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Abstract. In this paper, we study a reduced-order modeling for Burgers

equations. Review of the CVT(centroidal Voronoi tessellation) approaches to

reduced-order bases are provided. In CVT-reduced order modelling, we start

with a snapshot set just as is done in a POD(Proper Orthogonal Decomposition)-

based setting. We shall investigate the technique of CVT as a procedure to

determine the basis elements for the approximating subspaces. Some numeri-

cal experiments including comparison of CVT-based algorithm with numerical

results obtained from FEM(finite element method) and POD-based algorithm

are reported. Finally, we apply CVT-based reduced order modeling technique

to a feedback control problem for Burgers equation.
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1. Introduction

In the computational simulation of (nonlinear) complex, turbulent, or chaotic
systems, standard discretization schemes (finite element, finite difference, etc.) may
require many thousands or even millions of degrees of freedom for the accurate
simulation of fluid flows. As a result, these schemes for the spatial discretization
lead to sparse but very large-scale, and in general, nonlinear systems of ordinary
differential equations (ODEs) and the approximate solutions using these approaches
are expensive with respect to both storage and computing time. The situation is
even worse for optimization problems for which multiple solutions of the complex
state system are usually required or in feedback control problems for which real-time
solutions of the complex state system are needed.

In order to overcome this difficulty, reduced-order modeling was introduced.
Roughly speaking, this technique is to replace a given mathematical model of a
system or process by a model that is much “ small ” than the original model, but
still describes (at least approximately) certain aspects of the system or process.
That is to say, the types of reduced-order models are those that attempt to deter-
mine accurate approximate solutions of a complex system using very few degrees
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of freedom. To do so, such models have to use basis functions that are in some
way intimately connected to the problem being approximated. This technique is
based on projecting the dynamical system onto subspaces consisting of basis ele-
ments that contain characteristics of the expected solution. This is in contrast to
the traditional numerical methods such as finite difference method (FDM) which
uses grid functions as basis functions or finite elements method (FEM) which uses
piecewise polynomials for this purpose.

The ideas underlying the reduced-basis method appear to have their origins in
the suggestions of Almroth [1] and Nagy [13], which were developed by Noor and
colleagues [14]-[16] in the context of simulations for structures and later by Peterson
[18] in high Reynolds numbers incompressible viscous flow simulations. Roughly
speaking, the reduced-basis method employs parameter-dependent solutions of the
system to be approximated. These solutions are used to construct basis elements
in the hope that solutions at other parameter values can be represented in terms of
perturbations of solutions given at carefully chosen parameter values (the Lagrange
basis approach) or in terms of a “moving frame” (the Taylor approach). It is
important to note that the parameter-dependent solutions used as basis functions
can be obtained either from full-order model numerical simulations or experimental
data.

In this article, we focus on the centroidal Voronoi tessellation (CVT) as reduced
order modelling technique which is currently an active research field. Centroidal
Voronoi tessellation-based reduced-order modeling of fluid flows was developed by
[8, 9]. In CVT-reduced order modelling, we start with a snapshot set just as is done
in a POD-based setting. However, instead of determining a POD basis from the
snapshot set, we apply our CVT methodologies to determine the generators of a
CVT of the snapshot set; these generators constitute the reduced-order basis. We
then use the CVT-based basis in just the same way as one uses a POD-based basis
to determine a very low-dimensional approximation to the solution of a complex
system. CVT also possesses an optimality property, although it is different from
that possessed by POD bases. In this article, we shall investigate the CVT method
as a reduced order model for the unsteady Burgers equation with appropriate initial
and boundary conditions. As a matter of fact, POD and CVT may be viewed as
simply different procedures to determine the basis elements for the approximating
subspaces. We shall investigate the technique of CVT as a procedure to determine
the basis elements for the approximating subspaces.

The plan for the rest of paper is as follows. In section 2, we give some definitions
and property of CVT’s, and two approaches for computing these tessellations. Sec-
tion 3 is devoted to applying CVT to solve the time-dependent Burgers equation
and, some numerical experiments including comparison of CVT-based algorithm
with numerical results obtained from FEM and POD-based algorithm are reported
in section 4. Finally, we apply CVT-based reduced-order modeling technique to a
feedback control problem for Burgers equation in section 5.

2. Centroidal Voronoi Tessellation

The concept of the centroidal Voronoi tessellations (CVTs) has been studied in
[5]. CVTs have been successfully used in several data compression settings, e.g.,
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in image processing and the clustering of data. Reduced-order modeling of com-
plex systems is another data compression setting, i.e., replacing high-dimensional
approximations with low-dimensional ones.

We here consider the case where we are given a discrete set of points S = {yi}mi=1

belonging to Rn. The concept of centroidal Voronoi tessellations (CVTs) can be
extended to more general sets, including regions in Euclidean space, and to more
general metrics; for detailed discussions, see [5].

