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Abstract. As the methodology of centroidal Voronoi tessellation (CVT) is

receiving more and more attention in the mesh generation community, a clear

characterization of the influence of geometric constraints on the CVT-based

meshing is becoming increasingly important. In this paper, we first give a

precise definition of the geometrically conforming centroidal Voronoi Delau-

nay triangulation (CfCVDT) and then propose an efficient algorithm for its

construction that involves projection and lifting processes in two dimensional

space. Finally, we show the high-quality of CfCVDT meshes and the effective-

ness and robustness of our algorithm through extensive examples.

Key Words. centroidal Voronoi tessellation, Delaunay triangulation, con-
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1. Introduction

Mesh generation often forms a crucial part of the numerical solution procedure
in many applications. In the past few decades, automatic, unstructured mesh gen-
erations for complex 2D/3D domains have provided very successful tools for solv-
ing complex application problems, some of those well-studied techniques include
AFT [25, 27], Octree [29], and Voronoi/Delaunay-based methods [1, 3–5, 30, 33]. It
is well-known that the quality of Delaunay-based triangular/tetrahedral meshes is
greatly affected by the placement of the generating points of the associated Voronoi
regions. Many work has been devoted to finding robust and efficient algorithms to
distribute the generating points by some optimal criteria, for example, the Lapla-
cian smoothing [19], the centroidal Voronoi tessellation (CVT) [11], the optimal
Delaunay triangulation (ODT) [7] and DistMesh [28]. We here are specially inter-
ested in the CVT approach.

Centroidal Voronoi tessellation proposed in [11] is a special Voronoi tessellation
having the property that the generators of the Voronoi diagram are also the centers
of mass, with respect to a given density function, of the corresponding Voronoi cells.
CVTs are very useful in many applications, including but not limited to image and
data analysis, vector quantization, resource optimization, design of experiments,
optimal placement of sensors and actuators, cell biology, territorial behavior of ani-
mals, numerical partial differential equations, point sampling, meshless computing,
mesh generation and optimization, reduced-order modeling, computer graphics, and
mobile sensing networks. Recently, CVT and its duality – centroidal Voronoi De-
launay triangulation (CVDT) based mesh generation and mesh optimization have

Received by the editors February 7, 2006, and, in revised form, February 23, 2006.
2000 Mathematics Subject Classification. 65Y10, 68N10.

531



532 LILI JU

attracted a lot of attention and been used for many applications due to its opti-
mal properties, see [1, 2, 12, 13, 15–17]. For example, in the medical imaging and
simulation for surgical operations which are used to not just diagnose the patient’s
ailments but also test alternative treatments, a mesh generator with good trian-
gle/tetrahedron quality and robust control over the mesh sizing and the number of
elements is desired for numerical simulations [32].

In this paper, we propose an effective and efficient algorithm for high-quality
triangular mesh generation based on the CVT-methodology, specifically, the geo-
metrically conforming centroidal Voronoi Delaunay triangulation (CfCVDT). The
plan of the rest of the paper is as follows. We first give a brief introduction to
the concept of CVT in Section 2.1, and then generalize the definition for conform-
ing mesh generation of complicated geometries in Section 2.2. We also propose
an algorithm involving projection and lifting processes for approximate CfCVDT
mesh construction in two dimensional space in Section 3, and some mesh examples
generated by our algorithm for different geometries are given in Section 4 to show
the high quality of CfCVDT meshes. Finally we make some concluding remarks in
Section 5.

2. Conforming Centroidal Voronoi Delaunay Triangulation

2.1. Centroidal Voronoi tessellation. Given an open bounded domain Ω ∈ Rd

and a set of distinct points {xi}n
i=1 ⊂ Ω. For each point xi, i = 1, . . . , n, define the

corresponding Voronoi region Vi, i = 1, . . . , n, by

(1) Vi =
{
x ∈ Ω | ‖x− xi‖ < ‖x− xj‖ for j = 1, · · · , n and j 6= i

}

where ‖ · ‖ denotes the Euclidean distance in Rd. Clearly Vi ∩ Vj = ∅ for i 6= j

and ∪n
i=1V i = Ω so that {Vi}n

i=1 is a tessellation of Ω. We refer to {Vi}n
i=1 as

the Voronoi tessellation (VT) of Ω associated with the point set {xi}n
i=1. A point

xi is called a generator; a subdomain Vi ⊂ Ω is referred to as the Voronoi region
corresponding to the generator xi. It is well-known that the dual tessellation (in
a graph-theoretical sense) to a Voronoi tessellation of Ω is the so-called Delaunay
triangulation (DT). The Voronoi regions Vi’s are convex polygons if Ω is convex
and their vertices consist of circumcenters of the corresponding Delaunay triangles.

