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Abstract. In this paper we describe a one-dimensional interface problem for

the heat equation, with a nonlinear (quadratic) jump condition at the interface.

We derive a numerical method for approximating solutions of this nonlinear

problem and provide some results from numerical experiments. The novelty

of this problem is precisely this nonlinear (quadratic) jump condition, and it

arises in the study of polymeric ion-selective electrodes and ion sensors.
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1. Introduction

In this note we describe a one-dimensional interface problem with a nonlinear
jump condition and derive a numerical method for approximating its solutions.
This problem arises in the study of polymeric membrane, ion-selective electrodes
and ion sensors. The novelty of this problem is precisely this nonlinear (quadratic)
jump condition, to our knowledge such problems have not been previously studied.

1.1. The problem. The problem under consideration is a simple, one-dimensional,
transmission problem for the heat equation with a nonlinear (quadratic) jump con-
dition at the interface.

Define Ω− = (−1, 0), Ω+ = (0, 1), and set Ω = Ω−∪Ω+. The interface separating
the two sub-domains is Γ = {0}. Given a function u : Ω 7→ R, we denote its
restriction to each of the two sub-domains by uκ = u|Ωκ for κ = −, or κ = +, and
by u(0κ) the trace uκ(0) = uκ|Γ of uκ on Γ.

The model problem we consider is the following transmission problem

(1)
1
δ
ut − (kux)x = f in Ω× (0, T )

subject to the boundary conditions

(2) u(−1, t) = ub−(t) and u(1, t) = ub+(t) in (0, T ) ,

initial condition

(3) u(x, 0) = u0(x) in Ω ,

along with the jump conditions (interface conditions, at the interface x = 0); a
continuity of flux condition

(4) k(0−)ux(0−, t)− k(0+)ux(0+, t) = 0 in (0, T ) ,
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and a nonlinear jump condition

(5) σ−u(0−, t)− σ+u(0+, t) = σu(0−, t)u(0+, t) in (0, T ) .

Here σ−, σ+, and σ are positive constants (obviously in the case that σ and/or
one of the σκ is zero the jump condition becomes linear and the problem greatly
simplified, this is also the case if σ− = σ+ = 0). While in general k and f may be
some given functions, in the case of interest k is a given piecewise constant function

k(x) =

{
k− for x ∈ Ω−

k+ for x ∈ Ω+
,

for some positive constants k− and k+, δ is a given piecewise constant

δ(x) =

{
δ− for x ∈ Ω−

δ+ for x ∈ Ω+
,

for some positive constants δ− and δ+, and f = 0.

1.2. Motivation. The motivation for studying this problem comes from the mod-
eling of chemical sensors which are comprised, in part, of a polymeric membrane,
ion-selective, electrode. The model describes the concentration u of an ion I in an
aqueous solution (sample) and in an adjoining polymeric membrane, the interface
being the point at which the membrane contacts the solution, see [5] and [4] for
details. A general description of the operating principle, as well as a simpler model,
of such ion sensors may be found in [1].
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Figure 1. The domain, subdomains Ωaq and Ωorg, and interface Γ.

Figure 1 shows the diffusion layer in the aqueous solution Ωaq = (−δaq, 0) which
has a width δaq, and the (organic) membrane Ωorg = (0, δorg) of thickness δorg.

In the absence of sources or sinks the diffusion of ions in the aqueous solution
and membrane is governed by

(6) ut − (kux)x = 0 in Ω× (0, T )

where now Ω = Ωaq∪Ωorg (using notation similar to that introduced in the previous
section). The ion concentration satisfies the boundary conditions

(7) u(−δaq, t) = ub aq(t) and u(δorg, t) = ub org(t) in (0, T )

where the first condition is given by the sample bulk concentration, and the second is
given by the ion concentration in the, so-called, inner solution (a reference solution
on the other side of the membrane, see [1]), and the initial condition

(8) u(x, 0) = u0(x) in Ω .
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Ion flux continuity across the interface (at x = 0) gives rise to the first interface
condition

(9) kaqux(0−, t)− korgux(0+, t) = 0 in (0, T )

here

k(x) =

{
kaq for x ∈ Ωaq

korg for x ∈ Ωorg

where kaq and korg are the diffusion coefficients in the aqueous solution (the diffusion
layer in the sample) and in the membrane respectively.