2.1. Definition of CVTs for discrete data sets. The definition of CVTs for
discrete data sets begins with a set S = {yi}mi=1 consisting of m vectors belonging
to Rn. Of course, S can also be viewed as a set of m points in Rn or a possibly
complex-valued n×m matrix. In the context of CVT, it will be useful to think of
the columns {S·,j}mj=1 of S as the spatial coordinate vectors of a dynamical system
at time tj . Similarly, we consider the rows {Si,·}ni=1 of S as the time trajectories of
the dynamical system evaluated at the locations xi.

Given a discrete set S belonging to Rn, the set {Ti}li=1 is called a clustering or
a tessellation of the set S if Ti ⊂ S for i = 1, · · · , l, Ti ∩ Tj = ∅ for i 6= j, and
∪l

i=1Ti = S. Let | · | denote the Euclidean norm on Rn. Given a set of points
{zi}li=1 belonging to S ( or Rn), the Voronoi region Vi corresponding to the point
zi is defined by

Vi = { y ∈ S | |y − zi| < |y − zj | j = 1, · · · , l, j 6= i}.

The points {zi}li=1 are called generating points or (cluster) generators. The set
{Vi}li=1 is known as a Voronoi tessellation or Voronoi clustering of S and each Vi

is referred to as the Voronoi region or cluster corresponding to zi.

Given a density function ρ(y) defined on S, for each cluster Vi, we can define its
cluster centroid z∗i by

z∗i =

∑
y∈Vi

yρ(y)∑
y∈Vi

ρ(y)
i = 1, · · · , l.

Given a set S of m vectors in Rn and a positive integer l ≤ m, a centroidal
Voronoi tessellation (CVT) or centroidal Voronoi clustering of S is a special Voronoi
tessellation satisfying

(2.1) zi = z∗i i = 1, · · · , l

i.e., the generators of the Voronoi tessellation coincide with the centroids of the
corresponding Voronoi clusters. It is important to note that general Voronoi tessel-
lations do not satisfy the CVT property (2.1) so that, for given a set S and positive
integer l, a CVT must be constructed. Algorithms for this purpose are discussed
in subsection 2.2.

Centroidal Voronoi tessellations are closely related to minimizers of an “energy”.
Specifically, let

E({zi}li=1, {Vi}li=1) =
l∑

i=1

∑
y∈Vi

|y − zi|2ρ(y),



562 H.-C. LEE, S.-W. LEE, AND G.-R. PIAO

where {Vi}li=1 is a tessellation of S and {zi}li=1 are points in Rn. No a priori relation
is assumed between the Vi’s and the zi’s. We refer to E as the “cluster energy”; in
the statistics literature, it is called the variance or cost. It is easy to prove that a
necessary condition for E to be minimized is that {zi, Vi}li=1 is a centroidal Voronoi
tessellation of S; see [5].

The connection between CVTs and reduced-order bases is now easily made. The
set S is obviously the snapshot set. Then, the CVT reduced basis set is the set of
generators z = {zi}li=1 of a CVT of S.

2.2. Algorithms for constructing discrete CVTs. As we have seen, the points
that generate a Voronoi tessellation are not generally the centroids of the associated
Voronoi regions. As a result, one is left with the following construction problem:
given a region S ∈ Rn and a positive integer l, determine an l-point centroidal
Voronoi tessellation of S.

There are many known methods for constructing centroidal Voronoi tessellations.
We describe the two methods which are perhaps most “basic” and, certainly in the
first case, the most used.

First, we have Lloyd’s method [10] which is the straightforward iteration between
constructing Voronoi tessellations and centroids.

Lloyd’s method: Start with some initial set of l points {zi}li=1 in S, e.g., deter-
mined using random sampling;

(1) construct the Voronoi tessellation {Vi}li=1 of S associated with the points
{zi}li=1;

(2) compute the centroids of the Voronoi regions {Vi}li=1 found in Step 1; these
centroids are the new set of points {zi}li=1;

(3) go back to Step 1, or, if happy with convergence, quit.

Lloyd’s method and its convergence properties have been analyzed; see [5] and [6]
and also the references cited therein.

A second method is McQueen’s method [12] which is a random sampling algo-
rithm that doesn’t require the explicit construction of Voronoi tessellations or of
centroids.

McQueen’s method: Start with some initial set of l points {zi}li=1 in S, e.g.,
determined using random sampling; set the integer array Ji = 1 for i = 1, · · · , l;

(1) pick a random point y ∈ S;
(2) find the zi closest to y; denote the index of that zi by i∗;
(3) set zi∗ ← Ji∗zi∗+y

Ji∗+1 and Ji∗ ← Ji∗ + 1;
(4) zi∗ along with the unchanged points {zi}li=1,i 6=i∗ are the new set of points;
(5) go back to Step 1, or, if happy with convergence, quit.
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Note that Ji keeps track of how many times the point zi has been previously
updated. Remarkably (since neither Voronoi tessellations or centroids appear any-
where in the definition of the algorithm), the McQueen iterations converge to a set
of generators of a CVT. The convergence properties of McQueen’s methods have
been analyzed in [12].