Given a density function ρ(x) ≥ 0 defined on Ω, for any region V ⊂ Ω, define
x∗, the mass center or centroid of V by

(2) x∗ =

∫

V

yρ(y) dy
∫

V

ρ(y) dy
.

Then a special family of Voronoi tessellations are defined in the following [11]:

Definition 1. We refer to a Voronoi tessellation {(xi, Vi)}n
i=1 of Ω as a centroidal

Voronoi tessellation if and only if the points {xi}n
i=1 which serve as the generators

of the associated Voronoi regions {Vi}n
i=1 are also the centroids of those regions,

i.e., if and only if we have that

(3) xi = x∗i for i = 1, . . . , n .

The corresponding Delaunay triangulation is then called a centroidal Voronoi De-
launay triangulation.

General Voronoi tessellations do not satisfy the CVT property. It is worth not-
ing that CVT or CVDT may not be unique [11]. The CVT concept also can be
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generalized to very broad settings that range from abstract spaces and distance
metrics to discrete point sets [11,13].

CVTs possess an optimization property that can be used as a basis for an alter-
nate definition. Given any set of points {x̃i}n

i=1 in Ω and any tessellation {Ṽi}n
i=1

of Ω, define the energy by

(4) K({(x̃i, Ṽi)}n
i=1

)
=

n∑

i=1

∫

Ṽi

ρ(y)‖y − x̃i‖2 dy .

Then it can be shown that K is minimized only if {(x̃i, Ṽi)}n
i=1 forms a CVT

of Ω [11]. Notice that {(x̃i, Ṽi)}n
i=1 still may not be a minimizer of K although

{(x̃i, Ṽi)}n
i=1 is a CVT [11]. Although the energy K may not be directly identified

with the energy of some physical system, it is often naturally associated with quan-
tities such as error distortion, variance and cost in many applications. Based on
the conjecture of equipartition of energy [11] for large number of generators, CVTs
have important geometric features, including the following:

• For a constant density function, the generators {xi}n
i=1 are uniformly dis-

tributed; the Voronoi regions {Vi}n
i=1 are all almost of the same size and,

in the two-dimensional case, most of them are (nearly) congruent convex
hexagons [11].

• For a non-constant density function, the generators {xi}n
i=1 are still locally

uniformly distributed, and it is conjectured [11] that, asymptotically, for
some constant C,

(5)
hVi

hVj

≈
(

ρ(xj)
ρ(xi)

) 1
d+2

,

where hVi denotes the diameter of Vi and d is the dimension of Ω.
Construction of CVT is usually done by either probabilistic methods typified by

MacQueen’s random algorithm [26] (which is a simple iteration between sampling
and averaging points) or deterministic methods typified by Lloyd iteration [24]
(which is a simple iteration between constructing Voronoi diagrams and mass cen-
troids). Due to the low convergence rate of MacQueen’s method, much attention
has been focused on the Lloyd method:

Algorithm 1. (Lloyd Method for CVT)
Given a domain Ω, a density function ρ(x) defined on Ω, and a positive integer n.

0. Select an initial set of n points {xi}n
i=1 on Ω.

1. Construct the Voronoi regions {Vi}n
i=1 of Ω associated with {xi}n

i=1.
2. Determine the centroids of the Voronoi regions {Vi}n

i=1; these centroids
form the new set of points {xi}n

i=1.
3. If the new points meet some convergence criterion, return {(xi, Vi)}n

i=1 and
terminate; otherwise, goto step 1.

It is worth noting that the energy K associated with the Voronoi tessellation
{(xi, Vi)}n

i=1 decreases monotonically during Lloyd iteration. A probabilistic ver-
sion of Lloyd method and its parallel implementation were suggested in [22]. An-
other possible way to improve the performance of Lloyd method is to use the multi-
grid acceleration scheme, see [9].

