂) =

< f̂, v̂ > +α < ∇f̂ ,∇v̂ > ∀ v̂ ∈ H1
0(Ω̂)

b(û, q̂) = 0 ∀ q̂ ∈ L2
0(Ω̂)

(31)

and the adjoint system



νa(ŵ, v̂) + c(ŵ; û, v̂) + c(û; ŵ, v̂) + b(v̂, σ̂)

=
∫

Ω2

(~u− ~U) · v̂ d~x ∀ v̂ ∈ H1
0(Ω̂)

b(ŵ, q̂) = 0 ∀ q̂ ∈ L2
0(Ω̂) ,

(32)

with

(33) < û, ŝ >Γ=< ĝ, ŝ >Γ ∀ŝ ∈ H−1/2(Γ) ,

and the control equation

β
(

< f̂, v̂ > +α < ∇f̂ ,∇v̂ >
)

=(34)

< ŵ, v̂ > +α < ∇ŵ,∇v̂ > ∀ v̂ ∈ H1(Ω2) .
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The equations (33-35) imply f̂ = ŵ/β over Ω2 and ~g = γΓû. The optimality
system for the boundary control is reduced to a distributed optimal control problem
which requires much less computational resources than the optimality system in
(27-30) .

There are many advantages in this extended formulation. In fact the optimality
system is a full distributed control which is less sensitive to numerical errors. The
optimality sistem (31-35) can be regularized by changing the single parameter β and
the compatibility condition is automatically satisfied. The tangential control can
be numerically achieved by using non-embedded techniques but in some cases the
compatibility constraint may be a limit to the feasibility of the normal boundary
controls. In fact in order to use standard finite element methods, solve (27-30) and
prove differentiability necessary to apply the first order condition the function ~g
must belong to C0(Γc) with piecewise C1,1 boundary.

3. Numerical computation of the boundary control problem

3.1. The finite element optimality system. Let Ωh be the square domain in
Figure 1 with boundary Γh which consists of Γ1h, Γ2h and Γch. We impose Dirichlet
boundary conditions over Γ1h, homogeneous Neumann boundary conditions over
Γ2h and boundary controls over Γch. Also let Ω̂h be the extended domain and Ω̂1h

be the controlled domain. In this paper computations of the optimality system
(31-35) are performed by using a new multigrid approach. The implementation is
based on a local Vanka-type solver for the Navier-Stokes and the adjoint system
where solution is achieved by solving and relaxing local optimal control problems.
The multigrid smoother operator is constructed directly from the optimal control
formulation and requires the iterative exact solution of the optimality system over
a limited number of unknowns. Now, by starting at the multigrid coarse level l0 we
subdivide Ω̂h into triangles or rectangles by unstructured families of meshes T i,l0

h .
Based on the simple element midpoint refinement different multigrid levels can be
built to reach a complete unstructured mesh T i,l

h for finite element over the entire
domain Ωh at the top finest multigrid level lnt .

We introduce the approximation spaces Xhl
⊂ H1(Ω̂) and Shl

⊂ L2(Ω̂) for
the extended velocity and pressure respectively at the multigrid level l. The ap-
proximate function obeys to the standard approximation properties including the
LBB-condition. Let Phl

= Xhl
|∂Ω̂, i.e., Phl

consists of all the restrictions, to the
boundary ∂Ω̂, of functions belonging to Xhl

. For all choices of conforming finite
element space Xh we then have that Phl

⊂ H− 1
2 (∂Ω̂). See [24] for details con-

cerning these approximation spaces. The extended velocity and pressure fields
(ûhl

, p̂hl
) ∈ Xhl

(Ω̂h)× Shl
(Ω̂h) at the level l satisfy the Navier-Stokes equations





a(ûhl
, v̂hl

) + c(ûhl
; ûhl

, v̂hl
) + b(v̂hl

, p̂hl
) =

< f̂hl
, v̂hl

>Ω2 +αa(f̂hl
, v̂hl

)Ω2 ∀ v̂hl
∈ Xhl

(Ω̂h) ∩H1
Γ̂h−Γ2h

(Ω̂h)

b(ûhl
, r̂hl

) = 0 ∀ r̂hl
∈ Shl

(Ω̂h)

