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REMARKS ON CONTROLLABILITY OF THE ANYSOTROPIC

LAMÉ SYSTEM

S. GUERRERO AND O. YU. IMANUVILOV

Abstract. In this paper we established a Carleman estimate for the elasticity

system with the residual stresses. As an application of this estimate we obtain

exact controllability results for the same system with locally distributed control.
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1. Introduction

Let us denote x = (x0, x
′), where x0 (resp. x′) stands for the time (resp. spatial)

variable. This paper is concerned with global Carleman estimates for the Lamé
system

(1) ρ∂2
x0
ui −

3∑

j=1

∂xi
(σij) = fi in Q, 1 ≤ i ≤ 3,

where Ω is a bounded domain with boundary ∂Ω ∈ C3, Q = (0, T ) × Ω, u(x) =
(u1, u2, u3) is the displacement, f = (f1, f2, f3) is the density of external forces and
σij is the stress tensor:

σij = aijhk(x)∂xh
uk.

On the boundary, we equip the Lamé system with zero Dirichlet boundary condi-
tions:

u = 0 on Σ,

where we have denoted Σ = (0, T ) × ∂Ω.
We introduce the following standard assumptions on the coefficients aijhk

(2)

{
aijhk = ajikh = ahkij ,

aijhkXijXkh ≥ αXijXij ∀X ∈ R
9 with Xij = Xji,

where α is some positive number.
In this paper we will strict to the case of the anisotropic Lamé system with

residual free stresses:

(3)
σ = R + (∇u)R + λ(trǫ)E3 + 2µǫ+ β1(trǫ)(trR)E3 + β2(trR)ǫ

+ β3((trǫ)R + tr(ǫR)E3) + β4(ǫR + Rǫ),

where E3 ia a unit matrix,

ǫ =
1

2
(∇u + (∇u)t)

and

(4) ∇ · R = 0 in Q.
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We will assume for simplicity that β1 = β2 = β3 = β4 = 0 and therefore

(5) σ = R + (∇u)R + λ(trǫ)E3 + 2µǫ,

for some λ, µ and R. We will impose the following regularity assumptions on the
Lamé coefficients
(6)
ρ, λ, µ, Rij ∈ C2(Ω) i, j ∈ {1, 2, 3}, ρ > 0, µE3 − R and (λ+ 2µ)E3 − R > 0

positive definite in Ω.

The first goal of this paper is to establish appropriate global Carleman estimates
for the Lamé system with residual free stress. For displacements u with com-
pact support, such estimates were obtained in the previous works [27], [25], [18].
More results are available for the isotropic Lamé system. Thus, in the stationary
case we refer to Dehman-Robbiano [8] and Weck [31] for displacements with com-
pact support and Imanuvilov-Yamamoto [17] for displacements satisfying Dirichlet
boundary conditions. For the nonstationary isotropic Lamé system, see [10] for
displacements with compact support and [14]–[16] in the other case. In this paper
we have extended the techniques in [15] to consider the anisotropic Lamé system
(1) with σ given by (5). Our Carleman estimates will hold for displacements u

satisfying zero Dirichlet coditions on Σ.
The last section of this paper is devoted to the exact controllability of the Lamé

system. To our best knowledge, the first observability result for the Lamé system
was proved in [24] using multipliers of the form (xi − x0

i )
∂u
∂xi

, which led to the
observability inequality

E(x0) =

∫

Ω

(µ|∇u|2 + (λ+ µ)|∇ · u|2)dx′ ≤ C

∫

(0,T )×Γ0

∣∣∣∣
∂u

∂n

∣∣∣∣
2

dΣ

when the Lamé coefficients µ and λ are constants. Here, E(t) is the energy. The
control is exerted at (0, T )×Γ0 where Γ0 ⊂ ∂Ω and homogeneous Dirichlet boundary
conditions are assumed for u. Further results have been deduced in [1] by Alabau
and Komornik for the anisotropic Lamé system by essentially the same multipliers
method. Several questions concerning the approximate controllability/uniqueness
of the Lamé system were studied in [10] by Eller, Isakov, Nakamura and Tataru
by means of Carleman estimates. They obtained approximate controllability with
a control distributed over any open subset of the boundary for a sufficiently large
time. A series of important results have been obtained quite recently in works of
Bellassoued [5]–[7]. In particular, he has proved a “logarithmic type” energy decay
estimate in the case where the geometrical control condition of Bardos, Lebeau,
Rauch is not fulfilled. An interesting result was also proved by Zuazua in [32], for
the isotropic Lamé system with the locally distributed control v of the form χωv
, where v = (v1, . . . , vn) and vn ≡ 0. Under some geometric assumptions on the
domain D he established the approximate controllability for the isotropic Lamé
system.

Several works are devoted to the construction of dissipative “feedback” boundary
conditions for the Lamé system. In [2], Alabau and Komornik introduced dissipative
boundary conditions of the form σ(u)n + Au + B∂x0

u = 0 on the controlled part
of the boundary Γ0. Under some geometric conditions on Γ0, they established the
exponential decay of the energy

E(x0) =
1

2

∫

Ω

(|∂x0
u|2 + σijǫij(u))dx′ +

1

2

∫

Γ0

A|u|2dS ≤ e−ωx0
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for the anisotropic Lamé system. In the isotropic case, Horn [13] and Martinez [26]
also constructed stabilizing boundary feedbacks but under less restrictive geomet-
rical assumptions.

A closely related question is the control and stabilization of layered plate models.
Concerning the control of thermoelastic systems, Lagnese in [21] proved uniform
stabilization of thermoelastic Reissner plates using thermal and mechanical bound-
ary feedbacks. In [20], he also proved the exact controllability of the mechanical
component of a thermoelastic Kirchhoff plate using mechanical boundary controls.
In one-dimensional cases, this was improved to exact null controllability (of thermal
and mechanical components) by the mechanical variable on the boundary in [12].
Lebeau and Zuazua [22] extended this result to the case of a three-dimensional ther-
moelastic Lamé system with a mechanical distributed control on a neighborhood
of the boundary. Avalos and Lasiecka [4] proved a related result for the boundary
control of a thermoelastic Kirchhoff plate, but with no restriction on the size of the
coupling constant.