2.2. Conforming CVT and its duality. When CVT/CVDT is applied to nu-
merical solution of partial differential equations (PDEs), e.g., in a finite element
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method or a finite volume method, some modifications are needed to handle geomet-
ric constraints. An obvious one is that the CVT/CVDT-based mesh must conform
with the boundary of the target domain Ω, i.e., some of CVT generators (CVDT
vertices) have to be constrained to lie on the boundary so that the boundary con-
ditions of the PDE problem can be enforced. There are basically two popular
approaches proposed to solve this kind of geometric constraints:

• One approach is to construct the CVT without applying any constraint
using standard algorithm such as the Lloyd method, and during the con-
struction process (step 1 in Algorithm 1), for those Voronoi regions that
extend to the exterior of the domain, their corresponding generators are
projected onto the boundary.

• Another approach is to first distribute some generators on the boundary
in accordance with some pre-defined mesh sizing function related to the
density function ρ and form the boundary mesh, then determine the interior
generators using Lloyd method for CVTs and construct the domain mesh
which conforms with the boundary mesh.

The first approach was used in [12] for mesh generation in numerical solution
of a 2D model PDE that produced high-quality triangular meshes. In [1, 15–17], a
certain combination of both approaches was used for 3D tetrahedral meshing and
the constrained Delaunay triangulation (CDT) [30,31] was used instead of standard
Delaunay triangulation (DT) to generate the mesh. The main difference between
CDT and standard DT is that some geometric constraints such as pre-determined
node position and node connectivities are added and strictly enforced during the
CDT process. For example, the boundary of the domain can be triangulated first,
and the resulting boundary triangulation is then used as a constraint on the con-
forming triangulation of the whole domain using CDT. However, in most of the
above approaches, the number of generators (vertices) on the boundary stays fixed
or only increases for the conforming triangulation after first iteration of Lloyd algo-
rithm no matter what density function ρ used. This is mostly due to the absence of
lifting of generators from the boundary to the interior and the fact that the gener-
ators lying on the boundary can not return to the interior of the domain since their
Voronoi regions obviously always extend to the exterior of the domain. Thus, the
initial position of generators has to be well chosen in accordance with the density
function ρ, otherwise the quality of CVDT mesh could be very bad, especially in
the regions close to the domain boundary; for example, with the boundary triangu-
lation not properly treated, some slivers may be produced in 3D meshing [1]. On
the other hand, how to choose a good sizing function for distributing generators on
the boundary is also not an easy problem if the density function ρ is complicated.
Instead, vertex/face flippings were used together with CVDT meshing in [1, 15] to
improve the mesh quality. Overall, a more clear characterization of the influence
of geometric constraints on the CVT-based meshing remains to be explored.

We propose the following conforming CVT/CVDT concept. Let us assume that
the domain Ω ∈ Rd is compact and ∂Ω is piecewise smooth with singular (corner)
points PS = {zi}k

i=1. Denote by Proj(x) the process that projects x ∈ Ω to a point
on the boundary ∂Ω closest to x. Denote by PI the set of generators in the interior
of the domain and by PB the set of generators on the boundary. Then we define

Definition 2. A Voronoi Tessellation {(xi, Vi)}n
i=1 of Ω is called a conforming

centroidal Voronoi tessellation (CfCVT) if and only if the following properties are
satisfied:
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• PS ⊂ {xi}n
i=1;

• xi = x∗i for xi ∈ PI ;
• xi = Proj(x∗i ) for xi ∈ PB − PS.

The corresponding dual triangulation is then called a conforming centroidal Voronoi
Delaunay triangulation (CfCVDT)1.

It is noted that the meaning of singular (corner) points is trivial in two-dimensional
space but may need to be more rigorously defined in spaces higher than two di-
mensions. In many applications, the domain Ω is often non-convex and is possi-
bly very complicated [15], so that a main difficulty associated with Lloyd method
for constructing CfCVDT meshes is the construction of the Voronoi regions. For
this reason, we next propose an algorithm for constructing approximate CfCVDT
meshes in two dimensional space that does not require the construction of exact
Voronoi tessellations. More importantly, in addition to the projection process used
in the above approaches, a lifting process is also used in our algorithm that will
allow the boundary vertices to return to the interior.

3. Approximate CfCVDT Mesh Construction

We will describe our algorithm for the two dimensional case in details; the gener-
alization to higher dimensions follows similar lines. Currently, for mesh generation
with conforming boundary requirements, CDT process has been widely used so
far as mentioned before, but it is worth noting that the dual tessellations of CDT
generally is not an exact Voronoi tessellation, especially near the boundary. Our
algorithm for constructing approximate CfCVDTs is based on the CDT process
and a procedure similar to Lloyd method for CVTs.