One point is sampled at each McQueen iteration so that the McQueen iterations
are cheap, but lots of them are needed. Lloyd’s method requires relatively fewer
iterations, but each iteration is expensive; a straightforward implementation re-
quires the explicit construction of Voronoi regions and, to determine the centroids,
numerical integrations on polyhedra.

3. CVT-based model reduction for the Burgers equation

3.1. Generating a snapshot. We now turn our attention to the computations.
In order to generate a snapshot, we wish to numerically solve Burgers equation
with homogeneous Dirichlet boundary conditions on the finite interval [0, L]. In
particular, consider Burgers equation

(3.1)
∂y

∂t
(t, x) + y(t, x)

∂y

∂x
(t, x) = ν

∂2y

∂x2
(t, x) + f(t, x)

with boundary condition

(3.2) y(t, 0) = y(t, L) = 0

and initial condition

(3.3) y(0, x) = y0(x).

3.1.1. The Galerkin method and the weak form. First, we develop a weak
formulation, from which we will derive the discretization. Multiplying both sides of
the Burgers equation by a test function v(x) ∈ V , where V is a space of functions
to be chosen later, and integrating over our domain [0, L], we get∫ L

0

∂y

∂t
(t, x)v(x)dx +

∫ L

0

y(t, x)
∂y

∂x
(t, x)v(x)dx

=
∫ L

0

ν
∂2y

∂x2
(t, x)v(x)dx+

∫ L

0

f(t, x)v(x)dx.

Integrating by parts and using homogeneous Dirichlet boundary conditions yield
the weak formulation of the problem,

(3.4)
∫ L

0

∂y

∂t
(t, x)v(x)dx =

−
∫ L

0

y(t, x)
∂y

∂x
(t, x)v(x)dx− ν

∫ L

0

∂y

∂x
(t, x)v′(x)dx+

∫ L

0

f(t, x)v(x)dx.

3.1.2. The Finite Element Approximation. Now we want to choose V such
that the matrices resulting from our discretization will be as easily solvable as
possible. We choose linear basis functions, φn(x), on the interval [0, L]; for details
refer to [4]. The resulting matrices are tridiagonal. This sparseness given by these
“hat” functions often improves computation time.
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The interval of investigation, [0, L], is divided into N + 1 subintervals [xi, xi+1]
for i = 0, · · · , N , each of length h = L/(N+1). Let the N+2 linear basis functions
be denoted by φi(x) for 1 ≤ i ≤ N and 0 ≤ x ≤ L. But we only use the N linear
basis functions, φ1, φ2, · · · , φN , because of the homogeneous Dirichlet boundary
conditions. The approximate solution is then written as an expansion of these
basis functions. In particular, we assume that

yN (t, x) =
N∑

i=1

ci(t)φi(x),

where the coefficients ci(t) remain to be computed. We substitute yN (t, x) for
y(t, x) and replace v(x) by our basis function φj(x) in (3.4). The basis functions
are orthogonal when i > j + 1 and i < j − 1. The result is a first-order non-linear
differential equation for the vector function c(t) :

(3.5)
∫ L

0

N∑
i=1

ċi(t)φi(x)φj(x)dx = −
∫ L

0

N∑
i=1

ci(t)φi(x)
N∑

k=1

ck(t)φ
′

k(x)φj(x)dx

− ν
∫ L

0

N∑
i=1

ci(t)φ
′

i(x)φ
′

j(x)dx+
∫ L

0

f(t, x)φj(x)dx

The basis functions satisfy φi(xj) = δij , thus we have yN (t, xi) = ci(t). So the
coefficients ci(t) give the value of the approximate solution at the ith node.

Looking at the term on the LHS of (3.5), we have an N by N matrix with rows
given by j and columns by i. We factor out the vector

ċ(t) =


ċ1(t)
ċ2(t)

...
ċN (t)


N×1

and call the remaining matrix the mass matrix, [M], due to its relation to the mass
of the object being studied. The entries of the mass matrix are given by

mi,j =
∫ L

0

φi(x)φj(x)dx.

The third term on the RHS of (3.5) yields the vector function

F(t) =


∫ L

0
f(t, x)φ1(x)dx∫ L

0
f(t, x)φ2(x)dx

...∫ L

0
f(t, x)φN (x)dx


N×1

Inspecting the second term on the RHS of (3.5), we have an N by N matrix with
rows given by j and columns by i. We factor out the vector

c(t) =


c1(t)
c2(t)

...
cN (t)


N×1
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and call the remaining matrix the stiffness matrix, [A]. The entries of the stiffness
matrix are computed by

ai,j =
∫ L

0

φ
′

i(x)φ
′

j(x)dx.