In the last part of this paper, we will present a controllability result for the
anisotropic Lamé system with distributed controls supported by Qω = ω × (0, T ),
where ω ⊂ Ω is a nonempty open set.

Notation: Let x = (x0, x
′), where x0 = t stands for the time variable. We

denote by H2,s(Q) and H1,s(Q) the Hilbert spaces H2(Q) and H1(Q) with the
norms

‖u‖2
H2,s(Q) =

2∑

|α|=0

s4−2|α|‖Dαu‖2
L2(Q)

and

‖u‖2
H1,s(Q) = s2

∫

Q

|u|2 dx+

∫

Q

|∇u|2 dx,

respectively.
We also introduce the following norms:

(7)
‖u‖2

Bφ(Q) =

∫

Q

e2sφ
(∑2

|α|=0 s
4−2|α||Dαu|2 + s|∇(∇× u)|2

+s3|∇ × u|2 + s|∇(∇ · u)|2 + s3|∇ · u|2
)
dx

and

(8) ‖u‖2
Yφ(Q) = ‖u‖2

Bφ(Q) + s

∥∥∥∥e
sφ ∂u

∂n

∥∥∥∥
2

H1,s(Σ)

+ s

∥∥∥∥e
sφ ∂

2u

∂n2

∥∥∥∥
2

L2(Σ)

,

where φ is a given function.
In the sequel, we will denote by ε(δ) a positive function such that

limδ→0+ε(δ) = 0.

2. A Carleman estimate for the anisotropic Lamé system

Let us consider the following anisotropic Lamé system completed with Dirichlet
boundary conditions:

(9)





P (x,D)u ≡ ρ(x′)∂2
x0

u − L(x,D)u = f in Q,

u = 0 on Σ,

u(·, T ) = ∂x0
u(·, T ) = u(·, 0) = ∂x0

u(·, 0) = 0 in Ω,
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where
L(x,D)u = µ∆u + (λ+ µ)∇(∇ · u) − [(R,∇)∇T ]u.

Here, f and u are three-dimensional vector fields functions and R is a symmetric
matrix-valued function, whose components will be denoted by

u = (uj)
3
j=1, f = (fj)

3
j=1 and R = (Rjk)

3
j,k=1.

Let ξ = (ξ0, ξ1, ξ2, ξ3) = (ξ0, ξ
′). We introduce the symbols

{
p1(x, ξ) = ρ(x′)ξ20 − µ(x′)(ξ21 + ξ22 + ξ23) + (R(x′)ξ, ξ),

p2(x, ξ) = ρ(x′)ξ20 − (λ(x′) + 2µ(x′))(ξ21 + ξ22 + ξ23) + (R(x′)ξ, ξ).

For any two smooth functions w(x, ξ) and z(x, ξ), let us introduce the formula for
the Poisson bracket

{w, z} =

3∑

j=0

(∂ξj
w ∂xj

z − ∂ξj
z ∂xj

w).

Through this paper we will assume the existence of a function ψ satisfying the
following condition:

Condition A There exists a function ψ ∈ C3(Q) such that

• |∇x′ψ|
Q\Qω

6= 0

• {pj , {pj , ψ}}(x, ξ) > 0 for all (x, ξ) ∈ (Q \Qω) × IR4 with ξ 6= 0 such that

pj(x, ξ) = 〈∇ξpj ,∇ψ〉 = 0 for j = 1, 2

and

• {pj(x, ξ − is∇ψ(x)), pj(x, ξ + is∇ψ(x))}/(2is) > 0 for all ξ ∈ IR4 \ {0} and

s ∈ IR \ {0} satisfying

pj(x, ξ + is∇ψ(x)) = 〈∇ξpj(x, ξ + is∇ψ(x)),∇ψ(x)〉 = 0, x ∈ Q \Qω, j = 1, 2.

On the boundary, the following is required:

p1(x,∇ψ(x)) < 0 ∀x ∈ ∂Ω × (0, T )

and 



(λ+ 2µ)
∂ψ

∂n
−

3∑

i,j=1

Rij
∂ψ

∂xi
nj < 0 and µ

∂ψ

∂n
−

3∑

i,j=1

Ri3
∂ψ

∂xi
nj < 0

∀x ∈ (∂Ω \ ∂ω) × (0, T ).

Let x∗ ∈ [0, T ]×(∂Ω \ ∂ω) be an arbitrary point. Let O the orthogonal matrix of
rotation of the domain Ω around the point x∗′. We assume that normal vector to OΩ
is ~e3. After the rotation, we translate x′

∗
into zero and denote the new coordinates

as y. In new coordinate system to the point x∗ corresponds y∗ = (x∗0, 0, 0, 0). We
need to introduce several functions

A(ξ0, ξ1, ξ2) = (Im((
r̃µ
s

)(y∗, 0, ξ′)))F(ξ1, ξ2),

where R̃ = OR(x∗′)O−1,

r̃β(y
∗, s, ξ′) = (

∑

j=1

R̃j3(y
∗)(ξj+isϕyj

(y∗)))2−(β−R̃33)(y
∗)(−ρ(y∗)(ξ0+isϕy0(y

∗))2

+(β − R̃11)(y
∗)(ξ1 + isϕy1(y

∗))2 + (β − R̃22)(y
∗)(ξ2 + isϕy2(y

∗))2

−R̃12(y
∗)((ξ1 + isϕy1(y

∗))(ξ2 + isϕy2(y
∗))),
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(10)

F(ξ1, ξ2) =
R̃13(y

∗)ξ1 + R̃23(y
∗)ξ2

(µ− R̃33)(y∗)
×

×
{
− (λ+ 2µ− R̃33)

2(y∗)((ξ1)
2 + (ξ2)

2)

(µ− R̃33)(y∗)

− (λ+ 2µ− R̃33)(y
∗)(R̃13(y

∗)ξ1 + R̃23(y
∗)ξ2)

2

(µ− R̃33)2(y∗)

}
,

Ω11 = (µ− R̃11)(y
∗)ξ21 + (µ− R̃22)(y

∗)ξ22 − 2R̃12(y
∗)ξ1ξ2,

Qµ(ξ1, ξ2) =

(
Ω11 −

(R̃13(y
∗)ξ1 + R̃23(y

∗)ξ2)
2

(µ− R̃33)(y∗)

)1/2

,

A1(ξ1, ξ2) = ϕỹ3(y
∗)(|(λ+ 2µ− R̃33)(y

∗)|(ξ1, ξ2)|2 +
(R̃13(y

∗)ξ1 + R̃23(y
∗)ξ̃2))

2

(µ− R̃33)(y∗)
|2

+
(R̃13(y

∗)ξ̃1 + R̃23(y
∗)ξ2))

2

(µ− R̃33)2(y∗)
r̃λ+2µ(y

∗, 0,±Qµ(ξ1, ξ2), ξ1, ξ2)),

(11) ∂ỹ3,β = − R13

β −R33
(y∗)∂y1 −

R23

β −R33
(y∗)∂y2 + ∂y3 .