The concentration relationship at the sample-membrane interface is derived from
ion-exchange equilibrium (for such membranes). For analyte ions I that partially
exchange at the interface with interfering ions J of the same valency, we have

Kpot
I,J =

uaq(0, t)[uR org − uorg(0, t)]
uorg(0, t)uJ aq

where Kpot
I,J is an experimentally accessible selectivity coefficient (which is here

equal to an ion-exchange constant) and uJ aq, uR org are the concentrations of
interfering ion J in the aqueous phase and in the ion-exchanger in the organic phase,
respectively. These concentrations are high and therefore considered constant. This
condition may be rewritten as

uR orguaq(0, t)−Kpot
I,J uJ aquorg(0, t) = uaq(0, t)uorg(0, t)

which can be written (with the obvious substitutions) as

(10) σaqu(0−, t)− σaqu(0+, t) = σu(0−, t)u(0+, t) in (0, T ) .

Obviously (6)–(10) (posed on (−δaq, 0)∪ (0, δorg)) can be transformed to (1)–(5)
(posed on (−1, 0) ∪ (0, 1)) by scaling each interval, as well as k (and f in case it
is not zero) appropriately. We can further scale uaq and ub− by σaq, and uorg and
ub+ by σorg, so that in (5) we get σ− = σ+ = 1; this requires setting

k(x) =


kaq

δaqσaq
for x ∈ Ω−

korg
δorgσorg

for x ∈ Ω+

,

δ(x) =

{
δaqσaq for x ∈ Ω−

δorgσorg for x ∈ Ω+
,

in (1) and in (4), and replacing σ by σ
σaqσorg

in (5).

2. Theoretical considerations

In light of the above (possible scaling) and in order to focus attention on the
distinct features of this model we consider the following slightly simplified problem

(11) ut − (kux)x = f in Ω× (0, T )

subject to the boundary conditions

(12) u(−1, t) = ub−(t) and u(1, t) = ub+(t) in (0, T ) ,

initial condition

(13) u(x, 0) = u0(x) in Ω ,
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along with the interface conditions

(14) k(0−)ux(0−, t)− k(0+)ux(0+, t) = 0 in (0, T ) ,

and

(15) u(0−, t)− u(0+, t) = σu(0−, t)u(0+, t) in (0, T ) .

Here ub− , ub+ , and u0 are piecewise smooth functions, σ is a positive constant, k
is a sufficiently regular, positive function (bounded away from zero) or is a given
piecewise constant

k(x) =

{
k− for x ∈ Ω−

k+ for x ∈ Ω+

for some positive constants k− and k+.
We comment that existence and uniqueness of solutions to (11)–(15) are open

questions, the difficulty, obviously stemming from the nonlinear jump condition
(15). In the sequel we will assume that (11)–(15) has a solution in C(0, T ;H(Ω)),
where

H(Ω) = {v ∈ L2(Ω) : v− ∈ H1(Ω−) and v+ ∈ H1(Ω+)} .

As usual L2 is the space of square integrable functions and H1 is the Sobolev
space of square integrable functions whose first distributional derivative is square
integrable. We will also make use of the spaces

H0(Ω) = {v ∈ H(Ω) : v−(−1) = 0 and v+(1) = 0} ,

Hc(Ω) = {v ∈ H(Ω) : v−(0) = v+(0)} ,

and
H0 c = H0(Ω) ∩Hc(Ω) .

That is, H0(Ω) is the subspace of H(Ω)-functions with homogeneous boundary
conditions and Hc(Ω) is the subspace of H(Ω)-functions which are continuous at
the interface (note that in fact Hc(Ω) = H1(Ω) and H0 c = H1

0 (Ω) ).

2.1. The steady problem. We briefly look at the corresponding steady state
problem, this may provide some additional insight and motivation for the numerical
algorithm we derive. Consider

(16) −(kux)x = f in Ω

subject to the boundary conditions

(17) u(−1) = ub− and u(1) = ub+ ,

along with the interface conditions

(18) k(0−)ux(0−)− k(0+)ux(0+) = 0 ,

and

(19) u(0−)− u(0+) = σu(0−)u(0+) ,

with k as before.
It is a fairly simple exercise to show that (16)–(19) has two solutions in H(Ω)

provided that σ 6= 0.
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2.2. Auxiliary problem. Also consider the auxiliary problem

(20) −(kwx)x = 0 in Ω

subject to the boundary conditions

(21) w(−1) = 0 and w(1) = 0 ,

along with the interface conditions

(22) k(0−)wx(0−)− k(0+)wx(0+) = 0 ,

and

(23) w(0−)− w(0+) = σ ,

with k as before.
With σ = 0 in (19) problem (16)–(19) becomes a standard linear transmission

problem (with zero jump), hence it is easy to show that it has a unique solution
v ∈ Hc(Ω). Furthermore (20)–(23) is also a linear transmission problem (with a
nonzero jump condition), hence it too has a unique solution w ∈ H0(Ω).