The first term on the RHS of (3.5) results in a tensor, which we call N. The
entries of the tensor are computed by

ni,k,j =
∫ L

0

φi(x)φ
′

k(x)φj(x)dx.

We have now reduced (3.5) to an N -dimensional matrix equation,

(3.6) [M]ċ(t) = −c(t)T Nc(t)− ν[A]c(t) + F(t).

Since [M] is known to be invertible, we can multiply both sides of (3.6) by [M]−1

to obtain

ċ(t) = −[M]−1c(t)T Nc(t)− ν[M]−1[A]c(t) + [M]−1F(t).

We now turn our attention to the initial condition. Multiplying both sides of
the initial condition by v(x) and integrating on the interval [0, L], we get∫ L

0

y(0, x)v(x)dx =
∫ L

0

y0(x)v(x)dx.

The initial condition is expanded in the linear basis functions and yields

(3.7)
∫ L

0

N∑
i=1

ci(0)φi(x)φj(x)dx =
∫ L

0

y0(x)φj(x)dx,

for j = 1, 2, · · · , N .

Inspecting the term on the LHS of (3.7), we again have an N by N matrix with
the rows given by j and the columns by i. We factor out the vector

c(0) =


c1(0)
c2(0)

...
cN (0)


N×1

and we see that the remaining matrix is again the mass matrix, [M].

On the RHS of (3.7) we have the N -dimensional vector

yN
0 =


∫ L

0
y0(x)φ1(x)dx∫ L

0
y0(x)φ2(x)dx

...∫ L

0
y0(x)φN (x)dx


N×1

For the initial condition, we have

[M]c0 = yN
0 .

Again multiply both sides by [M]−1 to obtain the final form of the initial condition:

c0 = [M]−1yN
0 .
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We have now reached the final form of the problem. We want to solve

(3.8) ċ(t) = −[M]−1c(t)T Nc(t)− ν[M]−1[A]c(t) + [M]−1F(t).

given the initial condition

(3.9) c0 = [M]−1yN
0 .

We are now ready to implement the computational code. In section 4, this scheme
is implemented in MATLAB and the resulting ODE (3.8)–(3.9) is solved using
the MATLAB function ODE113. The routine ODE113 uses the Adams-Bashforth-
Moulton method to solve the ODE.

3.2. Reduced Order Modelling via CVT. Let the snapshot set arise from
the discretization of the Burgers equation. Now we fix l and determine the CVT
basis ψ1, · · · , ψl by using the Algorithm introduced in subsection 2.2. We use the
usual Euclidean distance and the uniform density function in the CVT clustering
algorithm. The reduced-order solution is then written as an expansion of these
basis functions. In particular, we assume that

yl(t, x) =
l∑

i=1

di(t)ψi(x),

where the coefficients di(t) remain to be computed. We substitute yl(t, x) for y(t, x)
and replace v(x) by our basis function ψj(x) in (3.4). The result is a first-order
non-linear differential equation for the vector function d(t) :

(3.10)
∫ L

0

l∑
i=1

ḋi(t)ψi(x)ψj(x)dx = −
∫ L

0

l∑
i=1

di(t)ψi(x)
l∑

k=1

dk(t)ψ
′

k(x)ψj(x)dx

− ν
∫ L

0

l∑
i=1

di(t)ψ
′

i(x)ψ
′

j(x)dx+
∫ L

0

f(t, x)ψj(x)dx

Each basis, generator ψi ∈ RN of a CVT, defineds a finite element function, i.e., if

ψi =


ψ1

i
ψ2

i
...
ψN

i

 for i = 1, · · · , l,

we then have the corresponding finite element functions

ψi =
N∑

j=1

ψj
iφj(x) for i = 1, · · · , l.

Looking at the term on the LHS of (3.10), we have an l by l matrix with rows
given by j and columns by i. We factor out the vector

ḋ(t) =


ḋ1(t)
ḋ2(t)

...
ḋl(t)


l×1
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and call the remaining matrix the mass matrix, [M]. The entries of the mass matrix
are given by

mi,j =
∫ L

0

ψi(x)ψj(x)dx

=
∫ L

0

N∑
k=1

ψk
i φk(x)

N∑
k=1

ψk
j φk(x)dx

= ψi(x)
T [M] ψj(x).

where [M] is the mass matrix given in subsection 3.1.