< ûhl
, ŝhl

>Γ̂h−Γ2h
= < ~g, ŝhl

>Γ̂h−Γ2h
∀ ŝhl

∈ Phl
(Γ̂h)

(35)



AN EXTENDED DOMAIN METHOD FOR OPTIMAL BOUNDARY CONTROL 597

and the adjoint system




a(ŵhl
, v̂hl

) + c(ŵhl
; ûhl

, v̂hl
) + c(ûhl

; ŵhl
, v̂hl

) + b(v̂hl
, σ̂hl

)

=
∫

Ω1

(~uhl
− ~U) · v̂hl

d~x ∀ v̂hl
∈ Xhl

(Ω̂h) ∩H1
Γ̂h−Γ2h

(Ω̂h)

b(ŵhl
, q̂hl

) = 0 ∀ q̂hl
∈ Shl

(Ω̂h)

< ŵhl
, ŝhl

>
Γ̂h−Γ2h

= 0 ∀ŝhl
∈ Phl

(Γ̂h) ,

(36)

with

(37) ~gchl
= γΓc

ûhl

and f̂hl
= ŵhl

/β over Ω̂2hl
. Existence and uniqueness results for finite element

solutions of (35) are well known; see, e.g., [29, 23].
The unique representations of ûhl

,ŵhl
and p̂hl

, σ̂hl
as a function of the nodal

point values ûl(k1), ŵl(k1) and p̂l(k2), σ̂l(k2) ( k1 = 1, 2, ...nvt with nvt = number
of vertex velocity points and k2 = 1, 2, ...npt with npt = number of vertex pressure
points) define the finite element isomorphisms Φl : Ul → Xhl, Φ+

l : Wl → Xhl,
Ψl : Πl → Shl Ψ+

l : Σl → Shl between the vector spaces Ul, Wl, Πl, Σl of nvt-
dimension and npt-dimension vectors and the finite element spaces Xhl

, Shl
(see

[10, 33] for details) .
Essential elements of a multigrid algorithm are the velocity and pressure prolon-

gation maps

Pl,l−1(u) : Ul−1 → Ul Pl,l−1(p) : Πl−1 → Πl

and the velocity and restriction operators

Rl−1,l(u) = P ∗l,l−1(u) : Ul → Ul−1 Rl−1,l(u) = P ∗l,l−1(u) : Πl → Πl−1 .

Since we would like to use conforming Taylor-Hood finite element approximation
spaces we have the nested finite element hierarchies Xh0 ⊂ Xh1 ⊂ ... ⊂ Xhl

and
Sh0 ⊂ Sh1 ⊂ ... ⊂ Shl

and the canonical prolongation maps Pl,l−1(u), Pl,l−1(p)
can be obtained simply by

Pl,l−1(u) = Φl−1(Φ−1
l (u))(38)

Pl,l−1(p) = Ψl−1(Ψ−1
l (p)) .(39)

For details and properties one can consult [33, 37] and citations therein.
We solve the coupled system by using an iterative method. Multigrid solvers

for coupled velocity/pressure system compute simultaneously the solution for both
pressure and velocity and they are known to be ones of the best class of solvers
for laminar Navier-Stokes equations (see [34, 39]). An iterative coupled solution of
the linearized and discretized incompressible Navier-Stokes equations requires the
approximate solution of sparse saddle point problems. In this multigrid approach
the most suitable class of solvers is the Vanka-type smoothers. They can be con-
sidered as block Gauss-Seidel methods where one block consists of a small number
of degrees of freedom (for details see [39, 33, 34]). The characteristic feature of
this type of smoother is that in each smoothing step a large number of small lin-
ear systems of equations has to be solved. In the Vanka-type smoother, a block
consists of all degrees of freedom which are connected to few neighboring elements.
As shown in Fig.2 for conforming finite elements the block could consist of all the
elements containing a pressure vertex or four pressure nodes , namely 21 velocity
nodes (circles and squares) with one pressure node (square) or 16 velocity nodes
(circles and squares) with four pressure nodes (squares) respectively. Thus, in the
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Figure 2. Blocks of unknowns: 21V +1P (on the left) and 16V +
4P (on the right)