3.1. Polygonal domains. Assume that Ω ∈ R2 is a domain with a polygonal
boundary. In this case the projection process onto the domain boundary – Proj can
be directly computed by simple calculations. An initial conforming triangulation
T0 = {Ti}m

i=1 of Ω can be easily generated by the “TRIANGLE” software package
[30] that uses the CDT process with a boundary mesh as a constraint and interior
Delaunay refinement techniques, or by some other means. Denote by P = {xi}n

i=1

the set of vertices of T0. Let PS , PB and PI be defined as before. The CDT process
guarantees that PS ⊂ P .

For each triangle Ti = (xi1 ,xi2 ,xi3) ∈ T0, we define
(6)

xTi =
{

circumcenter of Ti if Ti is an acute triangle;
the middle point of the longest edge of Ti otherwise.

Clearly, xTi ∈ T i. For each vertex xi, we denote by {Tik
}mi

k=1 ⊂ T0 the set of
triangles for which xi is a vertex, counting in the counterclockwise direction.
Interior vertices. First, consider the case xi ∈ PI , i.e., xi is an interior vertex.
Define Ui by

(7) Ui = the polygon formed by {xTik
}mi

k=1;

see Fig. 1. The polygon Ui can be regarded as an approximation to the Voronoi
region Vi associated with xi. Let xi denote the center of mass of the Ui with

1A concept of constrained centroidal Voronoi Delaunay triangulation (abbreviated as CCVDT)
was used in [13,15,16,18], but its meaning is slightly different from the usage here.
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respect to the density function ρ. Denote by {αik
}mi

k=1 the associated angles around
xi corresponding to {Tik

}mi

k=1. Define

(8) α =
{

max{αik
| T ik

∩ ∂Ω 6= ∅} if T ik
∩ ∂Ω 6= ∅ for some ik;

0 otherwise,

and ei denote the corresponding boundary edge opposite to the angle αik
such that

αik
= α; see Fig. 1 for illustrations of some cases.

Now, select a parameter θmax (π > θmax > π/2). Then, define

(9) yi =
{

xi if α < θmax;
Projei

xi otherwise

where Projei
xi denotes the projection of xi onto the boundary edge ei. It is

clear that yi is still an interior vertex if α < θmax; otherwise, it is a boundary
vertex although xi is an interior node. In our computational experiments, we set
θmax = 5π/9, a good value to choose, which is validated through many experiments.

xi
x i

i

e e

e e

i i

ii

U

ix x
i

Figure 1: The approximate Voronoi region Ui for the interior vertex xi.

Boundary vertices. Next, consider the case xi ∈ PB , i.e., xi is a boundary vertex.
Let e1 and e2 denote the two boundary edges having xi as the common end point
and denote by z1 and z2 the midpoints of e1 and e2, respectively; see Fig. 2. The
approximate Voronoi region Ui of xi is defined by

(10) Ui = the polygon formed by z1, {xTik
}mi

k=1, and z2;

see Fig. 2. Let xi denote the center of mass of the Ui associated with the density
function ρ. If xi ∈ PB − PS , denote by β1 and β2 the angles facing the boundary
edges e1 and e2, respectively, in {Tik

}mi

k=1; see Fig. 2 (right). Let

(11) β = max(β1, β2)
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and select a parameter θmin (π/3 > θmin > 0). Then, define

(12) yi =





xi if xi ∈ PS ;
Projz1z2

xi if xi ∈ PB − PS and β > θmin;
xi if xi ∈ PB − PS and β ≤ θmin

where Projz1z2
xi denotes the projection of xi onto the segment z1z2. It is clear that

yi is also a boundary vertex if xi is a corner vertex or xi is non-corner vertex but
β > θmin; otherwise, yi becomes an interior vertex (the lifting process) although
xi is on the boundary. In our numerical experiments, we set θmin = π/6.

i
e e

i

ix 1

U

11

2

2z zz

z

2e

1e 2 x

Figure 2: The approximate Voronoi region Ui for the boundary vertex xi. left:
corner vertex; right: non-corner vertex.