The third term on the RHS of (3.10) yields the vector function

F(t) =


∫ L

0
f(t, x)ψ1(x)dx∫ L

0
f(t, x)ψ2(x)dx

...∫ L

0
f(t, x)ψl(x)dx


l×1

Inspecting the second term on the RHS of (3.10), we have an l by l matrix with
rows given by j and columns by i. We factor out the vector

d(t) =


d1(t)
d2(t)

...
dl(t)


l×1

and call the remaining matrix the stiffness matrix, [A]. The entries of the stiffness
matrix are computed by

ai,j =
∫ L

0

ψ
′

i(x)ψ
′

j(x)dx

=
∫ L

0

N∑
k=1

ψk
i φ

′

k(x)
N∑

k=1

ψk
j φ

′

k(x)dx

= ψi(x)
T [A] ψj(x).

where [A] is the stiff matrix given in subsection 3.1.

The first term on the RHS of (3.10) results in a l by l by l tensor, which we call
N . The entries of the tensor are computed by

ni,k,j =
∫ L

0

ψi(x)ψ
′

k(x)ψj(x)dx

=
∫ L

0

N∑
m=1

ψm
i φm(x)

N∑
m=1

ψm
k φ

′

k(x)
N∑

m=1

ψm
j φm(x)dx

= [ψi(x)
T N ψk(x)]Tψj(x).

where N is the tensor given in subsection 3.1.

We have now reduced (3.10) to an l-dimensional matrix equation,

(3.11) [M]ḋ(t) = −d(t)TNd(t)− ν[A]d(t) + F(t).
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Since [M] is known to be invertible, we can multiply both sides of equation
(3.11) by [M]−1 to obtain

ḋ(t) = −[M]−1d(t)TNd(t)− ν[M]−1[A]d(t) + [M]−1F(t).

In similar way, we can obtain the final form of the initial condition :

d0 = [M]−1yl
0.

where yl
0 is the l-dimensional vector

yl
0 =


∫ L

0
y0(x)ψ1(x)dx∫ L

0
y0(x)ψ2(x)dx

...∫ L

0
y0(x)ψl(x)dx


l×1

We have now reached the final form of the problem. We want to solve

(3.12) ḋ(t) = −[M]−1d(t)TNd(t) + ν[M]−1[A]d(t) + [M]−1F(t).

given the initial condition

(3.13) d0 = [M]−1yl
0.

To implement the computational code, this scheme is also implemented in MATLAB
and the resulting ODE (3.12)–(3.13) is solved using the Adams-Bashforth-Moulton
method.

4. Computational Experiments

4.1. Setting Up the Problem. Consider the Burgers equation

∂y

∂t
(t, x)− ν ∂

2y

∂x2
(t, x) + y(t, x)

∂y

∂x
(t, x) = f(t, x)

with the homogeneous Dirichlet boundary condition

y(t, 0) = y(t, L) = 0

and initial condition
y(0, x) = y0(x).

We wish to compute approximate solutions of this problem to determine a set of
snapshot vectors.

The Galerkin finite element model was described in subsection 3.1 and results in
a system of ordinary differential equations :

(4.1) [M] ċ(t) + ν [A] c(t) + c(t)T [N] c(t) = F(t) in (0, T )

with the initial condition at t = 0

(4.2) [M] c(0) = c0.

This problem is set up in MATLAB and solved by the Adams-Bashforth-Moulton
method. The grid is chosen to be

xi =
i

N + 1
for i = 0, ..., N + 1 and tj =

jT

m
for j = 0, ...,m− 1.
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Most of the examples presented in this thesis employ numerical approximation
schemes using N = 119 elements. This partitions the interval [0, L] into N+1 = 120
subintervals of uniform length. The result is N = 119 nodes, making (4.1) a system
of 119 ordinary differential equations.

Example: Let us present a numerical example. The programs were written in
MATLAB Version 7.1 executed on a INTEL(R) PENTIUM(R) 4 Series computer.
For the Burgers equation we chose the parameters T = 1, ν = 0.01, f = 0 and

y0(x) =

{
1 in (0, 1

2 ],
0 otherwise.

The numerical solution to (4.1)–(4.2) in case of N = 119, m = 120 is shown in
Figure 1.

Figure 1. Full finite element solution of the Burgers equation.

4.2. A Comparison to FEM Solutions. In this subsection, we compare two
reduced order methods (CVT and POD) of computation. The goal is to verify that
the CVT scheme is returning the FEM answer as the number of basis is increased.
The CVT method is compared to the POD method for l = 4, 8, and 16 basis. We
conclude that CVT and POD have a very similar accuracy.
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First of all, we apply the algorithms of subsection 2.3, the Lloyd’s method, to
determine the generators of a CVT of the snapshot set; a set of generators is to be
used as a reduced-order basis.