Now consider u = v + βw. If β is a root of

0 = (βw(0−) + v(0))(βw(0+) + v(0))− β

= w(0−)w(0+)β2 + [(w(0−) + w(0+))v(0)− 1]β + v2(0)
(24)

(recall v is continuous at x = 0) then u = v + βw is in H(Ω) and is a solution of
(16)–(19). It is easily seen that the quadratic (24) always has two real solutions
(since w(0−)w(0+) < 0, see below; furthermore one root is negative and the other
nonnegative). The above construction does not require that f 6= 0 or that k be
piecewise constant. Hence (16)–(19) has two solutions.

We further observe that w can be written as

w(x) = σ
∥∥∥1

k

∥∥∥−1

L1


∫ x

−1
dξ

k(ξ) for x ∈ Ω−

−
∫ 1

x
dξ

k(ξ) for x ∈ Ω+

.

In the physical case, that is when f = 0 and k is a piecewise constant, we have the
explicit expressions

v(x) =


ub− + k+

(k−+k+) (ub+ − ub−)(x + 1) for x ∈ Ω−

ub+ + k−

(k−+k+) (ub+ − ub−)(x− 1) for x ∈ Ω+

and

w(x) =


σk+

(k−+k+) (x + 1) for x ∈ Ω−

σk−

(k−+k+) (x− 1) for x ∈ Ω+

.

In this physical case it can be shown that one solution is nonnegative on Ω, we
call it the physical solution, whereas the second solution is negative somewhere in
Ω, we call it the non-physical solution (in the applications we have in mind, u is a
concentration, hence must be nonnegative).
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3. Numerical approximation of solutions

We now describe the numerical method (finite element in space, finite difference
in time, see, e.g., [2] or [3] for an introduction to these methods) that we use to
approximate solutions of (11)–(15), the one-dimensional transmission problem with
a nonlinear jump condition.

We start by writing a weak form for the differential equation which is obtained
as usual, multiplying (11) by a test function v ∈ H0 c(Ω) and integrating by parts.
The weak formulation is, find u ∈ H(Ω) which satisfies the boundary conditions
(12), the initial condition (13), the jump condition (15), and such that

(25)
∫ 1

−1

[utv + kuxvx] dx =
∫ 1

−1

fv dx for all v ∈ H0 c(Ω) and a.e. t ∈ (0, T ) .

Note the interface condition (14) is incorporated into the weak form (is a natural
condition and does not have to be explicitly enforced).

To perform the actual numerical simulation we discretize the weak form (25), to
that end we generate a mesh in the interval [−1, 1], that is, subdivide the interval
into l + r sub-intervals (elements) with (end points)

−1 = x−l < x−l+1 < . . . < x0 = 0 < x1 < . . . < xr−1 < xr = 1 .

On this grid we construct some finite element spaces. Here we used piecewise linear
basis functions, see Figure 2.
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Figure 2. The grid and basis functions.

We denote by φm, −l ≤ m ≤ r, the piecewise linear functions given by

φm(xn) =


1 for m = n

−l ≤ m,n ≤ r .

0 for m 6= n

We in fact construct three finite element spaces, the (trial) space V h ⊂ H(Ω), the
(continuous) space V h

c ⊂ Hc(Ω), and the (test) space V h
0 c = V h

c ∩H0(Ω) ⊂ H0 c(Ω).
The bases for these three spaces are given by {φm : −l ≤ m ≤ r, m 6= 0}∪{φ−0 , φ+

0 },
{φm : −l ≤ m ≤ r}, and {φm : −l + 1 ≤ m ≤ r − 1}, respectively.