3.2. Additional interface constraints. There could be other kind of geometric
constraints imposed for specific numerical problems. For example, for the interface
singularity problems [6, 21], it is often required that no triangles/tetrahedra can
straddle the interface, i.e., the triangulations have to conform to the interfaces, so
that the discontinuities of the coefficients only occur across mesh edges/faces. This
will surely also pose some constraints on the position of generators and triangulation
process during CfCVDT construction. Let us assume that the initial T0 satisfies
the above geometric constraint. In the following, we will describe some additional
techniques for this case. Let Γ be the interface inside the domain imposed by the
physical system. Denote by PF ∈ PI the set of interior vertices located on the
interface Γ and by PFS ∈ PF the set of interior interface vertices that are corner
points of the interface.
Interface vertices. Let us first consider the case xi ∈ PF , i.e., xi is an interior
vertex located on the interface. Let e1 and e2 denote the two interface edges having
xi as the common end point respectively. The approximate Voronoi region Ui of
xi is defined as same as that for the interior points; see Fig. 3. Let xi denote the
centroid of the Ui associated with the density function ρ. If xi ∈ PF −PFS , denote
by {βi}4i=1 the angles facing the interface edges e1 and e2, respectively, in {Tik

}mi

k=1;
see Fig. 3 (right). Let

(13) βmax = max{β1, β2, β3, β4}, βmin = min{β1, β2, β3, β4}
and z be the corresponding interior non-interface vertex forming the angle βi =
βmin; see Fig. 3 (right). Then, define

(14) yi =





xi if xi ∈ PFS ;
Proje1e2

xi if xi ∈ PF − PFS and βmax > θmin;
(xi + z)/2 if xi ∈ PF − PFS and βmax ≤ θmin
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where Proje1e2
xi denotes the projection of xi onto the segment e1e2 (e1e2 is a

straight line when xi is not a corner vertex of the interface). It is clear that yi is
still a corner vertex of the interface Γ if xi is a corner vertex of the interface, or
xi is a non-corner vertex on the interface but β > θmin; otherwise, yi becomes an
interior vertex not located on the interface Γ although xi is located on the interface.

Z

iU

ix

2

1 1

2e
e

e e

ix

Figure 3: The approximate Voronoi region Ui for the interior vertex xi located on
the interface. left: a corner vertex of the interface ; right: a non-corner vertex of
the interface.

Interior vertices near the interface. Let xi and xj be the two interior vertices
facing the common interface edge eij . Their approximate Voronoi regions Ui and
Uj are defined as same as that for the interior points, see Fig. 4. Let xi and xj

denote the centers of mass of the Ui and Uj with respect to the density function ρ
respectively. Denote by {αik

}mi

k=1 the associated angles around xi corresponding to
{Tik

}mi

k=1. Define

(15) αi =
{

max{αik
| T ik

∩ Γ 6= ∅} if T ik
∩ Γ 6= ∅ for some ik;

0 otherwise,

and let ei denote the corresponding interface edge opposite to the angle αik
such

that αik
= α. Similarly, we can define αj and ej for the vertex xj .

Then, we define

(16) yi =





xi if αi < θmax;
Projei

xi if αi > θmax and ei 6= ej ;
Projei

xi if αi > αj > θmax and eij = ei = ej ;
xi otherwise

where Projei
xi denotes the projection of xi onto the interface edge ei. From this

construction, it is easy to see that xi and xj are not allowed to be projected onto
eij at the same step and xi (or xj) can not go across the interface into the other
side of the interface in one step.

3.3. Curved domains. For domains with curved boundary, we take the approach
of level set function used by [28]. Let us assume that the boundary of the domain
Ω is the zero level set of a given function f(x). For each point x0 = (x0, y0) ∈ Ω,
the Proj(x0) process requires us to find the closest point x = (x, y) on the zero
level set, i.e., f(x) = 0 and x− x0 is parallel to the gradient (fx, fy) at x:

(17) ÃL(x) =
[

f(x, y)
(x− x0)fy − (y − y0)fx

]
= 0.
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U Ui jx i

x j

e ij

Figure 4: The approximate Voronoi regions for the interior vertices xi and xj near
the interface.

To solve the above problem, we use the damped Newton’s method with x0 as initial
guess proposed in [28]. The Jacobian of ÃL is

(18) J(x) =
∂ ÃL
∂x

=
[

fx fy + (x− x0)fxy − (y − y0)fxx

fy −fx − (y − y0)fxy + (x− x0)fyy

]T

,

and we iterate

(19) xk+1 = xk − αJ−1(xk)ÃL(xk), k = 0, 1, 2, · · · ,

until the residual ÃL(xk) is small enough. We then take the approximate solution
xk generated by the above procedure as Proj(x0). The damping factor is often set
to be 1.

