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REMARKS ON CONTROLLABILITY OF THE ANYSOTROPIC
LAME SYSTEM

S. GUERRERO AND O. YU. IMANUVILOV

Abstract. In this paper we established a Carleman estimate for the elasticity
system with the residual stresses. As an application of this estimate we obtain

exact controllability results for the same system with locally distributed control.
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1. Introduction

Let us denote x = (xq, z"), where zq (resp. z’) stands for the time (resp. spatial)
variable. This paper is concerned with global Carleman estimates for the Lamé
system

3
(1) pOZui — > Op (o) =fi InQ 1<i<3,
j=1

where () is a bounded domain with boundary 9 € C3, Q = (0,T) x Q, u(z) =
(u1,usg,us) is the displacement, f = (f1, f2, f3) is the density of external forces and
045 is the stress tensor:
O’ij = aijhk(x)ﬁzhyuk.
On the boundary, we equip the Lamé system with zero Dirichlet boundary condi-
tions:
u=0 on X,
where we have denoted ¥ = (0,7) x 9S2.
We introduce the following standard assumptions on the coefficients a;;n

(2) { Qijhk = Ajikh = Qhkij,
9 _
ik Xij Xin = aXi; X5 VX € R? with Xi; = Xji,
where « is some positive number.

In this paper we will strict to the case of the anisotropic Lamé system with
residual free stresses:

3 o =R+ (Vu)R + \(tre)Es + 2ue + 1 (tre)(trR) Es + B2(trR)e
+ B3((tre)R + tr(eR)E3) + B4(eR + Re),
where F3 ia a unit matrix,
= %(Vu +(Vu))
and
(4) V-R=0 inQ.
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490 S. GUERRERO AND O. IMANUVILOV

We will assume for simplicity that 5, = B2 = 83 = 84 = 0 and therefore
(5) o =R+ (Vu)R + A(tre)Es + 2pue,

for some A, p and R. We will impose the following regularity assumptions on the
Lamé coefficients

(6) -

Py Ay Rij € C*(Q) 4,5 €{1,2,3}, p>0, pFs—R and (A +2u)E3 —R >0

positive definite in €.

The first goal of this paper is to establish appropriate global Carleman estimates
for the Lamé system with residual free stress. For displacements u with com-
pact support, such estimates were obtained in the previous works [27], [25], [18].
More results are available for the isotropic Lamé system. Thus, in the stationary
case we refer to Dehman-Robbiano [8] and Weck [31] for displacements with com-
pact support and Imanuvilov-Yamamoto [17] for displacements satisfying Dirichlet
boundary conditions. For the nonstationary isotropic Lamé system, see [10] for
displacements with compact support and [14]-[16] in the other case. In this paper
we have extended the techniques in [15] to consider the anisotropic Lamé system
(1) with o given by (5). Our Carleman estimates will hold for displacements u
satisfying zero Dirichlet coditions on X.

The last section of this paper is devoted to the exact controllability of the Lamé
system. To our best knowledge, the first observability result for the Lamé system
was proved in [24] using multipliers of the form (x; — m?)g—;, which led to the
observability inequality
2

ou 05

(0,T)xTo

when the Lamé coefficients ;1 and A are constants. Here, F(t) is the energy. The
control is exerted at (0, 7)xT'g where I’y C 99 and homogeneous Dirichlet boundary
conditions are assumed for u. Further results have been deduced in [1] by Alabau
and Komornik for the anisotropic Lamé system by essentially the same multipliers
method. Several questions concerning the approximate controllability /uniqueness
of the Lamé system were studied in [10] by Eller, Isakov, Nakamura and Tataru
by means of Carleman estimates. They obtained approximate controllability with
a control distributed over any open subset of the boundary for a sufficiently large
time. A series of important results have been obtained quite recently in works of
Bellassoued [5]—[7]. In particular, he has proved a “logarithmic type” energy decay
estimate in the case where the geometrical control condition of Bardos, Lebeau,
Rauch is not fulfilled. An interesting result was also proved by Zuazua in [32], for
the isotropic Lamé system with the locally distributed control v of the form y,v

, where v = (v1,...,v,) and v, = 0. Under some geometric assumptions on the
domain D he established the approximate controllability for the isotropic Lamé
system.

Several works are devoted to the construction of dissipative “feedback” boundary
conditions for the Lamé system. In [2], Alabau and Komornik introduced dissipative
boundary conditions of the form o(u)n + Au + Bd;,u = 0 on the controlled part
of the boundary I'yg. Under some geometric conditions on I'y, they established the
exponential decay of the energy

1 1
E(CC()) = 5 /Q(|8x011‘2 + a,-je,-j(u))dx' + §/F A‘U‘st < e~ wro
0
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for the anisotropic Lamé system. In the isotropic case, Horn [13] and Martinez [26]
also constructed stabilizing boundary feedbacks but under less restrictive geomet-
rical assumptions.

A closely related question is the control and stabilization of layered plate models.
Concerning the control of thermoelastic systems, Lagnese in [21] proved uniform
stabilization of thermoelastic Reissner plates using thermal and mechanical bound-
ary feedbacks. In [20], he also proved the exact controllability of the mechanical
component of a thermoelastic Kirchhoff plate using mechanical boundary controls.
In one-dimensional cases, this was improved to exact null controllability (of thermal
and mechanical components) by the mechanical variable on the boundary in [12].
Lebeau and Zuazua [22] extended this result to the case of a three-dimensional ther-
moelastic Lamé system with a mechanical distributed control on a neighborhood
of the boundary. Avalos and Lasiecka [4] proved a related result for the boundary
control of a thermoelastic Kirchhoff plate, but with no restriction on the size of the
coupling constant.

In the last part of this paper, we will present a controllability result for the
anisotropic Lamé system with distributed controls supported by Q, = w x (0,7T),
where w C € is a nonempty open set.

Notation: Let x = (xg,2’), where 2o = t stands for the time variable. We
denote by H**(Q) and H"*(Q) the Hilbert spaces H*(Q) and H'(Q) with the

norms
2

[ = Z 84_2‘(1'“Dau”%2((2)
|| =0

and
Hu||fql,s(Q) 232/ |u|2d3:+/ |Vu|? dz,
Q Q

respectively.
We also introduce the following norms:

; 2 —
I3, @) = /Qem (Shico st 2Dl + 5[ V(V x w)?

(7)
+5%|V x u]® + s|V(V - u)]* + s°|V - ul]?) dz
and
oull? o%ul|”
(8) [all3, @) = llullz,q) +5|le™ 5 +s|le? ;
Yo (Q) B, (Q) on Hb:5(%) on? L2(%)

where ¢ is a given function.
In the sequel, we will denote by €(d) a positive function such that

lim(;*)OJrE((S) =0.
2. A Carleman estimate for the anisotropic Lamé system

Let us consider the following anisotropic Lamé system completed with Dirichlet
boundary conditions:

P(z,D)yu = p(2)92 u— L(z,D)u=f in Q,

(9) u=0 on X,
u(,T) = dyou(-,T) = u(-,0) = 9y,u(-,0) =0 in O,
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where

L(z,D)u = pAu+ A+ p)V(V -u) - [(R, V)V ]u
Here, f and u are three-dimensional vector fields functions and R is a symmetric
matrix-valued function, whose components will be denoted by

u=(u)j—y, £=(f)j= and R=(Rj)]-
Let & = (&, &1,&2,&3) = (€0,¢&’). We introduce the symbols

{ pi(z, &) = p(a')&f — n(@') (67 + &3 + &3) + (R(2')€, §),
p2(,€) = p(2")&§ — (Ma') + 2u(")) (67 + &5 + &3) + (R(2")€, §)-
For any two smooth functions w(z,§) and z(x, &), let us introduce the formula for

the Poisson bracket
3

{w,z} = Z(@EJ.U) Oz, 2 — 0,2 0, w).

j=0
Through this paper we will assume the existence of a function 1 satisfying the
following condition:

Condition A There exists a function 1) € C3(Q) such that
o IVardlgigs #0
o {pj, {p;j. ¥}z, &) > 0 for all (z,€) € (Q\ Qu) x R* with & # 0 such that
pi(2,€) = (Vep;, Vib) =0 for j=1,2

and
o {pj(2,6 — isV(2)),p;(w,€ +isV(2))}/(2is) > 0 for all § € R*\ {0} and
s € R\ {0} satisfying
pj(xag + 'stw(x)) = <V§pj($,f + ZSV¢(££)); V¢($)> =0, z e Q \ Qwv j=12
On the boundary, the following is required:
p1(z, Vi(z)) <0 VoedQx(0,T)

and

0~ O W N~ OV
(A + 2#)% — ijzl R” 6—,%”] <0 and /,L% — ijZZI RZBa_;ZjinJ <0

Vo € (002 Ow) x (0,T).
Let 2* € [0, T] x (02 \ Ow) be an arbitrary point. Let O the orthogonal matrix of
rotation of the domain Q around the point z*’. We assume that normal vector to O
is &5. After the rotation, we translate 2'* into zero and denote the new coordinates

as y. In new coordinate system to the point z* corresponds y* = (z§,0,0,0). We
need to introduce several functions

Al60.61.&) = (In((E) (7. 0.6)) F(61.&).
where R = OR(z*' )0,
Fa(y”, &) = (Z Rys(y*)(&+ispy, () = (B—Ras) (") (—p(y™) (Co+isey, (y*))?