first case a relaxation step with this Vanka-type smoother consists of the iterative
solution of the corresponding block of equations over all the pressure nodes. In the
second case a relaxation step consists of the solution of the block of equations over
all the elements where the velocity and pressure variables are updated iteratively.
Different blocks of unknowns can be solved including local constraints as they arise
from the optimal control problem. For convergence and properties of this class of
smoothers one can consult [39, 33, 34] and citations therein.

3.2. Boundary control test 1. We consider the square domain Ω = [0, .5]×[0, .5]
in Figure 1 with boundary Γ. The boundary Γ consists of Γ1 and Γc where the
homogeneous Dirichlet boundary conditions and controls are applied respectively.
We set Ω̂ = [0, 1] × [0, 1], 1/ν = 100 and α = 1 × 10−3. The target velocity ~U =
( 1
2 (cos(4πx) − 1) sin(4πy), 1

2 (cos(4πy) − 1) sin(4πx)) is enforced over the domain
Ω1 = [0, .35]× [0, .35].

In Figure 3 the solution of the optimality system is obtained as described in the
previous section and shown in Figure 3 for the parameter β = 1×10−4. The velocity
and the adjoint field are shown over the extended domain Ω̂ on the top left and top
right respectively. The velocity field ~u is shown over the domain Ω and over the
matching domain Ω1 on the bottom left and center respectively together with the
target velocity ~U (bottom right). We note that the boundary control achieves some
matching of the desired flow if the normal and the tangential control are combined.
This embedded method can handle the normal control in a relative straightforward
manner, satisfies the compatibility constraint and improves the effectiveness of the
control. In these computations Ω1 6= Ω since a better matching can be reached
over small controlled area Ω1. In the Figure 4 we show the velocity over Ω1 for
decreasing values of the penalty parameter β. From the top left to the bottom left
β is equal to 1 × 10−2,1 × 10−3 and 1 × 10−4. The target velocity ~U is shown on
the bottom right over Ω1 = [0, .35]× [0, .35]. The controlled boundary Γch consists
of a vertical and an horizontal part. Figure 5 shows the boundary control on the
horizontal part of Γc for β = 1× 10−4 (A), 1× 10−3 (B) and 1× 10−2 (C). The u-
component is shown on the left and the v-component on the right. In a similar way
Figure 6 shows the u-component (on the left) and the v-component (on the right)
of the vertical part of the controlled boundary Γc for β = 1×10−4 (A), 1×10−3 (B)
and 1× 10−2 (C). We note that the controlled normal component of the boundary
control may be positive and negative, namely there is injection and suction along
the same portion of the boundary. If a standard non-embedded method is used the
normal component of the control must satisfy the integral equation (4) and this
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Figure 3. Velocity (top left) and adjoint field (top right) over the
extended domain Ω̂ = [0, 1]×[0, 1]. Controlled flow for β = 1×10−4

and α = 1× 10−3 over Ω (bottom right), over Ω1 (bottom middle)
and the target velocity ~U over Ω1 (bottom left).

may be numerically very challenging. Also this technique solves the corner point,
intersection between the horizontal and the vertical part of Γc, in a straightforward
manner while in the boundary control (27-30) it must be fixed by an artificial
boundary condition which may limit the strength of the control. The boundary
control is in some way effective as we can see in Figure 7. For different value of β (
β = 1× 10−4 (A), β = 1× 10−3 (B) β = 1× 10−2 (C)) we can see the value of the
v-component (on the left) and of the u-component (on the right) with the target
velocity along the horizontal line of coordinates y = 0.2 with 0 ≤ x ≤ .35. For
decreasing values of the parameters β is possible to decrease the matching distance
between ~u and ~U as shown in Table 1.