One of the convenient ways to define the level set function f(x, y) is to use the
signed distance functions [28]. The distance function d(x, y) measures the (signed)
distance for (x, y) to the domain boundary ∂Ω and satisfies

(20) d(x, y) =





< 0 if (x, y) ∈ Ω− ∂Ω;
= 0 if (x, y) ∈ ∂Ω;
> 0 otherwise,

so the domain boundary is the zero level set of d(x, y). Some examples of d for simple
geometries, and various help functions for the generation of distance functions for
more complicated domains have been given in [28] in great details.

3.4. Construction algorithm. Based on the above discussions, now we describe
an algorithm for constructing an approximate CfCVDT of the domain Ω.

Algorithm 2. (Lloyd method for approximate CfCVDT)
Given a domain Ω ∈ R2, a density function ρ(x) defined on Ω, and an initial
triangulation T0 of Ω with vertices {xi}n

i=1 generated using CDT.
1. Determine {yi}n

i=1 from {xi}n
i=1 according to (9), (12), (14) and (16).

2. Set {xi}n
i=1 = {yi}n

i=1. If the domain consists of curved boundary, set
xi = Proj(xi) by (19) for all xi regarded as boundary nodes.

3. Reconstruct the boundary segments EB from the new {xi}n
i=1.

4. Re-triangulate the domain Ω using CDT with {xi}n
i=1 as the vertices and

EB as the boundary edges; the resulting triangulation is the new T .
5. If the triangulation T meets some convergence criterion, return T and ter-

minate; otherwise, go to step 1.
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Of course, to prevent some vertices from frequently jumping back and forth
between the boundary and the interior of the domain, more sophisticated controls
are needed. For the sake of simplicity, we omit some details in Algorithm 2. We
expect the convergence of this Algorithm 2 to be similar to the Algorithm 1 that
has been extensively studied [10].

4. Computational Examples

In this section, through a number of mesh examples from simple geometries to
relatively complicated geometries2, we illustrate the high-quality of the CfCVDT
meshes and the robustness and effectiveness of our construction Algorithm 2. Given
a triangulation T of Ω, let hT denote the diameter of T for any triangle T ∈ T and
define

hmax = max
T∈T

hT , hmin = min
T∈T

hT ,

then hmax/hmin will be used to measure the distribution of the nodes: the larger
hmax/hmin is, the more the nodes are distributed non-uniformly. We apply the
commonly used q-measure [20] to evaluate the quality of the triangular mesh, where,
for any triangle T , q is defined to be twice the ratio of the radius RT of the largest
inscribed circle and the radius rT of the smallest circumscribed circle, i.e.,

(21) q(T ) = 2
RT

rT
=

(b + c− a)(c + a− b)(a + b− c)
abc

,

where a, b, and c are side lengths of T . Clearly 0 < q ≤ 1 and q = 1 corresponds
to the equilateral triangle. For a given triangulation T , we define

qmin = min
T∈T

q(T ) and qavg =
1

card(T )

∑

T∈T
q(T ).

qmin measures the quality of the worst triangle and qavg measures the average
quality of the mesh T . The measurements of mesh quality and node distribution
of all examples discussed below are reported in Table 1.
(1) Unit Circle. We first set Ω = {(x, y) | x2 + y2 ≤ 1} be the unit circle and
then use the signed distance function d(x, y) = dcircle(x, y, 0, 0, 1) where

dcricle(x, y, xc, yc, r) =
√

(x− xc)2 + (y − yc)2 − r.

Figure 5 shows the resulting CfCVDT meshes for n = 217 and n = 817 with
different density functions

ρ(x, y) = 1,(22)

ρ(x, y) = e−10.0
√

x2+y2
,(23)

ρ(x, y) = e−10.0|
√

x2+y2−1|(24)

respectively.
(2) Square with Hole. We set Ω = [0, 1]2 − {(x, y) | x2 + y2 < 0.52} with signed
distance function

d(x, y) = max(drectangle(x, y,−1, 1,−1, 1), −dcircle(x, y, 0, 0, 0.5))

where

drectangle(x, y, x1, x2, y1, y2) =
−min(min(min(−y1 + y, y2 − y),−x1 + x), x2 − x).