+H(B = Ran)(y) (& + sy, () + (B — Raz) (y*) (&2 + ispy, (y7))?
—Rua(y) (&1 +isepy, () (&2 + isey, (y7))),
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Ri3(y*)& + Ros(y*)&o "

F(&1,62) = (- R33)(y*)
(10) X{_<A+2u Rs)?(y") (€)% + (82)%)
(1 — Ra3)(y*)
(A +2p— Ra3)(y

) (Ris(y*)6 + Ras(y )52)2}

(1 — Ra3)2(y*)
Q1 = (1 — Ri) ()& + (1 — Rao) ()& — 2R1a(y")a o,

(Rls(y*)fl + ]:323@*)52)2 2
1,6) =1 — = )
ulls ) ( (i = B ") )

(ng(y*)fl 'f: ]?23(1/*)52))2 2
(1 — Rs3)(y*)

Pareu(y™,0,£Q,(61,&2),£1,62)),

Ai(€1,€2) = 05, (¥ ) (IA+ 20— Raa) ()| (61, &) +

n (Ris(y*)& + Ras(y*)&2))?
(1 — Ra3)*(y*)

Rz .o R
6_R33(y)y1 B_R33(

(11) Ogs.0 = —
Consider the polynomial

(12) P&, &) = (A0, &1,&) + A1 (€1, 62))% = (94 (%) Qul&r, E2) F (€1, €2)).

Note that this polynomial is homogeneous of order four in &; and &;. Moreover,
this is a homogeneous function of order four. Introducing the new variable z = & /&
the polynomial P; :

y*)ay'z + ays'

Pi(z) = 52 P(&1,82)

Condition B. Assume that for any x € [0,T] x (002 \ Ow)
A(£9,(0,1),0,1) + A1(0,1) >0

and polynomial P1(z) does not have real roots.
Denote

(Ri3(y*)é1 + Ros(y*)&2)? ) i
*)

Qny2u(61,62) = <Q22 — 2Bn(y)68 (AN+2u— R33)(Z/

where
Qoo = (A+ 20— Ri)(y") (&) + (A + 2 — Rao) (y") (&2)?
and
&) = (Rys(y” Ros(y5)Es B3, (20)— (1 — Ra3) (A + 2!{* R33)(y*)(§f +£&)
o6 62) = (Rl e fnI% BB 0y 0.6) = Rualr )61 — a0
Condition C. Assume that for any x € [0,T] x (0 \ Ow)
(13) (Ris(y") + R33(x)) < (A + ) (@) (A + 2 — Rsz)(y")
and V(&1,82) € {(€1,82)][(&1,62) = 1,
Cia.u(y*) < (Im(ru(y*, 8, Qatou(61,€2)61,€2)/8)) [ (24/ Re(ru(y*, 0, £Qxr2, (€1, €2), &1, €2))) }

(14) q(&1,8)% — q(&1, &) (Imragon/s) (Y™, 8, £Ot2,u(1,€2), &1, &) > 0
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Let thus fix a function v satisfying the previous conditions and let us set
o(x) = e™ @)y e Q
for some positive parameter 7 which will be chosen later on.

Theorem 1. Let f € HY(Q) and let (2), (4) and (6) hold. Suppose there exists a
function i satisfying conditions A-C. Then, there exists T* > 0 such that, for any
T > 7%, there exists s* > 0 such that

(15) lully,@) < Cllle*fllene(o) + lulls,@.) Vs> s*

for some C > 0 independent of s and for any solution v € L?(0,T; H?(Q))NHY(Q)
of system (9).

Proof: Let us first write down the equations verified by V x uw and V - u:

P,(z,D)(V xu) =92 (V xu) — pA(V x u) + (R, V)VT(V x u)

(16) =V xf+ P(z,D)u
and
an Pyyou(z, D)(V-u) = 07 (V-u) = (A +20)A(V -u) + (R, V)VT(V - u)

=V -f + Py(x, D)u,

where the pj(w, D) are second order differential operators.
In this situation, we are able to apply the Carleman estimates obtained in [28]
and [9] to the equations (16) and (17). Combining them, we obtain

S92 (V x u)|22(g) + 1672V - w)llEs )
+s7(07 2 (V -0l ) + 022 (V x w)n ()

<O | etllEn g + D lle*”Dullfa(q
| <2

2 2

s0u
on L2(D) L2(D)

+s7(|¢! 2%V (V x U‘)”i?(Qw) + 57|91/ 2es NV (V - u)”i?(Qu)

+3373\|¢3/263¢(V X U)Hi’z(@w) + 337'3“¢3/2€s¢(v : U—)H%"’(Qw)

¢1/2es¢7 9(Ogu)

3/2 s
o7ve on

(18) +s373

—I—ST‘

2
+ Z (57)5_2‘04||¢%_‘a|es“’Dau||i2(Qw) V1 > 10, Vs > s0(7),
|a|=0

where C' is independent of s and 7. We recall that the definition of || - ||, () Was
given in (7).
Now, from the well known identity

Au= -V x (Vxu)+V(V-u),

we can use the Carleman inequality proved in [11] for the case of a (simpler) elliptic
equation with homogeneous Dirichlet conditions and combine this with (18), so we
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deduce in a standard way that

S4T5||¢265¢11||%2(Q) + 82’7'3||¢65¢Vu“i2((9) + T||65¢D211||i2(@)

<O [ ety + D lle*® D ulfq)
|l <2

2 2

Ou
an LQ(E) LZ(E)
+7[[ @120V (V x 0)[L2q,,) + 57012 V(V - w)Ra g,

+5°73¢%/2e5%(V x u)||i2(Qw) + 373|325 (V - 11)”%2(Qw)

¢1/265¢ 9(Orgu)

3/2 s
¢%e on

+S37'3

+ST’

(19)

2
+ Z (87)5_2|a‘||¢%_|a‘es¢Dau||iz(Qu) Y7 > 11, 8> s1(7).
|a]=0

Taking 7 large enough the global term in the right hand side concerning u can be
absorbed.

On the other hand, at this point of the proof we forget about the dependence on
7 and possible powers of ¢ (which is a regular function) in our inequalities, since it
will not be crucial. Consequently, for the moment, we have

2 2

o5 9%u

-~ ou
o2

% +s

I3, @) < C(Ile*Elifsq) +5
HUs (%)

(20) L2(3)

Huld, o) V=7, 820,

where constant C' is independent of s.
The norm || - ||y, (@) Was introduced in (8).

The goal will be now to estimate the boundary terms appearing in the previous
inequality. For this purpose, we consider another weight function ¢ such that
¢ = ¢ on Y. For instance, let us take

(21) p=e" with =19 — %el + 243,
where Z is a large positive number and ¢; is a regular function verifying
li=0o0n02 ¢ >0inQ and V¢ #0 on IN.
Moreover, if we set
Q72 = {2’ = (1,22, 23) € Q: dist(x/,00) < 1/2°},
we can suppose that the function ¢; is chosen such that
o(x) < Pp(x) Yo e Qyz x(0,T)

provided Z is large enough.
For this new weight function, we will be able to prove the following lemma:

Lemma 1. Under the previous conditions, the following inequality holds

(22) lally, @) < C (lle*?fllmrs(q) + llulls,@.) Vs> so,

for functions u verifying
suppu C ﬁl/zz x [0, T].
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Let us suppose that lemma 1 holds and let us deduce theorem 1 from it. Suppose
that Z is already fixed such that (22) holds and take € € (0,1/Z2). Then we have

(23) p(x) <o(x) Voe (Q\ Q) x[0,T].

Let us now introduce a cut-off function § € C2(€).) such that = 1 in Q. /5. Then,
it readily follows that the function fu fulfills the following system

P(z,D)(0u) = 0f + [P,0]u in Q,
fu=20 on X,
(Ou)(-, T) = 0y (O0) (-, T) = (G)(:,0) = Oy (fu)(-,0) =0 in .

Consequently, we can apply estimate (22) to fu and deduce that

2 2 2

0“u

00U gu
on?

on

+ s le%?

H!#(3)

< C/s (118 sy + e 1P OlErna iy + IliE, ouy) Vs = 5o,

S

(24) L2(%)

since ¢ = ¢ on the boundary. Next, we observe that the support of the function
[P, 0]u is contained in Q. \ Q./5 x [0,7], while ¢ < ¢ in that set (see (23)). Thus,

2
le*? [P, 6lullero(q) < C Y [le*?D¥ullra(q) Vs > 0.
|| =0

Finally, we put this together with (24) and (19) and we obtain the desired inequality
(15).
This ends the proof of theorem 1.

Proof of Lemma 1: Assume that suppu C Bs N (ﬁl/zz x [0,77). By means of
a translation and a rotation, one can always suppose that the small part of the
boundary where we are working on is given by the equation

Tr3 = f(xl,l‘Q).
Without lack of generality, the function £ € C® can be taken to satisfy
V'0(0,0) = (£y,,£2,)(0,0) = 0.