β ‖~u− ~U‖Ω1/‖~U‖Ω1

0.01 4.48e-1
0.001 2.34e-1
0.0001 1.32e-1
0.00001 1.31e-1

Table 1. Values of ‖~u− ~U‖Ω1/‖~U‖Ω1 for different β.
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Figure 4. Controlled flow over Ω̂1. Controlled flow for β = 1 ×
10−2 (top left), 1 × 10−3 (top right) and 1 × 10−4 (bottom left)
and the desired flow (bottom right).
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Figure 5. Boundary control (u-component on the left and v-
component on the right) on the horizontal part of Γc for β =
1× 10−4 (A), 1× 10−3 (B) and 1× 10−2 (C).

3.3. Boundary control test 2. In the second numerical experiment we would
like to illustrate an example where boundary controls can be efficiently applied to
more real situations. Suppose we have a velocity regulator where the inflow over
Γ1 is assigned and the fluid motion near to the output Γ2 must be controlled by
injection or suction along a portion of the boundary Γc. In order to model the
problem we introduce, as shown in Figure 8 on the left, a L-shape domain with
eight small cavities. The cavities are part of the real design and represent the area
where the fluid may be controlled. If a control is active in that area then we model
such a control as a boundary control, remove the cavity from the domain Ω and
use that cavity as a part of the extended domain Ω̂ . A very accurate study of
this regulator can be done by taking into account all the seven cavities and the
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Figure 6. Boundary control (u-component on the left and v-
component on the right) on the vertical part of Γc for β = 1×10−4

(A), 1× 10−3 (B) and 1× 10−2 (C).
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Figure 7. Controlled velocity (u-component on the left and v-
component on the right) along the horizontal line for y = 0.2 and
0 ≤ x ≤ .35 with β = 1×10−4 (A), 1×10−3 (B) and 1×10−2 (C).
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Figure 8. The L-shape domain Ω (on the left) and the extended
domain Ω̂ with the controlled boundaries Γ1c, Γ2c and Γ3c (on the
right).
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Figure 9. The optimal velocity field for α = 1 × 10−3 and β =
1.× 10−3 (case A).
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Figure 10. Controlled u (left) and v-component (right) of the
velocity (case A) along the line x = a (A), and x = c (B) of the
controlled area Ω1 with the desired velocity ~U (target).
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Figure 11. Boundary controls (case A). Boundary control over
Γ1c on the left and boundary control over Γ2c on the right.

corresponding boundary controls but in this paper we investigate a simulation in
which only two parts of the boundary Γc are controlled. Γc consists of the three
parts Γ1c, Γ2c and Γ3c as shown in Figure 8 on the right. The desired velocity
is a constant velocity field defined over the controlled area Ω1. The inlet profile
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Figure 12. The velocity field for the case A (top) and B (bottom)
for β = 10−4 and α = 1× 10−3.
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Figure 13. Controlled u-component of the velocity (case B) along
the center line ofthe top branch of the L-shape channel for β =
1× 10−3 (A), β = 1× 10−2 (B), β = 1× 10−1 (C), and β = 1 (D)
with the desired velocity ~U (target) .

of velocity is a parabolic profile over Γ1 with maximal velocity of 2.5m/s. The
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Figure 14. Controlled u-component of the velocity (case B) along
the line x = a for β = 1×10−3 (A), β = 1×10−2 (B), β = 1×10−1

(C), and β = 1 (D) with the desired velocity ~U (target).
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Figure 15. Boundary controls (case B). Boundary control over
Γ1c on the left and boundary control over Γ3c on the right for β = 1
(D), β = 1 × 10−1 (C), β = 1 × 10−2 (B) and β = 1 × 10−3 (A)
with the desired velocity ~U (target) .