Consider the polynomial

(12) P(ξ1, ξ2) = (A(0, ξ1, ξ2) + A1(ξ1, ξ2))
2 − (ϕy0(y

∗)Qµ(ξ1, ξ2)F(ξ1, ξ2))
2.

Note that this polynomial is homogeneous of order four in ξ1 and ξ2. Moreover,
this is a homogeneous function of order four. Introducing the new variable z = ξ1/ξ2
the polynomial P1 :

P1(z) =
1

ξ42
P(ξ1, ξ2)

Condition B. Assume that for any x ∈ [0, T ] × (∂Ω \ ∂ω)

A(±Qµ(0, 1), 0, 1) + A1(0, 1) > 0

and polynomial P1(z) does not have real roots.

Denote

Qλ+2µ(ξ1, ξ2) =

(
Ω22 − 2R̃12(y

∗)ξ1ξ2
(R̃13(y

∗)ξ1 + R̃23(y
∗)ξ2)

2

(λ+ 2µ− R̃33)(y∗)

)1/2

where
Ω22 = (λ+ 2µ− R̃11)(y

∗)(ξ1)
2 + (λ+ 2µ− R̃22)(y

∗)(ξ2)
2

and

q(ξ1, ξ2) = (R̃13(y
∗)ξ1+R̃23(y

∗)ξ2 Σ1,3
λ+2µ(z4,ν)−

(µ− R̃33)(λ+ 2µ− R̃33)(y
∗)(ξ21 + ξ22)

√
rµ

+(y∗, 0, ξ′) − R̃13(y∗)ξ1 − R̃23(y∗)ξ2
)

Condition C. Assume that for any x ∈ [0, T ] × (∂Ω \ ∂ω)

(13) (R̃2
13(y

∗) + R̃2
23(x)) < (λ+ µ)(x)(λ+ 2µ− R̃33)(y

∗)

and ∀(ξ1, ξ2) ∈ {(ξ1, ξ2)||(ξ1, ξ2)| = 1,

ϕỹ3,µ(y
∗) ≤ (Im(rµ(y

∗, s,Qλ+2µ(ξ1, ξ2)ξ1, ξ2)/s))/(2
√

Re(rµ(y∗, 0,±Qλ+2µ(ξ1, ξ2), ξ1, ξ2)))}
(14) q(ξ1, ξ2)

2 − q(ξ1, ξ2)(Imrλ+2µ/s)(y
∗, s,±Qλ+2µ(ξ1, ξ2), ξ1, ξ2) > 0 .
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Let thus fix a function ψ satisfying the previous conditions and let us set

φ(x) = eτψ(x) ∀x ∈ Q

for some positive parameter τ which will be chosen later on.

Theorem 1. Let f ∈ H1(Q) and let (2), (4) and (6) hold. Suppose there exists a

function ψ satisfying conditions A-C. Then, there exists τ∗ > 0 such that, for any

τ > τ∗, there exists s∗ > 0 such that

(15) ‖u‖Yφ(Q) ≤ C(‖esφf‖H1,s(Q) + ‖u‖Bφ(Qω)) ∀s > s∗

for some C > 0 independent of s and for any solution u ∈ L2(0, T ;H2(Ω))∩H1(Q)
of system (9).

Proof: Let us first write down the equations verified by ∇× u and ∇ · u:

(16)
Pµ(x,D)(∇× u) ≡ ∂2

x0
(∇× u) − µ∆(∇× u) + (R,∇)∇T (∇× u)

= ∇× f + P̃1(x,D)u

and

(17)
Pλ+2µ(x,D)(∇ · u) ≡ ∂2

x0
(∇ · u) − (λ+ 2µ)∆(∇ · u) + (R,∇)∇T (∇ · u)

= ∇ · f + P̃2(x,D)u,

where the P̃j(x,D) are second order differential operators.
In this situation, we are able to apply the Carleman estimates obtained in [28]

and [9] to the equations (16) and (17). Combining them, we obtain

(18)

s3τ3(‖φ3/2esφ(∇× u)‖2
L2(Q) + ‖φ3/2esφ(∇ · u)‖2

L2(Q))

+sτ(‖φ1/2esφ(∇ · u)‖2
H1(Q) + ‖φ1/2esφ(∇× u)‖2

H1(Q))

≤ C


‖esφf‖2

H1(Q) +
∑

|α|≤2

‖esφDαu‖2
L2(Q)

+s3τ3

∥∥∥∥φ
3/2esφ

∂u

∂n

∥∥∥∥
2

L2(Σ)

+ sτ

∥∥∥∥φ
1/2esφ

∂(∂tgu)

∂n

∥∥∥∥
2

L2(Σ)

+sτ‖φ1/2esφ∇(∇× u)‖2
L2(Qω) + sτ‖φ1/2esφ∇(∇ · u)‖2

L2(Qω)

+s3τ3‖φ3/2esφ(∇× u)‖2
L2(Qω) + s3τ3‖φ3/2esφ(∇ · u)‖2

L2(Qω)

+

2∑

|α|=0

(sτ)5−2|α|‖φ 5
2
−|α|esϕDαu‖2

L2(Qω)


 ∀τ ≥ τ0, ∀s ≥ s0(τ),

where C is independent of s and τ . We recall that the definition of ‖ · ‖Bφ(Q) was
given in (7).