Observe that if we denote by O the orthogonal matrix which defines the rotation
and transform our original domain €2 into the new one (/' € Q = &’ = O’ € ),
the equation satisfied by our function 6 (Z) := Ou(zg, O~1%) is now

(25) Dt — pA — A+ p)V(V - 1) + [(R, V)V i = O f (i, 07 '7),
where R(#') = OR(O~1#)O 1.
In order to work in an appropriate frame, we perform the change of variables
Y1 = 21,
Y2 = T2,
ys = w3 — L(21,T2)

and we set y* = (y0,0,0,0). Let us denote by w = (w’,w,) the functions V x u
and V - u in the new coordinates. Then, some simple computations show that, in
the new variables, the main symbols of equations (16) and (17) are

p(y,&) = —p&§ + (B — R11)éT + (B — Ro2)&5 + {[(BEs — R)GT|G}E3
—2R1281& — 2351 (Rjs + Ly, (B — Rjj) — Ly, R12)&;&s,
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where
(26) G = (_gyu_zyzvl)t'

Let us set some other standard ingredients in the microlocal analysis frame.
Thus, we consider the unit sphere in IR*, say

S ={(=(s8):?+&+&+E =1}
and the following associated finite covering:
{¢es8®:1C—¢l < diticveme),

with ¢} € S3. To this covering we associate the partition of unity {xvh<v<ms
extending y,, out of S? like a homogenous function of order 0 with support contained
in the conic neighborhood

< 51} |

¢
0(6,) = {c : ‘— e
(61) "
In order to finish the proof, we need another lemma:

Lemma 2. Let v* = (y*,(*) € G x S? be fized and suppx, C O(81). Then, for
sufficiently small 6 and 61, we have

5||ZV|‘%{1,s(g) + S(HZVH%{Ls(ag) + ||ayszv||%2(ag))

(27) ,
< C(”ewa%pws(g) + HZH%{LS(Q))'

Here, we have denoted G = R® x [0,1/Z2] and z, = x, (s, D)z, with z = e*?w.
Let us suppose that lemma 2 holds. Then we have

SHZH%{Ls(g) + S(HZH%ILs(ag) + ||aygz|‘i2(ag))
M
(28) <Cs Z(qunipvs(g) + 2o f01. 06 + 10us20 72 (56))
v=1

< C(Hes‘Pfop,s(g) + ||€SLPU-H%{2,5(Q)>'

Let us now use the result stated in proposition 4.2 of [14]:

2
7y st e Doulfa gy < Clle* Elle gy + lePullfe. gy,
|| =0

where C' is independent of s and Z.

From the differential equation in (9), we deduce that ||65¢3§Ou||i2(g) can be
added to the left hand side of the previous inequality. The same can be said of
||€S‘P850y1uHi2( g) n view of well known interpolation arguments. Consequently, we
have

2
7 Z 5472|a|\|es<ppau||i2(g) < C”eS@f“%_ILs(g).
|| =0
Combining this with (28), we obtain:
(29)
2
Z 5472|a|||€wDau||i2(g) + S(HZH%{l,s(ag) + ||3ysz||i2(ag)) < C||€wa%{1-,s(g)-
|a]=0
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Let us finally see that we can deduce inequality (22) from (29). To do this, we

just have to provide ‘good’ estimates for the terms
: 2 sp92 |12
s]le** Oy, ullgi. pg) and s Hewaygu”w(ag) .

From the definition of the y variables in terms of x and the Dirichlet boundary
condition on u, we see that the following estimates hold:

|0y, u;| < [(V xu)s—;| +€(8)|0y,ul on 0G for j=1,2,
|0y us| < |V -u| +€(0)|0y,ul on 9G.

These two estimates tell that

(30) |e*?Oyu| < |z1] + |z2| + |24] on 0G.
Additionally,

|8§j93uk| S |8y7 (v x u)3—k| + 5(5)|8y,y3u| on ag for .] = 07 1a2a k= 172
and

|8§jy3u3| <0y, (V-u)[ +€(6)|0y,ysul on 9G for j=0,1,2,

whence we deduce that
(31) %9V 70y, u] < |Viz |+ Vil z| 4+ Vi 2] on 8G.
Finally, we have

|3§3uj| <0y, (V xu)z_j| + |0y, (V -u)| +£(6)]0,,Vyu| on 9G for j=1,2
and

102, 15] < 10,1 (VX Wl + 10, (T x W] + [0, (7 - w)] + (8)]0y, Vyu|  on OG,
which lead to the estimate
(32) \es‘”(?;su\ < |Vyal + |[Vyza| + [Vyza| +£(6)[e°%0,, Vifu|  on 9G.
One can readily see that (30)—(32) imply that

s 2 s 2
1620, + €770 6 gy < Clleln gy + 192 0

as we wanted to prove.

As a conclusion it suffices to prove lemma 2, so the rest of this section will be
dedicated to it.

Proof of lemma 2: Let us introduce the notation
D =D +1isVep.
Then the main symbol of the differential operator Ps(y, D) is
P5,s(Y:5,€) = —p(&o +ispy,)* + (B — Ru1)(&1 + ispy,)?
+(B = Raz) (&2 +ispy,)? +{[(BEs — R)GT]G}(&s + ispy,)?
—2R12(&1 + ispy, ) (§2 + i5py,)
=233 (Rjs + £y, (B — Rjj) — by, Ri2) (& +ispy, ) (€ + ispy,).

We recall that G = (—£,,, —{,,,1)". The roots of this polynomial with respect to
the &5 variable are

(34) I3y, ,&) = —ispy, + a5 (y,5,¢),

(33)
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where
b o f) = S 1(Rys + £y, (B — Rjj) — Ly, Ri2)(& +ispy,) £ /rs(y, 5,8
A [(BE; - R)G'IG
and

2
Py 5,€) = (S0 (Rys + 0, (8= Riy) = Ly Raz)(& +ispy,))
(35) —[(BE3 — R)GT|G(—p(&o + ispy,)? + (B — Ra1) (€1 + ispy, )?
+(8 — Rya) (&2 + iy, )* — 2R12(E1 + @5y, ) (€2 + sy, ).

It will be useful for the sequel to factorize Ps(y, D) as the product of two first
order operators. This is made in the following proposition:

Proposition 1. Let 3 € {u, A+ 2u} and |rg(vy)] > C > 0 for all vy € (BsNG) x
O(261). Then, for any function v such that supp v C Bs NG, we have
P/J’,s(y, D)’Uu
= [(6E3 - R)GT]G(Dys - Fg(yv 5, D/))(Dys - F;(yv 5, D/))UV + Tﬁ,svua

where Tg s 1s a continuous operator
Ty, - H'(G) — L2(G).

Once this decomposition can be done, one would desire to obtain appropriate
estimates of some norms of v,. More precisely, let ¥ satisfy

(Dy, — Fg(y, s, D))o, = q, Oly,=1/72 =0, supp® C BsNG.
We can then prove the following:
Proposition 2. Let § € {u, A+ 2u} and |rg(v)| > C > 0 for all v € By x O(261).
Then,
3||77u||%2(ag) < C||Q|\%2(ag),
for some positive constant C independent of s and Z.
Proposition 1 and proposition 2 can both be proved as in [14].

The next step will be to obtain a Carleman inequality for a function satisfying
our (second order hyperbolic) differential equation but with no imposed boundary
conditions. This will be crucial to obtain the desired estimate (27). Indeed, let w
satisfy

Ps(y, D)w =g in G, suppw C Bs x [0,1/Z?).
Let us denote by Pj(y, D) the adjoint operator of Pg(y, D) (8 € {u, A +2u}) and
let us set
Ps(y, D) + P5(y, D)
2 )

Pﬁ(y,D) _P*(yaD)
L-hﬁ(y,S,D) = ) £ :

We have

L_p(y,s,D) =

Ly s(y,8,D)w+ L_ 5(y,s,D)w = g.

After several computations involving integration by parts, we get

(36) L+ pwl|72(g) + IIL- pwll72(g) + Re /Q[LJr,ﬁa L_ plwdy + Xg(w)

= H9H2L2(g)v
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with Xg(w) = (Eé + E%)(u}), where Eé can be written as Eg’l + 2/13,2 + 22’3 with

67 Syw)=s /a (B = Rl ) 0105, + 5% ) dy

25%(w) = s /w(ﬂ — Rs3)(y") 5, (v") {p(y*)layow2 — 2 p(y")ea (y")|w]?