Table 1, 2, and 3 compare, for the 4, 8, and 16 generator cases respectively,
cluster energy, population, and range of snapshot index corresponding to each clus-
ter. Note that the clusters are formed exactly from a sequence of data points at
neighboring times.

total iterations 6
Cluster Cluster energy Population Range of snapshot index

1 43.7843 24 [ 1, 24 ]
2 37.4290 29 [ 25, 53 ]
3 35.4943 31 [ 54, 84 ]
4 34.9630 36 [ 85, 120 ]

total 151.6706 120 [ 1, 120 ]

Table 1. Cluster statistics for the 4 generator case.

total iterations 9
Cluster Cluster energy Population Range of snapshot index

1 7.3041 10 [ 1, 10 ]
2 5.6761 13 [ 11, 23 ]
3 4.4764 13 [ 24, 36 ]
4 5.0023 15 [ 37, 51 ]
5 5.8278 16 [ 52, 67 ]
6 6.1582 17 [ 68, 84 ]
7 5.8572 18 [ 85, 102 ]
8 4.1329 18 [ 103, 120 ]

total 44.4350 120 [ 1, 120 ]

Table 2. Cluster statistics for the 8 generator case.

Now, CVTs having l = 4, 8 and 16 generators are determined. Figures 2, 7, and
12 display, for the 4, 8, and 16 generator cases respectively, the CVT basis computed
from the snapshot which is not normalized. Figures 3, 8, and 13 display, for the 4,
8, and 16 generator cases, the POD basis computed from the same snapshot data.

It is important to note that, in contrast to the POD basis set, the CVT basis set
of size 8 is not built by augmenting the CVT basis set of size 4; most of the elements
of the larger set seem significantly different from any of those of the smaller set.

In some computations relating CVT and POD, we have a priori knowledge of
the FEM solution. In this case, we measure the numerical error introduced by the
two approximating schemes, calculating the relative l2 error at time t given by

Relative l2 error (t) =
(
∑N

i=1(y
l(t, xi)− yN (t, xi))2)

1
2

(
∑N

i=1 y
N (t, xi)2)

1
2

.

The error is also shown graphically by computing yl(t, x) and yN (t, x) at N + 2
evenly-spaced points in each subinterval. For the 4, 8, and 16 generator cases,
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total iterations 6
Cluster Cluster energy Population Range of snapshot index

1 0.0000 1 [ 1 ]
2 0.6254 4 [ 2, 5 ]
3 0.8782 6 [ 6, 11 ]
4 0.9581 7 [ 12, 18 ]
5 0.7882 7 [ 19, 25 ]
6 0.7163 7 [ 26, 32 ]
7 0.9365 8 [ 33, 40 ]
8 0.7529 8 [ 41, 48 ]
9 0.7464 8 [ 49, 56 ]
10 0.7458 8 [ 57, 64 ]
11 0.7132 8 [ 65, 72 ]
12 0.6636 8 [ 73, 80 ]
13 0.8557 9 [ 81, 89 ]
14 1.0303 10 [ 90, 99 ]
15 0.8806 10 [ 100, 109 ]
16 0.8460 11 [ 110, 120 ]

total 12.1372 120 [ 1, 120 ]

Table 3. Cluster statistics for the 16 generators case.

the numerical solution and the actual error (the difference yl(t, x) − yN (t, x)) are
plotted at these points for comparison. Figures 4, 9, and 14 display, for the 4, 8, and
16 generator cases respectively, CVT-based numerical solutions and corresponding
actual errors. Figures 5, 10, and 15 display, for the 4, 8, and 16 generator cases
respectively, POD-based numerical solutions and corresponding actual errors.

For the 4, 8, and 16 generator cases, the plots of relative l2 errors versus time
are displayed in Figures 6, 11 and 16 respectively. Note that, for both CVT and
POD, relative l2 errors decrease as the size of the CVT basis set is increased.

Table 4 compares the computational times for the CVT and POD methods
using l = 4, 8, and 16. The speeds for the POD method at l = 4, and 8 are
slightly faster than the speeds for the CVT method. However, the CVT method
is computationally faster than the POD method, especially as l increases to 16.
Figure 17 shows the relative errors versus time for the 4, 8, and 16 basis cases and
both CVT- and POD-based cases.

the number of generator method computation time
N = 119 FEM 2.2488e+004
l = 4 POD 0.1570

CVT 0.2180
l = 8 POD 0.8600

CVT 1.0000
l = 16 POD 21.6410

CVT 18.7030

Table 4. Computation times.



572 H.-C. LEE, S.-W. LEE, AND G.-R. PIAO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!0.5

0

0.5

1

1.5

x

!1(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!0.5

0

0.5

1

1.5

x

!2(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!0.5

0

0.5

1

1.5

x

!3(x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!0.5

0

0.5

1

1.5

x

!4(x)

Figure 2. CVT basis functions for l = 4.
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Figure 3. POD basis functions for l = 4

Figure 4. CVT-based reduced order solution (left) and actual
errors using 4 generators.