Now, from the well known identity

∆u = −∇× (∇× u) + ∇(∇ · u),

we can use the Carleman inequality proved in [11] for the case of a (simpler) elliptic
equation with homogeneous Dirichlet conditions and combine this with (18), so we
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deduce in a standard way that

(19)

s4τ5‖φ2esφu‖2
L2(Q) + s2τ3‖φesφ∇u‖2

L2(Q) + τ‖esφD2u‖2
L2(Q)

≤ C


‖esφf‖2

H1,s(Q) +
∑

|α|≤2

‖esφDαu‖2
L2(Q)

+s3τ3

∥∥∥∥φ
3/2esφ

∂u

∂n

∥∥∥∥
2

L2(Σ)

+ sτ

∥∥∥∥φ
1/2esφ

∂(∂tgu)

∂n

∥∥∥∥
2

L2(Σ)

+sτ‖φ1/2esφ∇(∇× u)‖2
L2(Qω) + sτ‖φ1/2esφ∇(∇ · u)‖2

L2(Qω)

+s3τ3‖φ3/2esφ(∇× u)‖2
L2(Qω) + s3τ3‖φ3/2esφ(∇ · u)‖2

L2(Qω)

+

2∑

|α|=0

(sτ)5−2|α|‖φ 5
2
−|α|esϕDαu‖2

L2(Qω)


 ∀τ ≥ τ1, s ≥ s1(τ).

Taking τ large enough the global term in the right hand side concerning u can be
absorbed.

On the other hand, at this point of the proof we forget about the dependence on
τ and possible powers of φ (which is a regular function) in our inequalities, since it
will not be crucial. Consequently, for the moment, we have

(20)
‖u‖2

Yφ(Q) ≤ C
(
‖esφf‖2

H1,s(Q) + s

∥∥∥∥e
sφ ∂u

∂~n

∥∥∥∥
2

H1,s(Σ)

+ s

∥∥∥∥e
sφ ∂

2u

∂~n2

∥∥∥∥
2

L2(Σ)

+‖u‖2
Bφ(Qω)

)
∀τ ≥ τ1, s ≥ s1(τ),

where constant C is independent of s.
The norm ‖ · ‖Yφ(Q) was introduced in (8).

The goal will be now to estimate the boundary terms appearing in the previous
inequality. For this purpose, we consider another weight function ϕ such that
ϕ = φ on Σ. For instance, let us take

(21) ϕ = eτψ̃ with ψ̃ = ψ − 1

Z2
ℓ1 + Zℓ21,

where Z is a large positive number and ℓ1 is a regular function verifying

ℓ1 = 0 on ∂Ω, ℓ1 > 0 in Ω and ∇ℓ1 6= 0 on ∂Ω.

Moreover, if we set

Ω1/Z2 = {x′ = (x1, x2, x3) ∈ Ω : dist(x′, ∂Ω) < 1/Z2},
we can suppose that the function ℓ1 is chosen such that

ϕ(x) < φ(x) ∀x ∈ Ω1/Z2 × (0, T )

provided Z is large enough.
For this new weight function, we will be able to prove the following lemma:

Lemma 1. Under the previous conditions, the following inequality holds

(22) ‖u‖Yϕ(Q) ≤ C
(
‖esϕf‖H1,s(Q) + ‖u‖Bϕ(Qω)

)
∀s ≥ s0,

for functions u verifying

suppu ⊂ Ω1/Z2 × [0, T ].
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Let us suppose that lemma 1 holds and let us deduce theorem 1 from it. Suppose
that Z is already fixed such that (22) holds and take ε ∈ (0, 1/Z2). Then we have

(23) ϕ(x) < φ(x) ∀x ∈ (Ωε \ Ωε/2) × [0, T ].

Let us now introduce a cut-off function θ ∈ C2
c (Ωε) such that θ ≡ 1 in Ωε/2. Then,

it readily follows that the function θu fulfills the following system




P (x,D)(θu) ≡ θf + [P, θ]u in Q,

θu = 0 on Σ,

(θu)(·, T ) = ∂x0
(θu)(·, T ) = (θu)(·, 0) = ∂x0

(θu)(·, 0) = 0 in Ω.

Consequently, we can apply estimate (22) to θu and deduce that

(24)
s

∥∥∥∥e
sφ ∂u

∂n

∥∥∥∥
2

H1,s(Σ)

+ s

∥∥∥∥e
sφ ∂

2u

∂n2

∥∥∥∥
2

L2(Σ)

≤ C/s
(
‖esϕf‖2

H1,s(Q) + ‖esϕ[P, θ]‖2
H1,s(Q) + ‖u‖2

Bϕ(Qω)

)
∀s ≥ s0,

since ϕ ≡ φ on the boundary. Next, we observe that the support of the function
[P, θ]u is contained in Ωε \ Ωε/2 × [0, T ], while ϕ < φ in that set (see (23)). Thus,

‖esϕ[P, θ]u‖H1,s(Q) ≤ C
2∑

|α|=0

‖esφDαu‖L2(Q) ∀s > 0.

Finally, we put this together with (24) and (19) and we obtain the desired inequality
(15).

This ends the proof of theorem 1.

Proof of Lemma 1: Assume that suppu ⊂ Bδ ∩ (Ω1/Z2 × [0, T ]). By means of
a translation and a rotation, one can always suppose that the small part of the
boundary where we are working on is given by the equation

x3 = ℓ(x1, x2).

Without lack of generality, the function ℓ ∈ C3 can be taken to satisfy

∇′ℓ(0, 0) = (ℓx1
, ℓx2

)(0, 0) = 0.

Observe that if we denote by O the orthogonal matrix which defines the rotation
and transform our original domain Ω into the new one Ω̃ (x′ ∈ Ω ⇒ x̃′ = Ox′ ∈ Ω̃),
the equation satisfied by our function ũ(x̃) := Ou(x0,O−1x̃) is now

(25) ∂tũ − µ∆ũ − (λ+ µ)∇(∇ · ũ) + [(R̃,∇)∇T ]ũ = Of(x̃0,O−1x̃′),

where R̃(x̃′) = OR(O−1x̃′)O−1.
In order to work in an appropriate frame, we perform the change of variables





y1 = x1,

y2 = x2,

y3 = x3 − ℓ(x1, x2)

and we set y∗ = (y0, 0, 0, 0). Let us denote by w = (w′, w4) the functions ∇ × u

and ∇ · u in the new coordinates. Then, some simple computations show that, in
the new variables, the main symbols of equations (16) and (17) are

pβ(y, ξ) = −ρξ20 + (β −R11)ξ
2
1 + (β −R22)ξ

2
2 + {[(βE3 −R)GT ]G}ξ23

−2R12ξ1ξ2 − 2
∑2
j=1(Rj3 + ℓyj

(β −Rjj) − ℓy3−j
R12)ξjξ3,
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where

(26) G = (−ℓy1 ,−ℓy2 , 1)t.