R? . «
(5= R = ) 00 - P ()l
(39) B — R33
R2 *
(5 R B 00 P )
R R * * A
2 (R 20 ) V000,010~ 204, () 07l
and
25 (w) = 25 Re /ag ((8 = Ra3)(y")Oysw — R130y,w — Roz0y,w)
R2
(sayo 0001000 = (5= R = 75 ) () )00
(39) >
- (ﬁ ~Bop = R33> (U*)py. (y*) Oyp w
RisR /
+ (RlQ +3 1_3R2;;> (1) (e (¥*) By, w + iy, (y*)ayzw)> dy
and
(40) S3(w) < &(0)s (Iwln.-o6) + 190 wl3z(o0) ) -

with £(6) — 0 when § — 0*. We remind that the differential operator 9y, was
introduced in (11).
In fact, the expressions of L g(y, s, D)w and L_ g(y, s, D)w are

Ly sy, s, D)w = p0j w + spyy w — (B — Ru1) (0, w + s*¢}, w)
—(8 — Ra2)(07,w + 5% w) — (B — Ras) (02, w + 5?2 w)
+2R12(3§1y2w + 520y, Py w) + 2R13(8§1y3w + 520y, Py W)
+2Ra3(0,,,w + 520y, 0y, w)
and
Ly, s, D)w = s (=0y, (poy,w) — rhopy,Oyyw + (8 = R11)(8y, (g, w) + @y, 0y, w)
+(B = R22)(9y, (10, w) + 0y, 0y, w) + (B — R33)(Fys (ys ) + Py Oy w)
—R12(y, (0, w) + @y, Oy w + 3 1 (Pys W) + Py, Oy, w)
—R13(9y, (0y, w) (
—R23(0y, (Pys W) + Pyy Oy w + Oy, (04, W) + 9y, Oy w)) -

One just has to integrate by parts, keeping the boundary terms in order to conclude
that

+ 90y18y3w + 3y1 ‘pysw) + ‘pysamw)

Ys(w) = E%,(w) + E%(w),
where $}(w) is given by (37)~(39) and X3 verifies the estimate (40).
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Using (36), one can prove in the same way as in Appendix II of [14] that there
exists ¢g > 0 such that the following inequality holds:

SCOHWH?qu(g) < ||L+,Bw||2L2(g) + HLaﬁwH%?(g) + Re([Ly g, L glw, w)r2(g)
+SC||wHL2(ag)HayngLz(ag) Vs > sg.
Combining this with (36), we get

(41)
CisllwliFe gy + Zow) < Ca(llglFzg) + sllwllzz(a0)10ywllz2ag)) Vs > so.

Having this inequality in mind, we will prove lemma 2 distinguishing several
cases according to the values of r3(7*) (recall that v* = (y*,¢*)):

e First Case: r,(7*) =0, rxq2,(7v*) # 0.
e Second case: 7yy2,(7*) =0, r,(v*) #0.

e Third Case: 7,(v*) # 0, raz2,(7*) # 0 or 7, (v*) = rageu(v*) = 0.

2.1. First Case: r,(7") = 0, rap2,(7*) # 0.. In this situation, taking § and 0,
small enough, one can suppose that

(42) [rav2u (V)| 2 C >0 Vy = (y,¢) € Bs x (O(61) N{[¢] = 1}).

Let us start applying estimate (41) to z, = x, (s, D")e*?(V x u). Recall that
w = (W,ws) = (V x u,V - u), where the differential operators are taken in the y
variables. This yields

sllzy e gy + Zh(2h) < €(0)s(l1Z) 1.0 ag) + 10520 [1F200))

(43) spel2 2
+C(le fHHm(g) + HZHHLS(Q))7

with X (z,) given by (37)-(39). Let us rewrite the boundary terms in the form

1 _ 1,1 1,2 1,3
(44) ZH(Z:/) - E[L (Zi/) + E/,L (Zi/) + Ey, (Z;/)7
with
Sl(z)) = s /8 0 R )0 007, 4 526 )

%.%(z),) = s /ag(” — Rs3)(y")pgsn(y) [p(y*)I%ZLI2 — s*p(y*) e, (y") |z, |2
- (u Ry - T ) N2 — 6%, ()l P)
H— R33 v
R},
pu— R33

_ (u = R — ) ) (9, — 262, ()12, )

R R * * *
+2 <R12 + BRZZ) (") (Oya21, Oyozs, — 5° 0y, (¥ )0 ()20 ||
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and
(45)
E;lt’?’(ZL)Z—QSRe/ (4 — R33)(y")0ys2,, — R13(y*)0y, 2, — Ra3(y*)0y,2,,)
oG
* * R%3 * * !
X | 0y (y*)p(y*)0yozi, — (11— Ru1 — R (y* )y, (y*)0y, 2,

R%3 * k /
o G Rl - (U*)py. (y*)0y, 2,

Ri3Ro:
+ (R12 + Lﬁ) (y*)(@yz( )ayl v + 90?!1( )ay2zu)> dyl‘
= 1i33

Taking into account (35), we observe that

0=Rer,(v*) = Ri5[(£1)* — (5", (¥*))] + R35[(63)° — (5" 0y, ()]

+2R13(y") Ros (v )[61€5 — (5") 0 (V") ey (y7)]

—(1 = Ra3) (" {[=p(y*)(65)* + p(y) (5" 0y, (y*))?] + (1 — Ran) (y") (€)% — (5" 0y, (7))

(1= Ra2)(y)(63)” — (5% 0y ()% = 2R1a2(y") (€1 &5 — (%)% 0y (7)o (y)]3-
Consequently,

[Reru ()] < e(01)(s* + [&of* + & + [&I*) Vv = (y",5,€) € O6).
Since
S0 =5 [ (0 Bas) )05y ) Rer(y”, 5, €I 2 '
RS

we readily deduce that

(46) 2,%(2,) < (61120, 1. ag) -

Also, from 7,(7*) = 0 we find that

(47) [l < C(s* + [&1]* +1€2l*)  ¥(s,60,61,€2) € O(61)

for a positive constant C, provided §; is small enough.

In order to estimate 2573 (z,), we will have to distinguish again whether s* is
equal to zero or not.

Taking into account (42), an application of proposition 1 provides the identity
P>\+2u75(ya D)2y, = [(A+2p)E3 — R)GT]G(Dys - FL_QM(?J, S, D/))ZZU + Tz,
for some T € L(HY*(G); L*(G)), where we have set
ZIU = (Dy, — Fj—rm(% S5, D,))Z4,v-
Then, proposition 2 applied to ZIV yields

(48) sIl(Dy, — a0 2a0lli2(0g) < (€10 gy + l12llE0 .+ (g))-

Case 2.1.1: s* #0
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We recall here the expression of Imr,(v*):

0=1Imr,(v*) = 25" {Ri3(y") ey, (v )& + Roa(y*) ey, ()5
+Ri3(y") Raz (y™) (@y (¥)ET + 0y, (¥7)E3)
—(1 = Ra3) () [=p(y* ) pyo (y*)E5 + (1 — R11) (™) (0y, (¥*)ET)
(o = Ra2) (") (py, (¥7)E3) — Ri2(y™) (g (¥)ET + 04 (¥*)E3)] T
so we have
[Imr,(7)] < e(d1)(s* + [&ol* + &2 + 16]*) Vv = (", 5,8) € O(61).

Then, a similar argument to the one above leads us to estimate the term ¥)°(z,):

(49) 2, (2,) < e(01)s(l12, [+ og) + 10420, 112 () )-
Therefore, from the expression of ¥, (z,) (see (37)-(39)), (46), (49) and the posi-
tiveness of ¥, L(z!), we deduce that

SL20) 2 Cs(17, o o) + 100,712 06))
for some positive constant C. Here, we have used Condition A (at the beginning
of section 2) on 9, u — R3z > 0 (see (6)) and the fact that s* > C(£2 + €2 + £3) in
O(41). Combining this and (43), we get
s(l12 1. ) + 1201502 (06) + 19020 [1E2 (0

< C(”@wa%p,s(g) + ||Z||%11,s(g))a
In order to estimate the boundary norms of z4,, we will use the boundary

Dirichlet conditions and the equations of the Lamé system written on 9G. Indeed,
from the two first ones, it is not difficult to deduce that

{ Dy, 24, < C(|e°f| + 5|z, | + [Vy7z,]) +€(0) (sl | + |Vii 20| + 0y, 20 )
on 0G, for j=1,2
and from the third one
Dy, 24| < C(le>?f| + 5]z, | + Vi, n
+e(0)(slzu| + V92, | 4 |0y,2,]) on 9G.

Now, using that A + 2u — Rs3 > 0 along with the Dirichlet boundary conditions,
we have

(50)

)

Y2

||Dysz4,uH2Lz(ag) < C(Hewf”%ﬁ (89) + HZL”%II s(ag))
+e(0) (|2 |31 sag) T ||3y3zu||L2(ag))

In addition, combining (51) and (48), we find an estimate of the L? norm of z4
and its tangential derivatives on 0G:

(51)

sllzau o0y < CUIE N1 gy + Nzlrn- gy + 51120 211 o))
2050120 [0+ o0y + 1022 1300

Indeed, in view of (42), we can apply Gérding’s inequality after (48) and obtain
(52).

Finally, (52) and (51) give an estimate of the normal derivative of z4, in the L?
norm:

(52)

3||Z4,V|‘12L11,s(ag) + 3H8y3'z47v||%2(3g) < C(”ewa%p,s(g) + HZH%{Ls(g)

(53) 2 2 2
+5||ZV||H1«S((')Q)) + 5(5)5(HZV||H1,s(ag) + ||ayszu||1,2(ag))-
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This and (50) provide the desired inequality (27). This ends the proof of lemma 2
in this case.