2Some sample domains can be found in [28].
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Figure 5: CfCVDT meshes of a unit circle. Top: n = 217; bottom: n = 817; left:
with density function (22); middle: with density function (23); right: with density
function (24).

Figure 6 shows the resulting CfCVDT meshes for n = 305 and n = 1126 with
different density functions

ρ(x, y) = 1,(25)

ρ(x, y) = e−10.0|
√

x2+y2−0.5|,(26)

ρ(x, y) = e−10.0 min(|
√

x2+y2−0.5|, dp)(27)

respectively with

dp = min
{√

(x− xi)2 + (y − yi)2
}4

i=1

where {(xi, yi)}4i=1 are four corners of the square.
(3) Hexagon with Hexagonal Hole. We choose Ω = Ω1−Ω2 be a hexagon with a
hexagonal hole where Ω1 is the hexagon formed by corner points {(cos θi, sin θi)}6i=1

with θi = (i − 1/2)π/3 for i = 1, · · · , 6 and Ω2 is the hexagon formed by corner
points {(0.5 cos βi, 0.5 sinβi)}6i=1 with βi = (i − 1)π/3 for i = 1, · · · , 6. Figure 7
shows the resulting CfCVDT meshes for n = 809 with different density functions

ρ(x, y) = 1,(28)

ρ(x, y) = e−20.0dp(29)

respectively with

dp = min
{√

(x− xi)2 + (y − yi)2
}6

i=1

where {(xi, yi)}6i=1 are six corner points of the interior hexagon.
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Figure 6: CfCVDT meshes of a square with hole. Top: n = 305; bottom: n = 1126;
left: with density function (25); middle: with density function (26); right: with
density function (27).

Figure 7: CfCVDT meshes of a hexagon with a hexgonal hole for n = 809. Left:
with density function (28); right: with density function (29).

(4) Square with Square Holes. We choose the domain Ω be a square with four
square holes defined by Ω = [−1, 1]2 − Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 where

Ω1 =
(
[0.25, 0.75]2, Ω2 = [−0.75,−0.25]× [0.25, 0.75],

Ω3 = [−0.75,−0.25]2), Ω4 = [0.25, 0.75]× [−0.75,−0.25]
)

Figure 8 (left) shows the resulting CfCVDT mesh for n = 1661 with the density
function

(30) ρ(x, y) = e−20.0|dp−√2/4|.
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where

dp = min
{√

(x− xi)2 + (y − yi)2
}4

i=1

with {(xi, yi)}4i=1 = {(0.5, 0.5), (−0.5, 0.5), (−0.5,−0.5), (0.5,−0.5)}.

Figure 8: CfCVDT meshes of a square with four square holes with n = 1661 and
the density function (30) (left) and a slit with n = 1112 and the density function
(31) (right).

(5) Slit. We choose the domain Ω be a slit such that

Ω = [−1, 1]2 − (−0.025, 0.025)× (−0.5, 0.5).

Figure 8 (right) shows the resulting CfCVDT mesh for n = 1112 with the density
function

(31) ρ(x, y) = e−20.0 min
(√

x2+(y−0.5)2,
√

x2+(y+0.5)2
)
.

(6)&(7) Implicit Expressions. We first choose Ω (Example 6) to be the region
between the level sets 0.5 and 1.0 of the super-ellipse f(x, y) = (x4 + y4))1/4 (a
super-ellipse with a super-ellipse hole). Figure 9 (left) show the resulting CfCVDT
mesh for n = 851 with the density function

(32) ρ(x, y) = e−10.0
∣∣√x2+y2−0.5

∣∣
.

Another example of the domain Ω (Example 7) is chosen to be the intersection
of the following two regions (a PI-shape domain):

y ≤ cos(x) and y ≥ 5
(

2x

5π

)4

− 5.

Figure 9 (right) shows the resulting CfCVDT mesh for n = 473 with the density
function

(33) ρ(x, y) = 1.
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Figure 9: CfCVDT meshes of domains with implicit expressions. Left: a super-
ellipse with a super-ellipse hole with n = 851 and the density function (32); right:
a PI-shape domain with n = 473 and the density function (33).