Let us set some other standard ingredients in the microlocal analysis frame.
Thus, we consider the unit sphere in IR4, say

S3 = {ζ = (s, ξ′) : s2 + ξ20 + ξ21 + ξ22 = 1}
and the following associated finite covering:

{ζ ∈ S3 : |ζ − ζ∗ν | < δ1}1≤ν≤M(δ1),

with ζ∗ν ∈ S3. To this covering we associate the partition of unity {χν}1≤ν≤M ,
extending χν out of S3 like a homogenous function of order 0 with support contained
in the conic neighborhood

O(δ1) =

{
ζ :

∣∣∣∣
ζ

|ζ| − ζ∗ν

∣∣∣∣ < δ1

}
.

In order to finish the proof, we need another lemma:

Lemma 2. Let γ∗ = (y∗, ζ∗) ∈ ∂G × S3 be fixed and suppχν ⊂ O(δ1). Then, for

sufficiently small δ and δ1, we have

(27)
s‖zν‖2

H1,s(G) + s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G))

≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)).

Here, we have denoted G = IR3 × [0, 1/Z2] and zν = χν(s,D
′)z, with z = esϕw.

Let us suppose that lemma 2 holds. Then we have

(28)

s‖z‖2
H1,s(G) + s(‖z‖2

H1,s(∂G) + ‖∂y3z‖2
L2(∂G))

≤ Cs
M∑

ν=1

(‖zν‖2
H1,s(G) + ‖zν‖2

H1,s(∂G) + ‖∂y3zν‖2
L2(∂G))

≤ C(‖esϕf‖2
H1,s(G) + ‖esϕu‖2

H2,s(G)).

Let us now use the result stated in proposition 4.2 of [14]:

Z

2∑

|α|=0

s4−2|α|‖esϕDα
y′u‖2

L2(G) ≤ C(‖esϕf‖2
H1,s(G) + ‖esϕu‖2

H2,s(G)),

where C is independent of s and Z.
From the differential equation in (9), we deduce that ‖esϕ∂2

y0u‖2
L2(G) can be

added to the left hand side of the previous inequality. The same can be said of
‖esϕ∂2

y0y1u‖2
L2(G) in view of well known interpolation arguments. Consequently, we

have

Z

2∑

|α|=0

s4−2|α|‖esϕDαu‖2
L2(G) ≤ C‖esϕf‖2

H1,s(G).

Combining this with (28), we obtain:
(29)

2∑

|α|=0

s4−2|α|‖esϕDαu‖2
L2(G) + s(‖z‖2

H1,s(∂G) + ‖∂y3z‖2
L2(∂G)) ≤ C‖esϕf‖2

H1,s(G).
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Let us finally see that we can deduce inequality (22) from (29). To do this, we
just have to provide ‘good’ estimates for the terms

s ‖esϕ∂y3u‖
2
H1,s(∂G) and s

∥∥esϕ∂2
y3u
∥∥2

L2(∂G)
.

From the definition of the y variables in terms of x and the Dirichlet boundary
condition on u, we see that the following estimates hold:

|∂y3uj | ≤ |(∇× u)3−j | + ε(δ)|∂y3u| on ∂G for j = 1, 2,

|∂y3u3| ≤ |∇ · u| + ε(δ)|∂y3u| on ∂G.
These two estimates tell that

(30) |esϕ∂y3u| ≤ |z1| + |z2| + |z4| on ∂G.
Additionally,

|∂2
yjy3uk| ≤ |∂yj

(∇× u)3−k| + ε(δ)|∂yjy3u| on ∂G for j = 0, 1, 2, k = 1, 2

and

|∂2
yjy3u3| ≤ |∂yj

(∇ · u)| + ε(δ)|∂yjy3u| on ∂G for j = 0, 1, 2,

whence we deduce that

(31) |esϕ∇tg
y ∂y3u| ≤ |∇tg

y z1| + |∇tg
y z2| + |∇tg

y z4| on ∂G.
Finally, we have

|∂2
y3uj | ≤ |∂y3(∇× u)3−j | + |∂yj

(∇ · u)| + ε(δ)|∂y3∇yu| on ∂G for j = 1, 2

and

|∂2
y3u3| ≤ |∂y1(∇× u)2| + |∂y2(∇× u)1| + |∂y3(∇ · u)| + ε(δ)|∂y3∇yu| on ∂G,

which lead to the estimate

(32) |esϕ∂2
y3u| ≤ |∇yz1| + |∇yz2| + |∇yz4| + ε(δ)|esϕ∂y3∇tg

y u| on ∂G.
One can readily see that (30)–(32) imply that

‖esϕ∂y3u‖
2
H1,s(∂G) +

∥∥esϕ∂2
y3u
∥∥2

L2(∂G)
≤ C(‖z‖2

H1,s(∂G) + ‖∂y3z‖2
L2(∂G)),

as we wanted to prove.

As a conclusion it suffices to prove lemma 2, so the rest of this section will be
dedicated to it.

Proof of lemma 2: Let us introduce the notation

ID = D + is∇ϕ.
Then the main symbol of the differential operator Pβ(y, ID) is

(33)

pβ,s(y, s, ξ) = −ρ(ξ0 + isϕy0)
2 + (β −R11)(ξ1 + isϕy1)

2

+(β −R22)(ξ2 + isϕy2)
2 + {[(βE3 −R)GT ]G}(ξ3 + isϕy3)

2

−2R12(ξ1 + isϕy1)(ξ2 + isϕy2)

−2
∑2
j=1(Rj3 + ℓyj

(β −Rjj) − ℓy3−j
R12)(ξj + isϕyj

)(ξ3 + isϕy3).