Case 2.1.2: s* =0
We first remark that, thanks to the Dirichlet boundary conditions, we have
(54) sllzsll7r1.sog) < €(0)s(l|2w |3« (og) + 110520 |12 (0g))-
Once the tangential derivatives of z3, are bounded, an application of (41) for
w = 23, also gives an estimate for its normal derivative :
3(||Z3,u||%11,s(ag) =+ ||6y323,u||2L2(ag)) < 5(5)5(||ZDH%{1,5(59)
+||8y3ZVH%2(ag)) + C(”ewa%Il,s(g) + HZH%{l-,s(g))-

(55)

We will next estimate the terms X)%(z1,) and ¥)°(z,,). To this end, let us
introduce the following differential operator:

M(y7 S, D/)(Z17V7 ZQ,V)
= (Dy, 210 + Dy, 22,0, (1t — R33)(Dy, 22,0 — Dy, 21,0)) = (F1, Fa).
From the third equation of our Lamé system, we have (observe that s* = 0)
F2 = ()\ —+ 2[}, — R33)Dy32’47y — 2R13Dy1 Z4v — 2R23Dy224,u + F3
= /Taton (Y, 8, D)zay + V,j' — Ri3Dy 24, — Ro3Dy, 24, + F3

(56)

where Fj3 verifies
(57) s F5li206) < CUle*Elfin gy + 12l1F1.0 g))
+5(5)5(||ZV||%11,s(ag) + ”aysZV”iZ(ag))-

Here, we have denoted
ViF = ((A+2pu— Ry3)Dy, — RizD,y, — RasD.y,)za0 — \/Tagzn (4,8, D) 24,
Taking into account (48), we deduce that
5||VM+H%2(ag) < C(He‘wa%{l,s(g) + ||Z||%{1‘s(g))
+2(8)s(l2u 1.0 o) + 193520 220
Then, since the divergence of a curl is identically zero, we find that
sl F1l172(0g) < €(0)s(l|zw i s (ag) + 10y 20 T2 (0g) )-
Next, using (55), we rewrite the two first equations of our Lamé system (9) as

—(p— Rs3) Dy, 2, + 2R13DDy, 22, + 2Ro3D,, 22,

=F;+ (A4 2u— Rs3)Dy, 24,0,
(1 — Rag)Dy, 21, — 2R13D,, 21, — 2Ra3Dy, 21 ,,

=I5+ (A2 — R33) Dy, 24,

(58)

with Fy and F5 satisfying estimate (57).
The principal symbol of the operator M is

( gl + ZSQOZM 52 + 15307/2 )
—(p— R33)(§2 +ispy,) (1 — Ra3)(&1 +ispy,)

which clearly has a nonzero determinant at the point ~*.
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Therefore, from the definition of M given in (56), we deduce that there exists a
parametrix of this operator such that
(59)
(21,0, 22,0) = M~ (y, 5, D')(0, (/Tas2u " (y, 5, D') = RizDy, — Ra3Dy,)2a,.)
+M_1(y7 S, D/)(Fla F6) + T(Zl,ua Z2,1/)~

In terms of the £ variables, the principal part of (59) reads

(60)
2 — (_1)k <£3*k + iswys—k(y*))(m—i_ (y*a S, gl) - Rl?}(?/*)(gl + iS(pyl (y*>)
e (1 — Rs3) (y*) ((§1 + ispy, (y7))? + (&2 + isy, (¥7))?)

_RQS(y*)<£2 + iS(pyz (y )))24 L+ ﬁ_]

for k = 1,2, with F7 satisfying estimate (53). From the fact that (* = (s*,£5,£7,&5) €
S3 and 7, (v*) = 0, we deduce there exists a, o’ € R such that a&f + /&5 = 1 and

Vvai+ ()2 =1

Let us then introduce the function
25 = —a'21, +az,,
which, by virtue of (60), satisfies
o (& Hispy, (y7)) + o (€2 + 50y, (47))) a3

B (1= Rag) () (61 + i59y, (7)) + (Eo + 50y, (1*))2)
—Ra3(y*) (&2 + ispy, (¥)))

(61)

Zay + F\Sa
for all ¢ € O(41), where

Q33 = /Marzn (U7, 5,8) — Ris(y™) (&1 + isgy, (y*)

and Fy satisfies estimate (53).

With all these ingredients, we will be able to estimate the term E}j3 (25,0). In-
deed, we can plug identities (58) and (61) into the expression of ¥/ given in (45)
in order to express it in terms of the z,, variable. This yields

2111’3 (25’1,) =
“25Re o G ey |~ (20— Ra)(57) (0 + ')

n (a1 + &) (Ruz(y*)61 + Raz(y*)E2) Q44} y
(1t — R33)(y*) (63 + €3)

62 2
(62 5% x (‘Pyo (y*)p(y*)&o — (M — R — p R%BS) (" )Py, (¥*)E1 — Q5
- (RH + RE)’R% ) () (y (Y*)&1 + @y, (¥7)62)
R33
Tarzn (v, 5%,€) — Rus(y*)& — Ras(y*)&2) [Zaw|* d€’ + I (20),
where

Qs = /iagan (", 5™,€') — Ras(y")é1 — Ras(y")o,

R%?) * *
) (1))

Q55 = (M— Rao —
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Here, the term I;(z,) is bounded by
(63) Ii(z0) < C(le*f (10 gy + 12l F.c 6)) +2(0)s(12 151 (9g) + 1055 2 12 06))-

We set, é’ = C¢*' where C is a positive constant. The real part of the main
symbol of the pseudodifferential operator appearing in (62) at point (y*,&’) equals
(observe that ,/Txi2,1(7*) is a pure imaginary number, since 72, (7*) is real and
negative)

(64) )
(50751752) _ (Im((r—“)(y*, S,g/))) (R13( )51 + R23( )52)

((£1)2 + (£)?) s (b — Rs3)(y*)((&1)% + (52))

. {—u b R )@ + 6 - LI R (7, €) } |

Here, we have taken into account that o€ + /&5 = [(€1,&)).
Plugging here the expression of rx 12, (y*, £’) and taking into account that r,(v*) =
0, we get

Al6o,&1,&) = (Im(("2) (v, 0.€)) F (61, &)

where
Ri3(y*)&1 + Ras(y*)&2
(65) )= (n—Ras)(y")
_ 2(, %
(e )
where
Qug = (A +2p — Raz)(y*) (Riz(y*)é + R23(y*)§2)2.

(1 — Rs3)*(y*)
Again from 7,(7*) = 0, we can put & in terms of &; and & in the following way:

&= +9(&1, &) where
Q(&1,&) = ((— Rin) (") (&1)* + (1 — Ra2) (¥")(&2) — 2Ra2(y") &1 &2 — QT7)

where

1/2

(Ris(y" )& + Ros(y*)&2)?
(1 — Rs3)(y*)
Plugging this into the expression (65), we obtain

AQ(E1, ). 1, 6) = () (5,0, £Q(E1, &), &1.£))/2)F (61, &)

Q7 =

(66)

{00p") W) (0= B )€ + (1 = Roa)(y")(&)? — 2Rualy" s

_(Rus(y)é + Rasly )£2)2>1/2 - (u ~ Ry — R—%g> W) e ()6
( ) 1 Y1

p— Ras)(y i — Ras

2 - ~ -
- <u ~ R ?2;33) (U )pys (y7) &2 + Qss X (¥7) (g, (¥7)E1 + P4 (y*)ﬁz)}

Riz(y")é1 + Ras(y")é {_(/\+2M Ra3)(y") (Bas(y")&T + Ras(y “)€2)?
(1= Ras) (y*)((€1)% + (£2)?) (1t = Ra3)2(y*)((€1)% + (£2)?)
(A F2u - Ra3)*(y )}.
(k= Rs3)(y*)
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where

Ri3R
Qg = <R12 + M) .

p— Ras
Now, from the expression of ¥ (25,) together with the first and second equa-
tions of the Lamé system, we have

S (en) =5 [ na0) {1=0+ 20— Ras) (") (061 +0'62) + D
(Vg (Y, 5%, 8) — Rus(y™)& — Rzz(y*)§2)|2} 2w |? d€' + L(z4,0),

where

(Ras(y™)& + Ros(y™)&2)
(1 — Ra3)(y*) (&8 + €3)
and I2(z4,) verifies estimate (63). Consequently, the real part of the principal
symbol of the operator which is now acting on z4,, at point (y*,&’) is

AL &), N g e, Bis()é + Ras(y)&)? o

(61, 82)]
T)\+2p,(y*7 Ou iQu(gh 52)7 517 £2>)

Qgg = (a1 + ')

(Ris(y")é1 + R23(~y*)~€~2))2
(1 — Rs3)*(y")|(&1, &2)[?
Let us show that Condition B implies

(67) A(£Q,(&1,82),81,&) + A1(&1,62) >0 V(&1,6) #0.
First we note that, according to our assumption, we have
(68) A(x£9,(0,1),0,1) + A;(1,0) > 0.