5. Distributed feedback control problem

In this section, we apply the CVT-based reduced-order modeling method to a
feedback control problem for the Burgers equation. The optimal control problem is
to stabilize the solution to (3.1)–(3.3). The forcing term f(t, x) is used to describe
a distributed control. For an uncontrolled problem, f(t, x) = 0. For a controlled
problem, the control term is assumed to have a special form of f(t, x) = b(x)u(t),
where u(t) is a control input and b(x) is a given function used to describe the control
over the domain.
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Figure 5. POD-based reduced order solution (left) and actual
errors using 4 generators.
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Figure 6. Relative errors vs. time.
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Figure 7. CVT basis functions for l = 8.

Now we describe our control problem. Find an optimal control u(t) which min-
imizes the cost functional

J(u) =
∫ ∞

0

(
||y(t, ·)||2L2(Ω) + |u(t)|2

)
dt
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Figure 8. POD basis functions for l = 8.

Figure 9. CVT-based reduced order solution (left) and actual
errors using 8 generators.

Figure 10. POD-based reduced order solution (left) and actual
errors using 8 generators.

subject to the constraint equations

(5.1)
∂y

∂t
(t, x) + y(t, x)

∂y

∂x
(t, x) = ν

∂2y

∂x2
(t, x) + u(t)b(x)
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Figure 11. Relative errors for l = 8.
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Figure 12. CVT basis functions for l = 16.

with homogeneous boundary condition

(5.2) y(t, 0) = y(t, L) = 0
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Figure 13. POD basis functions for l = 16.

Figure 14. CVT-based reduced order solution (left) and actual
errors using 16 generators.
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Figure 15. POD-based reduced order solution (left) and actual
errors using 16 generators.
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Figure 16. Relative errors for l = 16.
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Figure 17. CVT(left)- and POD(right)-based relative errors vs. time.

and initial condition

(5.3) y(0, x) = y0(x).

Let y(t) = y(t, ·) be the state in state space L2(Ω). Let us define the linear operator
Aν as Aνy = νy′′, for all y ∈ D(Aν) = H1

0 (Ω)∩H2(Ω). The abstract form of the
controlled model problem of (5.1)–(5.3) can be written as the initial value problem

(5.4) ẏ(t) = Aνy(t) +N(y(t)) +Bu(t), y(0) = y0, for t > 0
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on the space L(Ω), where N(y) = −yy′ is defined on H1
0 (Ω).

5.1. Linear feedback controllers with full state feedback and state esti-
mate feedback. Assuming the nonlinear term in the Burgers equation is small,
a suboptimal feedback control u∗ can be obtained by using the well-known linear
quadratic regulator theory. That is, a full state state feedback control is to find an
optimal control u∗ ∈ L2([0, T ), L2(Ω)) by minimizing the cost functional

(5.5) J(u) =
∫ ∞

0

(
Qy(t, ·), y(t, ·))L2(Ω) + (Ru(t), u(t))

)
dt

subject to the constraint equations (5.1)–(5.3). Where Q : L2(Ω) → L2(Ω) is a
nonnegative definite self-adjoint weighting operator for state and R : L2(Ω) →
L2(Ω) is a positive definite weighting operator for the control. The optimal control
u∗(t) can be found as

u∗(t) = −1
2
R−1BT Πy(t) = −Ky(t),

whereK is called the feedback operator and Π is symmetric positive definite solution
of the algebraic Riccati equation

(5.6) ΠA+AT Π−ΠBR−1BT Π +Q = 0.

Once the feedback operator K is determined, solutions to the closed loop system
can be obtained from

(5.7) ẏ(t) = (A−BK)y(t) +N(y(t)).

Implementation of a controller requires a numerical approximation of the system.
For PDE models of systems with complex dynamics, such as Burgers equation and
Navier-Stokes equations, approximations are large scale on the order of thousands
or even millions of variables. A framework for reduced order controllers is necessary
and is applied to such problems by linearizing and designing the linear feedback
law.

In this paper, we do not assume that we have knowledge of the full state. Instead,
we assume a state measurement of the form

(5.8) z(t) = Cy(t),

where C ∈ L(W,Rm). We can apply the theory and results(Burns and Kang,
1991; Marrekchi, 1993; ) to show that a stabilizing compensator based controller
can be applied to the system. Recently Atwell and King investigate reduced order
controllers for spatially distributed systems using proper orthogonal decomposition
theory.

The observer design is mainly needed in order to provide the feedback control
law with estimated state variables. Therefore, the control law and observer are
combined together into a complete system. The combined system is called com-
pensator. This technique assumes the availability of a limited measurement of the
state. Assume we have a system in the abstract form

(5.9) ẏ(t) = Ay(t) +G(y(t)) +Bu(t), y(0) = y0,

where y(t) is in a state space W and u(t) is in a control space U .
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Suppose the state measurement is given by

(5.10) z(t) = Cy(t).

Given this measurement, a state estimate, ỹ(t), is computed by solving the observer
equation

(5.11) ˙̃y(t) = Aỹ(t) +G(ỹ(t)) +Bu(t) + L[Cỹ(t)− z(t)], ỹ(0) = ỹ0.