We recall that G = (−ℓy1 ,−ℓy2 , 1)t. The roots of this polynomial with respect to
the ξ3 variable are

(34) Γ±
β (y, s, ξ′) = −isϕy3 + α±

β (y, s, ξ′),
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where

α±
β (y, s, ξ′) =

∑2
j=1(Rj3 + ℓyj

(β −Rjj) − ℓy3−j
R12)(ξj + isϕyj

) ±
√
rβ(y, s, ξ′)

[(βE3 −R)Gt]G

and

(35)

rβ(y, s, ξ
′) =

(∑2
j=1(Rj3 + ℓyj

(β −Rjj) − ℓy3−j
R12)(ξj + isϕyj

)
)2

−[(βE3 −R)GT ]G(−ρ(ξ0 + isϕy0)
2 + (β −R11)(ξ1 + isϕy1)

2

+(β −R22)(ξ2 + isϕy2)
2 − 2R12(ξ1 + isϕy1)(ξ2 + isϕy2)).

It will be useful for the sequel to factorize Pβ(y, ID) as the product of two first
order operators. This is made in the following proposition:

Proposition 1. Let β ∈ {µ, λ + 2µ} and |rβ(γ)| ≥ C > 0 for all γ ∈ (Bδ ∩ G) ×
O(2δ1). Then, for any function v such that supp v ⊂ Bδ ∩ G, we have

Pβ,s(y,D)vν

= [(βE3 −R)GT ]G(Dy3 − Γ−
β (y, s,D′))(Dy3 − Γ+

β (y, s,D′))vν + Tβ,svν ,

where Tβ,s is a continuous operator

Tβ,s : H1,s(G) 7−→ L2(G).

Once this decomposition can be done, one would desire to obtain appropriate
estimates of some norms of vν . More precisely, let ṽ satisfy

(Dy3 − Γ−
β (y, s,D′))ṽν = q, ṽ|y3=1/Z2 = 0, supp ṽ ⊂ Bδ ∩ G.

We can then prove the following:

Proposition 2. Let β ∈ {µ, λ+ 2µ} and |rβ(γ)| ≥ C > 0 for all γ ∈ Bδ ×O(2δ1).
Then,

s‖ṽν‖2
L2(∂G) ≤ C‖q‖2

L2(∂G),

for some positive constant C independent of s and Z.

Proposition 1 and proposition 2 can both be proved as in [14].

The next step will be to obtain a Carleman inequality for a function satisfying
our (second order hyperbolic) differential equation but with no imposed boundary
conditions. This will be crucial to obtain the desired estimate (27). Indeed, let w
satisfy

Pβ(y, ID)w = g in G, suppw ⊂ Bδ × [0, 1/Z2).

Let us denote by P ∗
β (y, ID) the adjoint operator of Pβ(y, ID) (β ∈ {µ, λ+ 2µ}) and

let us set

L+,β(y, s,D) =
Pβ(y, ID) + P ∗

β (y, ID)

2
, L−,β(y, s,D) =

Pβ(y, ID) − P ∗
β (y, ID)

2
.

We have

L+,β(y, s,D)w + L−,β(y, s,D)w = g.

After several computations involving integration by parts, we get

(36)
‖L+,βw‖2

L2(G) + ‖L−,βw‖2
L2(G) + Re

∫

G

[L+,β , L−,β ]w dy + Σβ(w)

= ‖g‖2
L2(G),
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with Σβ(w) = (Σ1
β + Σ2

β)(w), where Σ1
β can be written as Σ1,1

β + Σ1,2
β + Σ1,3

β with

(37) Σ1,1
β (w) = s

∫

∂G

(β −R33)
2(y∗)ϕỹ3(y

∗)(|∂ỹ3w|2 + s2ϕ2
ỹ3 |w|

2) dy′,

(38)

Σ1,2
β (w) = s

∫

∂G

(β −R33)(y
∗)ϕỹ3(y

∗)

[
ρ(y∗)|∂y0w|2 − s2ρ(y∗)ϕ2

y0(y
∗)|w|2

−
(
β −R11 −

R2
13

β −R33

)
(y∗)(|∂y1w|2 − s2ϕ2

y1(y
∗)|w|2)

−
(
β −R22 −

R2
23

β −R33

)
(y∗)(|∂y2w|2 − s2ϕ2

y2(y
∗)|w|2)

+2

(
R12 +

R13R23

β −R33

)
(y∗)(∂y1w ∂y2w − s2ϕy1(y

∗)ϕy2(y
∗)|w|2)

]
dy′

and

(39)

Σ1,3
β (w) = −2sRe

∫

∂G

((β −R33)(y
∗)∂y3w −R13∂y1w −R23∂y2w)

(
ϕy0(y

∗)ρ(y∗)∂y0w −
(
β −R11 −

R2
13

β −R33

)
(y∗)ϕy1(y

∗)∂y1w

−
(
β −R22 −

R2
23

β −R33

)
(y∗)ϕy2(y

∗)∂y2w

+

(
R12 +

R13R23

β −R33

)
(y∗)(ϕy2(y

∗)∂y1w + ϕy1(y
∗)∂y2w)

)
dy′

and

(40) Σ2
β(w) ≤ ε(δ)s

(
‖w‖2

H1,s(∂G) + ‖∂y3w‖2
L2(∂G)

)
,

with ε(δ) → 0 when δ → 0+. We remind that the differential operator ∂ỹ3 was
introduced in (11).

In fact, the expressions of L+,β(y, s,D)w and L−,β(y, s,D)w are

L+,β(y, s,D)w = ρ∂2
y0w + s2ρϕ2

y0w − (β −R11)(∂
2
y1w + s2ϕ2

y1w)

−(β −R22)(∂
2
y2w + s2ϕ2

y2w) − (β −R33)(∂
2
y3w + s2ϕ2

y3w)

+2R12(∂
2
y1y2w + s2ϕy1ϕy2w) + 2R13(∂

2
y1y3w + s2ϕy1ϕy3w)

+2R23(∂
2
y2y3w + s2ϕy2ϕy3w)

and

L−,β(y, s,D)w = s (−∂y0(ρϕy0w) − rhoϕy0∂y0w + (β −R11)(∂y1(ϕy1w) + ϕy1∂y1w)

+(β −R22)(∂y2(ϕy2w) + ϕy2∂y2w) + (β −R33)(∂y3(ϕy3w) + ϕy3∂y3w)

−R12(∂y2(ϕy1w) + ϕy1∂y2w + ∂y1(ϕy2w) + ϕy2∂y1w)

−R13(∂y3(ϕy1w) + ϕy1∂y3w + ∂y1(ϕy3w) + ϕy3∂y1w)

−R23(∂y2(ϕy3w) + ϕy3∂y2w + ∂y3(ϕy2w) + ϕy2∂y3w)) .