Therefore since the function A+ .A; is homogeneous and continuous on S2, in order
to prove (67) one need to show that equation

(69) A(£Qu(61,&2),61,62) + A1(€1,&) =0

does not have any solutions on S2. Let us fix the sign of £0,,(&1,&2) in such a way,
that ¢y, (v*)(£Qu(&5, &) F(£1,€5)) < 0 and after that we move this term into the
right hand side of equation (69). In this new equation, we take the square of both
sides. As a result, we have

(A(0,&1,8) + A1(&1,6))?
= (0yo (W) Qu(&1. &2)F (&1, ).

In equation (70) we will move all terms from the right hand side into the left
hand side and, as a result, we have a polynomial of order four of & and &;. As a
result we obtain the polynomial P(&;, &) introduced in (12). Since polynomial Py
does not have a real roots the equation P(&1,&2) does not have any solutions of the
form (&1,&2), &2 # 0. On the other hand by (87) the point (0, 1) is not solution to
this equation also. The proof of (67) is finished.

By (67) there exists C' > 0 such that

(70)

E,IL(Z&V) > C‘s(||247u||%11,3(3g) + H8y324,1/||%2(3g)) - C(Hes“"fllip,s(g) + ||Z||%11,s(g))

—e(®)s(l1zllfr.0 og) + 1942l T2 0g))
This estimate and (55),(58),(60) imply

Ei@&u) > élS(HZuH%{Ls(ag) + Hayszu||2L2(ag)) - C(”ewa%Il,s(g) + HZH%{Ls(gﬂ
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On the other hand this inequality and the estimate (41) applied to z5, imply

S(HZu”%ﬂvs(ag) + ||8y3Zu||%2(ag)) < C(”ewa%Ilvs(g) + HZH%Ls(g))
This estimate and (41) implies (27).
2.2. Second Case: r,(v") # 0, rx12,(7*) = 0.. In a way similar to above, one
can take § and §; to be small enough so that
(71) ru( = C >0 Vy=(y,() € Bs x O(61).

In this situation, condition 742, (7*) = 0 also provides the estimate (47).
We distinguish now three different situations depending on s* and ¢y, ,,(y*).

Case 2.2.1: s* =0 and ¢y, ,(y*) > (Im(r,(v*)/s))/(2/Re(ru.(v*)))
Under these hypotheses, we can take § and d; small enough and suppose that
—ImTZ(y,¢) > Cs Vv = (y,¢) € Bs x O(51),

since g, , > 0 (see the expression of Fff in (34)).
Consequently, we can apply proposition 1 in two different ways and deduce that

PMA,S(yv D)Z:/ = [(MES - R)GT]G(D?B - F; (yv S, D/))Z:j_ + T:_,sw:j_
= [(/U'E3 - R)GT]G(DZJS - F/f (y7 S, D,))ZII/7 + T;;swlu77
with 77, € L(H"*(G),L*(G)). Here, we have set
wiE = (D, — Ff(y,s,D’))zL.
Next, we apply proposition 2 and we get the following estimates:
(72) slwit17206) < CUle Ellze gy + 12l (g))-
On the other hand, since
w, —w,t =2/r.(y,s,D")z,, on G

and 7,(v*) # 0, we can apply Gérding’s inequality and obtain from (72) that

SHZ;H%Ls(ag) < C(”ewa%Ilws(g) + ||Z||%11,s(g))~
Again, (72) indicates that the normal derivative of 2/, is also bounded:

(73) sz, [Rrs o) + 104201 E200)) < Clle™ Kl .o gy + [l2lr.1(g))-

Next, we can estimate Oy, 24, and Jy,z4, by means of (58). This, together with
(47), provides the estimate

slzawlliin o) < Clle*tlin.qg) + I2lin.. ()
+e(@)s(lzv i.: o) + 1902 [1E o) )-

Finally, the third equation of the Lamé system (9) gives an estimate of the normal
derivative of z4,. Combining this and (74), (73) and (43), we deduce the desired
inequality (27).

(74)

Case 2.2.2: s* =0 and ¢y, . (y") < (Im(r,(v7)/s))/(2y/Re(ru(v*)))
We first apply estimate (41) to 24, and we obtain
3||Z4,u||§{1,s(g) + E}\+2/L(z4ﬂj) < C(”‘?wf”%p,s(g) + ||Z||%{1,s(g))

(75) ) 9
+e(0)s([[2a, 1.« (0g) + 10ys 24,0l 72(0g))



REMARKS ON CONTROLLABILITY OF THE ANYSOTROPIC LAME SYSTEM 509

where X3 , 5, (24,,) has the form

1,1 1,2 3
(76) Sht2u(Za0) = Sy, (2aw) + S350, (2a0) + £375, (240)

and Ei’fm(z;;,l,) (k=1,2,3) can be obtained from the expressions of E}L’k given in
(44) by just changing u by A + 2pu.

From the fact that ry;2,(7*) = 0, one can obtain an estimate of E}\ﬁQH(Z4,,,)
just in the same way as we did in the previous paragraph:

(77) |23 2, (2| < (O)sllza0lip.c o)
On the other hand, let us recall the expression of E;’i%(z‘h”):
(78)

Ei\i2p('z4:l’)
=—2sRe [55 (A + 20— R33)(y*) Dyy — Ruz(y*) Dy, — Ra3(y*) Dy, ) 24,0
R
A+ 2u — R3s

x (wyo (*)p(y*) Dyo 24,0 — (/\ + 21— Ry —

R2
- <>\ +2u— Ryp — W%) () Pys (y*) Dy, 20,0
Ri3Ro3 . . N
+ (Rlz + Nt 20 Ron 21— R33> (") ( Py (Y*) Dy 24,0 + 0y, (Y )Dyzzél,u)) dy'.

The next step will be to get an expression of E}ﬁz “(24’1,) just in terms of tangential
derivatives of z4 .

First, from proposition 2 applied to z,, estimate (72) holds for w," = (D,, —
T (y, s, D'))z,, so we have

agBaMZ/V = (\/ TH+(yv S, D,)/(,U - R33))ZZ/ + WI//+7
with
5||W,/j+||%2(6g) S C(Hes‘»"f”%_p‘s(g) + ||Z||%_Ilq(g))

Now, combining this with the two first equations of the Lamé system (see (58)), we
have

(VT (y* 5", D) = Ria(y*) Dy, — Raz(y*) Dy, )2k 0
= (1) (A + 20 — Ra3)(y*) Dy, 24, + Gy,
for k = 1,2, with G, satisfying estimate
(80)
SHGkH%z(ag) < C(I\es‘”fII%Ls@ + ||Z||%{1,s(g))+5(5)5(||Zu||%{1,s(ag) + Hayszu||%2(ag))~
Let us see that
(81) ru (V)] > (Ris(y)&r + Rasa(y")€5)%.

Looking at the expression of 7, and taking into account that rx;o,(v*) = 0, we
deduce that 7,(v*) is a positive real number, which coincides with

AV < 3 . *) %) 2
) ) (PSRRI | R + ().
Consequently,

ru(7*) = (Rus&; + Rasés)?

_ o [~ (Raz(y*)EF + Ras(y*)E
- (M_RBB)(y ) ( ()‘4’2/1417 R33)(y*)

(79)

5)%%A+uﬂfﬂﬁﬁ2+@®5>,
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which is a positive number as long as condition (13) is satisfied, so (81) holds.

This yields that from (79) we can express 21, and 23, in terms of tangential
derivatives of z4, in the following way:
(83)
(—1)kH (A +2p — Raz)(y* )3k

VT, s%,€) — Ris(y*)& — Ras(y*)&2

k =1,2, with G3 and G4 satisfying estimate (80).

Now, we recall that from the last equation of the our Lamé we can deduce that
(84)

(A + 21 — R33)(y") Oy av202a,0

= Ri3(y")0y, 24,0 + Ra3(y* )0y, 240 + (1 — R33)(y") (O, 21,0 — Oy, 22,0) + Gs.

with G5 satisfying estimate (80). Denote
4(61,&2) = (Ris(y")& + Ras(y)&2

(1 — R33)(\ + 2u — Ra3) (y*) (61 + &3)
VT (5. 0,€) = Ras(y*)é1 — Rasz(y*)ée
Plugging (83) into (78) and taking into account (84), we obtain

(85)  £3%,,(200) = Is(z) — Re /R GRS N NS

where I3(z,) is bounded by the expression in (63). In this situation, since 7y 2, (7*) =
0, we have

§o = £Qa424(87,65)
=+ (A 20— Ri) () (E)* + (A + 21 — Ra2) (y*)(€3)? — 2R12(y*)E5Es

_ (Ris(y*)EF + Ras(y*)E3)? ) 1/2
(A + 21 — R33)(y*) .