The feedback control law is given by

(5.12) u(t) = −Kỹ(t),

where K is called the feedback operator. Where functional gain operator K and
estimator gain operator L are determined by linear quadratic regulator(LQR) and
Kalman estimator(LQE), respectively, in usual manner.

A finite element method provides finite dimensional approximations of (5.9)–
(5.10) of order N (where order refers to the freedom of finite element), given by

(5.13) ẏN (t) = ANyN (t) +GN (yN (t)) +BNuN (t), yN (0) = yN
0 ,

(5.14) zN (t) = CNyN (t).

The finite dimensional approximations of the compensator equation (5.11) and con-
trol law (5.12) are given by

˙̃yN (t) = AN ỹN (t) +GN (ỹN (t)) +BNuN (t) + LN [zN (t)− CN ỹN (t)],(5.15)

ỹN (0) = ỹN
0 ,

(5.16) uN (t) = −KN ỹN (t),

respectively. The approximation to the closed-loop compensator system (which will
henceforth be refereed to as full order) is given by[

ẏN (t)
˙̃yN (t)

]
=

[
AN −BNKN

LNCN AN − LNCN −BNKN

] [
yN (t)
ỹN (t)

]
+

[
GN (yN (t))
GN (ỹN (t))

]

(5.17)
[
yN (0)
ỹN (0)

]
=

[
yN
0
ỹN
0

]

Real-time control using the full order compensator may be impossible for many
physical problems in that they may require large discretized systems for adequate
approximation. Therefore, a reduced order compensator is required. A “reduce-
then-design” approach is has a potential drawback that is important physics or
information contained in the model can be lost before obtaining the controller.
Hence,in this paper, we adopt a“design-then-reduce” approach. In other words, a
controller is designed based on the high order model, and then reduced.

Let y(t) =
∑l

j=1 αj(t)φj(x) and ỹ(t) =
∑l

j=1 α̃j(t)φj(x) where φj(x)’s are the
reduced-order basis. The suggested control law is[

ẏl(t)
˙̃yl(t)

]
=

[
Al −BlKl

LlCl Al − LlCl −BlKl

] [
yl(t)
ỹl(t)

]
+

[
Gl(yl(t))
Gl(ỹl(t))

]

(5.18)
[
yl(0)
ỹl(0)

]
=

[
yl
0
ỹl
0

]



580 H.-C. LEE, S.-W. LEE, AND G.-R. PIAO

In this work, reduced bases are formed using the CVT process as described in
Section 2 and 3. The reduced systems given by (5.18) are compared with the full
order compensator system in (5.17).

5.2. Numerical Results. For numerical computations, the viscosity coefficient
was taken to be ν = 0.01 and the spatial interval is taken to be Ω = [0, 1]. The
time interval is [0, T ] where T = 2 and N = 1/64. The control input operator is
B =

∫ 1

0
b(x)φ(x)dx, where b(x) = x and φ(x) is a test function. The state weighting

operator (used in Riccati equation calculations) Q = M , where M is mass matrix.
We set the control weighting operator R(1, 1) = 0.2 and the weighting operator Q̄
is chosen as the mass matrix M . Finally, we creating the measurement matrix C

with Cy(t, x) = 8
∫ 7/8

3/4
y(t, x)dx for the state estimate feedback controller. An initial

condition of y0(x) = 1 in (0, 1/2], otherwise 0 is applied. We obtain a standard
finite element approximation of the full order PDE with u = 0 as in section 3.
Then we generate snapshots and CVT bases as in section 4. Simulations of the
full order PDE, full state feedback, reduced order full state feedback, compensator
and the reduced order compensator are compared. In figure 18, the solutions of
the controlled Burgers equation for full FEM and reduced order are shown where
full state feedback law is used. In the same way, figure 19 shows the solutions of
the controlled Burgers equation for full FEM and reduced order where compensator
feedback law is used. Figure 20 shows that reduced-order feedback control methods
are quit effective for both full state feedback and state estimate feedback controls.
In tables 5 and 6, we report the CPU times and L2 norms of the solution at T = 2
for every cases. One can see that the CPU time for reduced-order model is about
30 times less than that of full FEM with a relative error of 10−3.

Dirichlet boundary feedback controllers with state feedback compensators via
CVT will be discussed in another paper.

number of generators Full FEM 4 8 16
CPU Time 123.17 3.38 5.41 10.44
||y(T, ·)||2 0.0104828125 0.0109640625 0.0107000000 0.0106859375

Table 5. Full order control vs. Reduced order control, full state
feedback: ν = 1/100

number of generators Full FEM 4 8 16
CPU Time 156.06 3.34 5.53 10.36
||y(T, ·)||2 0.0104823278 0.0109641436 0.0106992274 0.0106859085

Table 6. Full order control vs. Reduced order control, estimate
feedback: ν = 1/100
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