One just has to integrate by parts, keeping the boundary terms in order to conclude
that

Σβ(w) = Σ1
β(w) + Σ2

β(w),

where Σ1
β(w) is given by (37)–(39) and Σ2

β verifies the estimate (40).
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Using (36), one can prove in the same way as in Appendix II of [14] that there
exists c0 > 0 such that the following inequality holds:

sc0‖w‖2
H1,s(G) ≤ ‖L+,βw‖2

L2(G) + ‖L−,βw‖2
L2(G) + Re ([L+,β , L−,β ]w,w)L2(G)

+sC‖w‖L2(∂G)‖∂y3w‖L2(∂G) ∀s ≥ s0.

Combining this with (36), we get
(41)
C1s‖w‖2

H1,s(G) + Σβ(w) ≤ C2(‖g‖2
L2(G) + s‖w‖L2(∂G)‖∂y3w‖L2(∂G)) ∀s ≥ s0.

Having this inequality in mind, we will prove lemma 2 distinguishing several
cases according to the values of rβ(γ

∗) (recall that γ∗ = (y∗, ζ∗)):

• First Case: rµ(γ
∗) = 0, rλ+2µ(γ

∗) 6= 0.

• Second case: rλ+2µ(γ
∗) = 0, rµ(γ

∗) 6= 0.

• Third Case: rµ(γ
∗) 6= 0, rλ+2µ(γ

∗) 6= 0 or rµ(γ
∗) = rλ+2µ(γ

∗) = 0.

2.1. First Case: rµ(γ
∗) = 0, rλ+2µ(γ

∗) 6= 0.. In this situation, taking δ and δ1
small enough, one can suppose that

(42) |rλ+2µ(γ)| ≥ C > 0 ∀γ = (y, ζ) ∈ Bδ × (O(δ1) ∩ {|ζ| ≥ 1}).

Let us start applying estimate (41) to z′ν = χν(s,D
′)esϕ(∇ × u). Recall that

w = (w′, w4) = (∇× u,∇ · u), where the differential operators are taken in the y
variables. This yields

(43)
s‖z′ν‖2

H1,s(G) + Σ1
µ(z

′
ν) ≤ ε(δ)s(‖z′ν‖2

H1,s(∂G) + ‖∂y3z′ν‖2
L2(∂G))

+C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)),

with Σ1
µ(z

′
ν) given by (37)–(39). Let us rewrite the boundary terms in the form

(44) Σ1
µ(z

′
ν) = Σ1,1

µ (z′ν) + Σ1,2
µ (z′ν) + Σ1,3

µ (z′ν),

with

Σ1,1
µ (z′ν) = s

∫

∂G

(µ−R33)
2(y∗)ϕỹ3,µ(y

∗)(|∂ỹ3z′ν |2 + s2ϕ2
ỹ3 |z

′
ν |2) dy′,

Σ1,2
µ (z′ν) = s

∫

∂G

(µ−R33)(y
∗)ϕỹ3,µ(y

∗)

[
ρ(y∗)|∂y0z′ν |2 − s2ρ(y∗)ϕ2

y0(y
∗)|z′ν |2

−
(
µ−R11 −

R2
13

µ−R33

)
(y∗)(|∂y1z′ν |2 − s2ϕ2

y1(y
∗)|z′ν |2)

−
(
µ−R22 −

R2
23

µ−R33

)
(y∗)(|∂y2z′ν |2 − s2ϕ2

y2(y
∗)|z′ν |2)

+2

(
R12 +

R13R23

µ−R33

)
(y∗)(∂y1z

′
ν ∂y2z

′
ν − s2ϕy1(y

∗)ϕy2(y
∗))|z′ν |2

]
dy′
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and
(45)

Σ1,3
µ (z′ν) = −2sRe

∫

∂G

((µ−R33)(y
∗)∂y3z

′
ν −R13(y

∗)∂y1z
′
ν −R23(y

∗)∂y2z
′
ν)

×
(
ϕy0(y

∗)ρ(y∗)∂y0z
′
ν −

(
µ−R11 −

R2
13

µ−R33

)
(y∗)ϕy1(y

∗)∂y1z
′
ν

−
(
µ−R22 −

R2
23

µ−R33

)
(y∗)ϕy2(y

∗)∂y2z
′
ν

+

(
R12 +

R13R23

µ−R33

)
(y∗)(ϕy2(y

∗)∂y1z
′
ν + ϕy1(y

∗)∂y2z
′
ν)

)
dy′.

Taking into account (35), we observe that

0 = Re rµ(γ
∗) = R2

13[(ξ
∗
1)2 − (s∗ϕy1(y

∗))2] +R2
23[(ξ

∗
2)2 − (s∗ϕy2(y

∗))2]

+2R13(y
∗)R23(y

∗)[ξ∗1ξ
∗
2 − (s∗)2ϕy1(y

∗)ϕy2(y
∗)]

−(µ−R33)(y
∗){[−ρ(y∗)(ξ∗0)2 + ρ(y∗)(s∗ϕy0(y

∗))2] + (µ−R11)(y
∗)[(ξ∗1)2 − (s∗ϕy1(y

∗))2]

+(µ−R22)(y
∗)[(ξ∗2)2 − (s∗ϕy2(y

∗))2] − 2R12(y
∗)[ξ∗1 ξ

∗
2 − (s∗)2ϕy1(y

∗)ϕy2(y
∗)]}.

Consequently,

|Re rµ(γ)| ≤ ε(δ1)(s
2 + |ξ0|2 + |ξ1|2 + |ξ2|2) ∀γ = (y∗, s, ξ′) ∈ O(δ1).