Za +T(Zkw) + Gy,

2k =

Let us now compute the term 21’41_%(2471,). We first recall that it is given by

1,1 .
Sl =5 | O 2= BP0 ) r 0

X (1055 Avopzaw|® + 5°0%, ypoulzanl?) dy,
so we can write it like follows:

Eiizu(zél,v) =85 /ag()\ +2p— 333)2(y*)807;3,>\+2u(y*)|az}3,>\+2u24,u\2 dy' + I(z),

where I4(z,) satisfies estimate (63).
Using the same argument as before (that is to say, using the third equation of
the Lamé system together with (83)), we obtain

S, ea) =5 [ omasanlan &)Plan Pde + Ts(a,),
R
(recall that the principal symbol of the operator /7, " (y, s, D') at point v* is real),
where I5(z,) satisfies estimate (63).
Now let us show that Condition C implies that

(86) q(&7,65)? — a(&1, &) (Imraya, /s)(y", s, (€)7) > 0
Really this is equivalent to
(87)

q(&1,62)? — q(&, &) Amraga,/s) (Y, 8, £Oat2u(&1,62),€1,€2) > 0 VY|(&1,&)| = 1.
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Using then (86) to apply Garding’s inequality and taking into account (76)-(77),

we obtain estimates of the tangential derivatives of z4 ,:
E}\+2y(z4,u) > C$\|Z4,v||§{1,s(g) - C(”ewa%{Ls(g) + HZH%{Ls(g))-
Putting this together with (75) and using (54) and (72), we have
(88)
4 o2 2 b 2
52]‘:3(“21,1/”1{1,5@) + ”ZJ,VHHl,s(ag)) + 5| yszS,VHLZ(ag)
< C(Heswf”%{l,s(g) + ||Z||%{1,s(g)) + 5(5)5”511324,1/”%2(3g)~
We use now the representation formulas of z;, and 25, in terms of Zy, (see

(83)). Then, (88) also provides estimates for the tangential derivatives of 21, and
22t

(89)
4
52j:1(HZj,V”%11,s(g) + ”Zj,l/”%il,s(ag)) + sHayg'ZB,V”%Z(ag)
< C(HeS‘PfH%{LS(g) + ||Z||%{1,s(g)) + 5(5)5||ay324,v||%2(ag)~

Finally, the two first equations of the Lamé system (see (58)) provides estimates
of the normal derivatives of 21, and zg,, while the third equation (see (84)) gives
the estimate for the normal derivative of z4 ,. Consequently, from (89) we deduce
the desired estimate (27) in this case.

Case 2.2.3: s* #£0

We first apply estimate (41) to 24, and get
5H24,V||?ql,s(g) + E}\+2;L(z4,u)
< C(”ewa%p,s(g) + HZH%{Ls(g)) + 5(5)5(Hz4w||%{1,s(3g) + Hay324,v||%2(ag))v

(90)

with 33,5, (24,,) given by (76).
In order to estimate 21\’3_2#(24,1,), we use that ry;2,(7*) = 0 and we obtain
1,2
1252 (za)| < €(81)s1 20,0 130 06 -

Also, from 7519, (7*) = 0 and (47), we obtain for small ¢; that

e ) (W) (¥*)&a

s _ ~4e
)\+2/L—Rgg

Py )Py (Y™)0 — (/\ + 2 — Ry —

RQ
— | N+2u— - 28 *
< 20 — Rap )\+2u—R33>%2(y )&z
Ri3Ros . . "
# (it o) 07 (070 + 0 ()2)

<e(@)(s® +&f +€3) Ve Oo),
which yields
|E}\ﬁzﬂ(z4,u)| < e(60)s(l 24,01 Fr1x a0y + 10ys 24,01l72 (ag))-
Consequently, we have
Shrou(zaw) = —(00)s(l2a.0 715 ag) + 1003240122 (5g))

+5(5%|| 24,

‘2L2(ag) + ||6y32'4,1/”2L2(ag))-
From the fact that s* # 0, we also deduce that

Z}\+2M(Z4,u) > 3(||Z4,u|\%11>s(ag) + ||6ysz4,u|\%2(ag))»
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which, together with (90), gives

SHZ‘LV”%ILS(Q) + 5(H24,VH%{1,5(39) + ||ay324,1/‘|%2(ag))

(91)
< C(Iles“"f\lip,s(g) + HZH%{LS(Q))'

In this situation, estimates (54) and (72) also hold and give

5(”23#”%11,5(3@ + ||8y323,u||2L2(3g)) < C(”ewf”%{l,s(g) + ||Z||%11,s(g))

(92) 5 9
+5(5)3(||zu||Hlvs(ag) + ||ayszu||L2(ag))-

The next step will be to estimate the functions z;, and z;,. To this end, we
first observe that the case where

(93) (VTa " (7) = Rus(&5 +i5"py,) — Ra3(&5 +1is™py,)) # 0

directly gives good estimates; indeed, the two first equations in (9) can be rewritten
as

(VT (g5, D') — Rus(Dy, +ispy,) — Raos(Dy, +ispy,))z2,, = Fy
and
(VT (g5, D') = Rus(Dy, +ispy,) — Ros(Dy, +ispy, )21, = Fo

respectively, with Fg and Fy satisfying estimate (57). To prove this, it suffices to
take into account (91) and (72). Now, from (93), we can apply Géarding’s inequality
to the two previous equations and we find out estimates of the H* norm of z;,
and 2o, on 0G. Finally, (72) provides the estimate of the normal derivative too.

Outside this particular situation, we distinguish another two cases when (93)
does not hold:

o If (&5 +ispy, (y*))? + (65 + ispy, (¥*)> #0
Then, one can also represent (21,,,22,,) on 9G as in (59) by means of a similar
argument but using (91) instead of (48). Consequently,

2

s D 2wl «og) < CUle**Elyr.1 () + ll2llFr < (g)
(94) =

+5(5)3(||ZV||%-11,5(ag) + ||ayszu||%2(ag))
Finally, the estimate of 9,2, , (j = 1,2) comes from (72). As a conclusion, we have

2

s (2w

Jj=1

|12r{1ws(ag) + ||8y32j,u||%2(ag)) < C(”ewa%Il,s(g) + HZH%{Ls(g))
+e(0)s(l12v 31,0 (o) + 10020 [IF20))-

o If (61 +is™py, (y%))? + (65 +is*py, (y*)? = 0
Let us apply estimate (43) to 21, and 23 ,:

sllz0 70 @) + Zu(ziw) < e@)s(ll250 5.0 0g) + 105230 172 0g))
+C(||6Wf||%11,s(g) + ||Z||%11>s(g)) for j=1,2,

where X, (z;,,) are given just after (44).
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Let us estimate X1%(z;,,). First, we rewrite it in the form

22 (z0) = s /w(u = Rs3) (") egant2u (W) [pW)NOyozin | — 2 p(y*) ol (W) 250

R? " *
= (2 B = g Y )00zl — P 0 i)

R? " *
— ()\ +2p — Rop — WQ?’R&Q) (") (10y, 20> = 529"1212(3/ )

Ri3Ro3 N N N
2 (Ru ; —) ) Oy 230 a3 — 0y (0 Vo () 23 |

%)

>\+2}L*R33

T / (1= Ras) (0o [(A+ 1) (190 232 + 10a i — 5262, (4")

oG
—s20r (y")|ziu]?) — (A + 2M Rs3) ™" (y) (Ris(y") (104, 2.
=500 (v ) zj01?) + Ras(y") (104,201 — s°03, (v*) |25 )
+2R13(y") Ras(y™) (ayl 24, Vayzzj v— 8 901/1‘Pyz|zj,u|2))] dy’

= Ju(zj) + JI5(2j0)-

From Re(ra42,(7*)) = 0, we deduce that
(96) [ Ja(z.0)] < €(81)sll25.0 1 Fs (00) -
Let us now estimate J5(z;,,); we observe that
Is(zj,) = s /RS (1= Rs3) (") @gant2u(y™) [(A+ 1) (6 + €3 — sy, (y7)

—5%03, (") — (A + 2 — Raa) ™ ( *) Re (Rus(y™) (&1 + isy, (y7))
+Raa(y") (€2 + 50y (y))? ] 1212 ds do.

We first realize that, since ry;2,(7*) =0 and

(VT (v") = Rus(&f +is* @y, ) — Ros(&5 +is*py,)) =0,

we have

Re (Rua(y*) (&5 + ispy, () + Ras(y*) (€5 + isy, (%))
= (A 421 — Rasg)(y*) (A + 1) Re (&5 + sy, (y*))? + (65 + isoy, (¥))?) -

Then, it is readily seen that J5(z;,,) can be bounded as in (96). Consequently,
(97) [J5(250)| < €(01)s1 25,0311, 00)-

For ¥%(z;,,), we use the third equation of the Lamé system (9) (see (58)) in
combination with (91) and we apply Young’s inequality. We deduce that

2% (250)]
<e(8) (2|30 0g) + 10us20 132 (5g)) + C (1) (| EFr1.0 () + 12 ] 1.5 (6)):

where the constant C'(d1) may tend to infinity when 0; tends to zero.
As a conclusion of this, (91), (95) and (97), we deduce the desired inequality
(27).



514 S. GUERRERO AND O. IMANUVILOV

2.3. Third Case: r,(v*) # 0 and 7x42,(v*) #0 or r,(v*) = raye,.(v*) = 0.
It is in this paragraph where we will use Calderon’s method. The ideas we develop
here are similar to those in [15].