The semi-discrete (piecewise linear in space continuous in time) approximation
uh ∈ C(0, T ;V h) of a function u ∈ C(0, T ;H(Ω)) may be written as

(26) uh(x, t) =
r∑

m=−l
m 6=0

uh
m(t)φm(x) + uh−

0 (t)φ−0 (x) + uh +
0 φ+

0 (x)
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where uh
m are some continuous functions, and a function vh ∈ V h

0 c may be written
as

(27) vh(x) =
r−1∑

m=−l+1

vh
mφm(x)

for some coefficients vh
m. We note that the function vh is continuous across the

interface, whereas uh may have a jump discontinuity there due to the two (possibly)
different functions uh−

0 and uh +
0 multiplying φ−0 and φ+

0 , the restrictions of φ0 to
Ω− and Ω+ respectively. We also point out that the coefficients vh

m and (functions of
time) uh

m are the nodal values (values at the grid points) of vh and uh respectively.
We now also introduce time nodes; set ∆t = T

s , for some integer s, and let
tj = j∆t, for 0 ≤ j ≤ s.

We discretize the weak form of the p.d.e. (25) using these piecewise linear finite
elements in space and finite differences in time to obtain the discrete equation for
the approximate solution

∫ 1

−1

{
uh(x, tj+1)− uh(x, tj)

∆t
vh(x)

+ k(x)
[
ωuh

x(x, tj+1) + (1− ω)uh
x(x, tj)

]
vh

x(x)

}
dx

=
∫ 1

−1

[ωf(x, tj+1) + (1− ω)f(x, tj)]vh(x) dx

for all vh ∈ V h
0 c and 0 ≤ j ≤ s− 1

(28)

subject to the boundary conditions

uh(−1, tj+1) = ub−(tj+1) and uh(1, tj+1) = ub+(tj+1) for 0 ≤ j ≤ s− 1 ,

the initial condition

uh(x, t0) = wh
0 (x) in Ω ,

where wh
0 is some V h approximate of u0, and the interface condition

uh(0−, tj+1)− uh(0+, tj+1) = σuh(0−, tj+1)uh(0+, tj+1) for 0 ≤ j ≤ s− 1 .

In equation (28) setting ω = 0, 1/2, and 1 yields the Euler, Crank-Nicolson, and
backward Euler methods, respectively (see, for example, [2] or [3]).



526 G. HETZER AND A. J. MEIR

Using (26), (27) and (28) we get, for each 0 ≤ j ≤ s− 1 an equivalent system of
linear algebraic equations∫ 1

−1

{(
r∑

m=−l
m 6=0

uh
m(tj+1)− uh

m(tj)
∆t

φm(x) +
uh−

0 (tj+1)− uh−
0 (tj)

∆t
φ−0 (x)

+
uh +

0 (tj+1)− uh +
0 (tj)

∆t
φ+

0 (x)

)
φn(x)

+

[
ωk(x)

(
r∑

m=−l
m 6=0

uh
m(tj+1)φmx(x) + uh−

0 (tj+1)φ−0 x(x) + uh +
0 (tj+1)φ+

0 x(x)

)

+ (1− ω)k(x)

(
r∑

m=−l
m 6=0

uh
m(tj)φmx(x) + uh−

0 (tj)φ−0 x(x) + uh +
0 (tj)φ+

0 x(x)

)]

× φnx(x)

}
dx =

∫ 1

−1

[ωf(x, tj+1) + (1− ω)f(x, tj)]φn(x) dx

for − l + 1 ≤ n ≤ r − 1 and 0 ≤ j ≤ s− 1 .

(29)

Note, after using the initial condition

uh
m(t0) = wh

0 (xm) for − l ≤ m ≤ r ,

at each time step (for each 0 ≤ j ≤ s− 1) (29) is a system of r + l− 1 equations in
r + l + 2 unknowns, moreover, the boundary conditions

(30) uh
−l(tj+1) = ub−(tj+1) and uh

r (tj+1) = ub+(tj+1) for 0 ≤ j ≤ s− 1

add two additional linear equations, and the jump condition

(31) uh−
0 (tj+1)− uh +

0 (tj+1) = σuh−
0 (tj+1)uh +

0 (tj+1) for 0 ≤ j ≤ s− 1

adds an additional nonlinear (algebraic equation) constraint. These can be written
as

Muh(tj+1) + ω∆tSuh(tj+1) = Muh(tj)− (1− ω)∆tSuh(tj)

+ ∆t[ωf(tj+1) + (1− ω)f(tj)] for 0 ≤ j ≤ s− 1 ,
(32)

with boundary conditions

(33) uh
−l(tj+1) = ub−(tj+1) and uh

r (tj+1) = ub+(tj+1) for 0 ≤ j ≤ s− 1 ,

jump condition

(34) uh−
0 (tj+1)− uh +

0 (tj+1) = σuh−
0 (tj+1)uh +

0 (tj+1) for 0 ≤ j ≤ s− 1 ,

and initial condition
uh(t0) = wh

0 .