Reynolds number of this initial configuration is 150 Reynolds with laminar motion
everywhere. We are interested in the investigation of two cases:
1) constant horizontal target velocity of .5m/s over the controlled area Ω1 with
controlled boundary Γ1c ∪ Γ2c (case A);
2) constant horizontal target velocity of .5m/s over the controlled area Ω1 with
controlled boundary Γ1c ∪ Γ3c (case B);
The controlled area Ω1, shown in Figure 8 on the left, is bounded by the line a
and c. The vertical centerline of the controlled area is label by b. By using the
solution algorithm introduced in the numerical section it is possible to solve the
complete optimality system over the extended domain and recover the boundary
control ~g as the trace of the extended velocity. For the case A the velocity solution
is computed and plotted in Figure 9. The cavities Ω1, Ω2, Ω3, Ω5, Ω6, Ω8 are
assumed to be part of the regular domain Ω and the cavities Ω4 , Ω7 are assumed
to be part of the extended domain Ω̂. In Figure 9 the stationary computations are
performed with the penalty parameter β equal to 1 × 10−4 and α = 1 × 10−3. If
α is zero the boundary controls are in H3/2(Γ) which implies continuity along the
boundary. For high values of α and small values of β it may be possible to have
control in H1/2(Γ) and the boundary discretization with continuous polynomials
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may not be an appropriate discretization. In order to avoid this situation we search
a rather smooth control and keep α small. In this test we use Neumann boundary
conditions over the extended domain remarking that in this case it is necessary in
order to obtain a significant control. The desired target velocity cannot be reached
if the inlet flux is not modified by the boundary control. First the boundary control
must tune the average flux through the section of the L-shape channel and then
the geometrical distribution along the controlled section. The effectiveness of the
boundary control can be measured by the capacity to drain or add fluid to the
system to obtain reasonable velocity profile around the desired one.

In Figure 10 the controlled and the desired u-component of the velocity for case
A are shown along the line x = a (A), and the line x = c (B) of the controlled area
Ω1 together with the desired constant profile (target) on the left. The v-component
in the same section of the channel is shown on the right. We note that the boundary
suction and injection can control efficiently the average velocity to the target. There
is a strong suction in both boundary controls Γ1c and Γ2c in order to reduce the
velocity over the controlled area. In Fig.11 we see the velocity field for the u and v
component over the boundary Γ1c on the left and the boundary Γ2c on the right.

The case B can be treated in the similar way. Again the target velocity is a
constant velocity ~u = (.5, 0) over the subset Ω1. The control is distributed over
Γ1c and Γ3c. The inlet velocity is high and some fluid must be drained through
the boundary control to match the desired profile. By using Neumann boundary
conditions the control easily can tune the average mass of fluid as we can see in
Figure 12. In Figure 12 we see the solution of the optimality system for the velocity
field in the case A and B for α = 1 × 10−3 and β = 1 × 10−3. In the case B the
cavities Ω1, Ω2, Ω3, Ω5, Ω7, Ω8 are assumed to be part of the regular domain Ω
and the cavities Ω4 , Ω6 are assumed to be part of the extended domain Ω̂.

In Figure 13- 14 we see the u-component of the velocity field for the case B along
the central line of the top branch of the L-shape channel and along the line x = a
of the controlled area Ω1 respectively. Figure 13- 14 show the different profiles for
the different values of the parameter β = 1× 10−3 (A), 1× 10−2 (B), 1× 10−1 (C),
1 (D) with the desired velocity ~U (target). The profile quickly matches the average
required value as β decreases.

Finally in Figure 15 the u-component and the v-component of the boundary
control are plotted as a function of the edge coordinate of the cavity. Again the
different profiles of the control over Γ1c and Γ3c are shown for β = 1 (D), 1× 10−1

(C), 1× 10−2 (B), 1× 10−3 (A). In this case there is suction in Γ1c and Γ3c.

4. Conclusions

We have introduced an extended method for boundary controls which allows
tracking and matching velocity field very efficiently. It is accurate and avoids the
cumberstone coupling of the boundary equation with the Navier-Stokes and the
adjoint system. This methods allows to solve the problem for normal boundary
control which must obey to the compatibility condition and boundary control cor-
ners. All this leads to improved computability and reliability for the numerical
solution of steady boundary control for Navier-Stokes system.
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