Let us introduce the variables U = (U;)%_;, given by

j=0
(U'l7 UQ, U3) = A(S, DI)(GSWU), (U4, U5, Ug) = Dy3 (ewu),

where A is the pseudodifferential operator with symbol (1 + s? + |¢/|?). With these
notations, we can rewrite the Lamé system (9) as

D,,U=K(y,s,D)U+F inR3x][0,1/2?],
(98) (Ul,UQ,Ug) =0 on {yg EO},

U=0 on {y3 = 1/7%},
where F = (0, e*#f) and K (y, s, D) is a pseudodifferential operator whose principal
symbol is

o 0 A1E3 .
Kl('y) - ( AflKllAfl A71K12 > _w‘pye,EG'

Here, we have set
A=+ p)GG" + [((uBs — R)GT)G]E;,
(99) Kii = —(A+ 1)007 + [(€0 + ispy,)? — (B3 — R)OT)0)Es,
Ko = —(A+ u)(0GT + GOT) — 2((uF3 — R)OT)GE3,
with 0 = (& + ispy,, & + ispy,,0)T. Recall that G was defined (also as a column
vector field) in (26).
In this context, one can check that the eigenvalues of the matrix K; coincide
with T’} (given in (34)).
Let us consider again several situations:

Case 2.3.1: 7,(7") =0 = raj2.(7")

Then, the expression of rg indicates directly that Im(FZj((’y*)) < 0 for g €
{1, A+ 2p}; this comes from the fact that ¢y, g3 > 0. Consequently, the eigenvalues
of the matrix K7 have negative imaginary parts and we can suppose that

Im(I'5 (7)) < =CI¢| vy € Bs x O(6y).
Now, using standard arguments (see, for instance, Chapter 7 in [19]), we obtain
that
I Ullgse @) < CUle™ gy + el g))-
From this inequality, estimate (27) is readily deduced.
Case 2.3.2: 1,,(77) # 0, Pasau(77) # 0 and 1,(7) # rasou(r)

In this situation, the matrix K has four eigenvalues which are given by (34) and
the corresponding eigenvectors:

vi = (07 + O‘§+2uGt)A1_17 O‘irzu(eT + airwGT)A_g)Ta

1o ’UQi (U2i1>04 U21A ) ) U3i (v?ﬁ,a U31A )
with

V3, = (byp0ct — 03, —Cy, 0cF +01,0)A7"
and

2
Ugtl = (aif(al - €y1a;:i:)7a;:i:(6 y2 u Z yj u A_

j=1
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Observe that {vzi, vgt} is a basis of the orthogonal space to the vector 6 + afG.

Let us take the symbol S(v) in the form S = {v}",v5,v5, vy, v, v5 } and let us
extend it as an homogeneous function of order 0 and of class C? in the ¢ variables.
Now, U is determined by (98). Let us introduce W = S~!(y,s, D')U. Then,
system (98) takes the form

D,,W = K(y,s,D'YW + T(y,s, D'YW +F,

where K is a diagonal matrix and 7' € L*(0, 1; L(H'*(R3)); H:*(R3)). A stan-
dard argument for pseudodifferential systems allows to estimate the last three com-
ponents of W as follows (see for instance [19]):

(101) sl (Wa, Ws, We) .oy < Cllle* £z« (o) + lle*ullfrz. g))-

Finally, the first three components can be bounded in terms of the last three by
means of the first-squared 3 x 3 matrix inside S, which is

01 — a}\"+2H€y1 —0s + Zyzaj a:(@l — 4y, O‘Z)Al_l
A;l 92 — Oé;\:_QHZyQ 91 — Eyl Oé: Olg(eg — ngOéj;)Al_l
04;4_2# 0 —ijl(ej —Eyja:)zAfl

This yields
sl (W, Wa, Ws)llfrr 2 ag) < Cle*E I o (o) + lle*ullfpe. g)),
which, in combination with (101) and (41), provides (27).

Case 2.3.3: 7,(v") = ray2,(7*) #0
The argument needed to prove estimate (27) in this case coincides exactly with
the one developed in [15].

This ends the proof of Lemma 2.

3. Controllability of the Lamé system.

In this section we obtain some exact controllability results for the Lamé system
with controls locally distributed over the cylinder @, = w x (0, 7).

First, we need a Carleman estimate similar to (15) but with the right hand side
in the spaces L?(Q) and H~1(Q). In order to prove such an estimate, we need a
pseudoconvex function v which satisfies the additional condition:

(102) Ozo¥(+,0) >0, 9y (-,T) <0 Vaz € Q.
We have the following result:

Theorem 2. Let f € L*(Q) and assume that (2), (4), (6) and (102) hold true.
Suppose there exists a function ¢ which satisfies condition A. Then, there exists
T7* > 0 such that, for any T > 7%, there exists s* > 0 such that

(103) Il @) < Cle*fllzg) + ullmre(q.) Vs> s*

for some positive constant C independent of s and for any solution u € HY(Q) of

(9).

Next, we consider a situation with the function f in the space H=1(Q).
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Theorem 3. Let f = f_; + Zi:o Oz, B, where fy,£1,f2,f3 € L2(Q) and assume
that (2), (4), (6) and (102) hold true. Suppose there exists a function ¢ which
satisfies condition A. Then, there exists ™ > 0 such that, for any T > 7*, there
exists s* > 0 such that

3

(104) J[ullrag) < Cle**fallm-1(q) + Y IfkellL2(@) + lullLeq.)) Vs > s
k=0

for some positive constant C independent of s and for any solution u € L2(Q) of

(9).

The proofs of theorems 2 and 3 rely on theorem 1 and are similar to the proofs
of the similar results presented in [14]).
Next, we consider the controllability problem

Px,Dju=f+x,v in@, u=0 on %,
(105) { (z,D) X Q

u(-,0) =ug, 9Iyu(-,0)=u; in Q.
Here f,ug,u; are given functions and v is a control. Recall that the operator P

was defined in (9). Suppose that two target functions us and ug are given. We
have to find a control v such that

(106) u(+,T)=uy, Ou(-,T)=uz in Q.
Condition B. Suppose that there exists t* € (0,7) such that

min_ (2’ ") > max{ max_(2',0), max (=, 1)}
' €Q\w ' €Q\w ' €Q\w
Before presenting the main result of this section, let us remind a well known result
on the solvability of the Lamé system

{P(x,D)pq in@ p=0 on X,

(107) )
p('a O) = Po, azop('a O) =Pp1 1n Q.

We have the following:

Theorem 4. Assume that (2) and (6) hold. Then, if q € L?(Q), po € H}(Q) and
p1 € L2(Q), problem (107) possesses ezactly one solution p € H(Q).

Furthermore, if ¢ € H™1(Q), po € L*(Q) and p1 € H1(Q) then there ezists a
solution to problem (107) possesses exactly one solution p € L?(Q).

Now, we state the main result of this section:

Theorem 5. Assume that (2), (4) and (6) hold. Suppose that there exists a function
Y which satisfies condition A, condition B and (102). Then if £ € L%(Q), ug €
H}(Q) and u; € L3(Q), there exists a solution (u,v) € HY(Q) x L?(Q.) to the
controllability problem (105)—(106).

Furthermore, if f € H™1(Q), up € L?*(Q) and u; € H™Y(Q), there exists a
solution (u,v) € L2(Q) x H™Y(Q.,) to (105)—(106).

Proof. Let € be a sufficiently small positive number such that t* € (e,7 — ¢)
and set

M = min_¢(2’,t") > max{ max ¢(2’,¢), max (z',T —¢)}
' €Q\w ' eQ\w ' €Q\w
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We introduce a cut-off function x(z¢) € C§°([0,T1]) such that x| r—q = 1. Let p
be a solution to the system

(108)

P(x,D)p = p(x’)@%op —L(z,D)p=q inQ,
p=20 on X.

Then the function p = x(zo)p satisfies the equation

(109)

p=0 on .

Note that [y, dZ ] is a first order operator with coefficients having support in [0, €] U
[T — €,T] x Q. Therefore, we have the following a priori estimates:

||[X73§0]P€S¢HL2(Q) < 66M||P||H1(Q), ||[X75§0]P68¢||H71(Q) < €5MHp||L2(Q)-
Additionally, we apply Carleman estimate (15) to the equation (109) and we obtain

that

IBlleae.e ) < Clllae™ len-1(q) + IBllars @) + €M IPlai-#(g))-

Note that, for any sufficiently small € > 0 there exists a d; > d such that

(&

SOM|[(p(-, %), 0w P(, 1) 110 () xHF-1(02)

< C(IBllars @) + llae? lme-1(Q) + [IPllas=(q.) + €™ Ipllai-+))-

Since §; > 4, taking the parameter s sufficiently large in the previous inequality
thanks to the theorem 4, we arrive at the observability estimate

Ipllax @) < Cllallar—1q) + IPllaF(Q.))-

This observability estimate can be readily converted into the controllability re-
sults stated in our theorem by the well known HUM method (see [24]).
This ends the proof of Theorem 5. B
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