(8) More complex Geometry. The domain of this example is a more complicated
construction involving set operations on circles, Ω = Ω1 − Ω2 − Ω3 where

Ω1 = {(r cos θ, r sin θ) | 0 ≤ r ≤ 1, −π/12 ≤ θ ≤ π/12},
Ω2 = {(x, y) | (x− 0.6)2 + y2 < 0.12},
Ω3 = {(0.9 + rcosθ, r sin θ) | 0 < r < 1, −π/4 < θ < π/4}.

Figure 10 (right) shows the resulting CfCVDT mesh for n = 735 with the density
function

(34) ρ(x, y) = e−40.0 min
(
|
√

(x−0.6)2+y2−0.05|,
√

(x−0.9)2+y2,
√

x2+y2, 0.15
)
.

Figure 10: The CfCVDT mesh of Example (8) with n = 735 and the density
function (34).

We skipped the description of signed distance function for Example 8 since it is
a little bit complicated.
(9)&(10) Domains with Interface Constraints. These examples are used to
show the effectiveness of our algorithm for constructing CfCVDT meshes with in-
terface constraints. We first choose the square domain Ω = [−1, 1]2 (Example 9)
with the interface

Γ = {(x, 0) | − 1 < x < 1} ∪ {(0, y) |1 < y < 1}.
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Figure 11 (left) shows the resulting CfCVDT mesh for n = 1089 with the density
function

(35) ρ(x, y) = e−15.0 min
(√

(x−0.5)2+(y−0.5)2,
√

(x+0.5)2+(y+0.5)2
)
.

Another example of domain Ω (Example 10) is chosen to be a square with a
square hole such that Ω = [−1, 1]2 − (0.5, 0.5)2 and the interface is set to

Γ = {(x, 0) | − 1 < x < −0.5 or 0.5 < x < 1}
∪{(0, y) | − 1 < y < −0.5 or 0.5 < y < 1}.

Figure 11 (right) shows the resulting CfCVDT mesh for n = 1072 with the density
function

(36) ρ(x, y) = e−(10.0dp1+15.0dp2).

where

dp1 =
√

(x + 0.5)2 + (y + 0.5)2,

dp2 = min
(√

(x− 0.5)+(y − 0.5)2,
√

(x + 0.5)+(y − 0.5)2,
√

(x + 0.5)+(y + 0.5)2,
√

(x− 0.5)+(y + 0.5)2
)
.

Figure 11: CfCVDT meshes with interface constraints. Left: Example (9) with
n = 1089 and the density function (35); right: Example (10) with n = 1072 and
the density function (36).

From the results in Table 1, we can conclude that the quality of CfCVDT meshes
are really excellent even when the nodes are highy non-uniformly distributed (i.e.,
local mesh size varies a lot across the whole domain).

5. Conclusions and Future work

The two dimensional CfCVDT mesh generator discussed in this paper has been
implemented in C language based on the very popular software package for tri-
angular mesh generation, “TRIANGLE”. The three dimensional CfCVDT mesh
(tetrahedral mesh) generator is still under development. In [23], the CfCVDT
mesh has been used to design optimal adaptive finite element methods for elliptic
PDEs based on the combination of local a posterior estimators and the special CVT
property (5), and has obtained promising results. We believe that the CfCVDT
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Examples Density Function n qmin qavg hmax/hmin

(22) 217 0.845 0.980 1.11
817 0.827 0.983 1.21

Example 1 (23) 217 0.634 0.908 5.10
817 0.679 0.947 6.01

(24) 217 0.661 0.861 3.56
817 0.641 0.889 5.05

(25) 305 0.671 0.951 1.41
1126 0.663 0.963 1.54

Example 2 (26) 305 0.676 0.925 5.59
1126 0.657 0.948 6.98

(27) 305 0.705 0.926 4.51
1126 0.700 0.949 4.72

Example 3 (28) 571 0.722 0.954 1.41
(29) 809 0.585 0.931 4.05

Example 4 (30) 1661 0.678 0.936 4.77

Example 5 (31) 1112 0.659 0.931 11.17

Example 6 (32) 851 0.728 0.940 3.51

Example 7 (33) 473 0.697 0.947 1.43

Example 8 (34) 735 0.559 0.934 5.32

Example 9 (35) 1089 0.458 0.933 30.78

Example 10 (36) 1072 0.471 0.934 59.94

Table 1: Measurements of mesh quality and node distribution of all sample CfCVDT
meshes.

meshes will attract more and more attention and be very useful for many scientific
and engineering problems in the future.
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