Here M is the mass matrix, S the stiffness matrix, uh the vector of nodal values, f
the load vector, and wh

0 the vector of initial values at the nodes .
Since the above discretization yields a system of algebraic equations coupled to

a nonlinear equation (constraint) we developed an efficient analytic and numerical
procedure for solving such a problem. The method for solving the problem in-
volves a splitting, that is constructing the solution by superposing a solution of the
nonhomogeneous equation with a zero jump and a solution that satisfies the corre-
sponding homogeneous equation with a prescribed jump. The approach is similar
in spirit to that described in section 2 (in the p.d.e. context, and for a quadratic
jump does not require iteration).
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Consider solving the linear algebraic system

Au = b

where A is the matrix corresponding to the system of linear algebraic equations (32)
and the two linear equations (33) representing the boundary conditions. The vector
u is the vector of nodal (unknown) values of uh, that is a vector whose components
are uh

m (at some time tj), and the vector b is the right hand side of this linear system.
We must solve this linear system along with the (possibly nonlinear) constraint
which corresponds here to the jump condition (34) (represented abstractly as)

B(u) = h .

We solve this problem in three steps as follows:
i. Solve the linear system with homogeneous constraint

Aū = b

B(ū) = 0 .

ii. Solve a homogeneous linear system with constraint 1

Aû = 0

B(û) = 1 .

iii. Finally find β such that

B(ū + βû) = h .

If these three systems of equations can be solved then, it is easy to see that
u = ū + βû is a solution to our problem, this is represented schematically (for the
case of piecewise constant k and f = 0 ) in Figure 3.

..................................................................................................................

!!!!!!!!!!!!!!!!!!((((((((((((((((((

x−l x0 xr

ū

û

ub−

ub+

6

?

1

Figure 3. The solutions ū and û; building blocks for obtaining
the solution u.

To obtain an approximate solution of the interface problem we solve such a
system at each time step. In this case finding β amounts to computing the roots
of a quadratic polynomial (24) and choosing the appropriate root (which yields the
physical solution).
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Figure 4. Example 1, concentration snapshots for t = 0.2, 0.6,
1.0, 1.4, 1.8, 2, 2.4, 2.8, 3.2, and 3.6.

4. Numerical experiments

We now describe computational results from two computer experiments. These
results provide additional insight into the behavior of solutions of the model problem
(11)–(15).
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Figure 5. Example 2, concentration snapshots for t = 0.2, 0.4,
0.6, 0.8, 1, 1.5, 2, 2.5, 3, and 3.5.

In these examples we used the Crank-Nicolson method (that is ω = 1/2 in (28)).
For both examples we chose k− = 1, k+ = 0.1, and σ = 1. The first example
resembles chemistry experiments (see [5] and [4]). The initial condition is the
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steady state for ub− = 0 and ub+ = 1, that is

u(x, 0) =


−5+

√
35

10 (x + 1) for x ∈ Ω−

1− (5−
√

35)(x− 1) for x ∈ Ω+

.

At time t = 0.2 the concentration in the sample is increased, to 0.5 and at time
t = 2 the concentration in the sample is decreased back to zero, that is

ub−(t) =


0 for 0 < t < 0.2
0.5 for 0.2 < t < 2
0 for 2 < t

and ub+(t) = 1 .

Snapshots of the solution uh (the concentration) at various times are shown in
Figure 4.

In Figure 5 we show snapshots of the solution uh at various times for a more
academic example. Here we chose a zero initial condition, that is

u(x, 0) = 0 for x ∈ Ω

and at time zero both the sample concentration and inner solution concentration
are raised to 1, that is

ub−(t) = 1 and ub+(t) = 1 in (0, T ) .

While here we only considered academic numerical experiments, there is good
agreement between results of numerical simulation and laboratory experiments.
Such comparisons may be found in [5] and [4].
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