Since

Σ1,2
µ (z′ν) = s

∫

R3

(µ−R33)(y
∗)ϕỹ3,µ(y

∗) Re rµ(y
∗, s, ξ′)|ẑ′ν |2 dξ′,

we readily deduce that

(46) Σ1,2
µ (z′µ) ≤ ε(δ1)s‖z′ν‖2

H1,s(∂G).

Also, from rµ(γ
∗) = 0 we find that

(47) |ξ0|2 ≤ C(s2 + |ξ1|2 + |ξ2|2) ∀(s, ξ0, ξ1, ξ2) ∈ O(δ1)

for a positive constant C, provided δ1 is small enough.

In order to estimate Σ1,3
µ (z′ν), we will have to distinguish again whether s∗ is

equal to zero or not.

Taking into account (42), an application of proposition 1 provides the identity

Pλ+2µ,s(y,D)z4,ν = [(λ+ 2µ)E3 −R)GT ]G(Dy3 − Γ−
λ+2µ(y, s,D

′))z+
4,ν + Tz4,ν ,

for some T ∈ L(H1,s(G);L2(G)), where we have set

z+
4,ν = (Dy3 − Γ+

λ+2µ(y, s,D
′))z4,ν .

Then, proposition 2 applied to z+
4,ν yields

(48) s‖(IDy3 − α+
λ+2µ)z4,ν‖2

L2(∂G) ≤ (‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)).

Case 2.1.1: s∗ 6= 0
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We recall here the expression of Im rµ(γ
∗):

0 = Im rµ(γ
∗) = 2s∗{R2

13(y
∗)ϕy1(y

∗)ξ∗1 +R2
23(y

∗)ϕy2(y
∗)ξ∗2

+R13(y
∗)R23(y

∗)(ϕy2(y
∗)ξ∗1 + ϕy1(y

∗)ξ∗2)

−(µ−R33)(y
∗)[−ρ(y∗)ϕy0(y∗)ξ∗0 + (µ−R11)(y

∗)(ϕy1(y
∗)ξ∗1)

+(µ−R22)(y
∗)(ϕy2(y

∗)ξ∗2) −R12(y
∗)(ϕy2(y

∗)ξ∗1 + ϕy1(y
∗)ξ∗2)]},

so we have

|Im rµ(γ)| ≤ ε(δ1)(s
2 + |ξ0|2 + |ξ1|2 + |ξ2|2) ∀γ = (y∗, s, ξ′) ∈ O(δ1).

Then, a similar argument to the one above leads us to estimate the term Σ1,3
µ (z′ν):

(49) Σ1,3
µ (z′ν) ≤ ε(δ1)s(‖z′ν‖2

H1,s(∂G) + ‖∂y3z′ν‖2
L2(∂G)).

Therefore, from the expression of Σ1
µ(z

′
ν) (see (37)–(39)), (46), (49) and the posi-

tiveness of Σ1,1
µ (z′ν), we deduce that

Σ1
ν(z

′
µ) ≥ Cs(‖z′ν‖2

H1,s(∂G) + ‖∂y3z′ν‖2
L2(∂G))

for some positive constant C. Here, we have used Condition A (at the beginning
of section 2) on ψ, µ−R33 > 0 (see (6)) and the fact that s2 ≥ C(ξ20 + ξ21 + ξ22) in
O(δ1). Combining this and (43), we get

(50)
s(‖z′ν‖2

H1,s(G) + ‖z′ν‖2
H1,s(∂G) + ‖∂y3z′ν‖2

L2(∂G))

≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)),

In order to estimate the boundary norms of z4,ν , we will use the boundary
Dirichlet conditions and the equations of the Lamé system written on ∂G. Indeed,
from the two first ones, it is not difficult to deduce that
{ |IDyj

z4,ν | ≤ C(|esϕf | + s|z′ν | + |∇tg
y z′ν |) + ε(δ)(s|zν | + |∇tg

y zν | + |∂y3zν |)
on ∂G, for j = 1, 2

and from the third one

|IDy3z4,ν | ≤ C(|esϕf | + s|z′ν | + |∇tg
y z′ν | + |IDy1z4,ν | + |IDy2z4,ν |)

+ε(δ)(s|zν | + |∇tg
y zν | + |∂y3zν |) on ∂G.

Now, using that λ + 2µ − R33 > 0 along with the Dirichlet boundary conditions,
we have

(51)
‖IDy3z4,ν‖2

L2(∂G) ≤ C(‖esϕf‖2
L2(∂G) + ‖z′ν‖2

H1,s(∂G))

+ε(δ)(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

In addition, combining (51) and (48), we find an estimate of the L2 norm of z4
and its tangential derivatives on ∂G:

(52)
s‖z4,ν‖2

H1,s(∂G) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G) + s‖z′ν‖2
H1,s(∂G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

Indeed, in view of (42), we can apply Gärding’s inequality after (48) and obtain
(52).

Finally, (52) and (51) give an estimate of the normal derivative of z4,ν in the L2

norm:

(53)
s‖z4,ν‖2

H1,s(∂G) + s‖∂y3z4,ν‖2
L2(∂G) ≤ C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G)

+s‖z′ν‖2
H1,s(∂G)) + ε(δ)s(‖zν‖2

H1,s(∂G) + ‖∂y3zν‖2
L2(∂G)).
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This and (50) provide the desired inequality (27). This ends the proof of lemma 2
in this case.

Case 2.1.2: s∗ = 0
We first remark that, thanks to the Dirichlet boundary conditions, we have

(54) s‖z3,ν‖2
H1,s(∂G) ≤ ε(δ)s(‖zν‖2

H1,s(∂G) + ‖∂y3zν‖2
L2(∂G)).

Once the tangential derivatives of z3,ν are bounded, an application of (41) for
w = z3,ν also gives an estimate for its normal derivative :

(55)
s(‖z3,ν‖2

H1,s(∂G) + ‖∂y3z3,ν‖2
L2(∂G)) ≤ ε(δ)s(‖zν‖2

H1,s(∂G)

+‖∂y3zν‖2
L2(∂G)) + C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G)).

We will next estimate the terms Σ1,3
µ (z1,ν) and Σ1,3

µ (z2,ν). To this end, let us
introduce the following differential operator:

(56)
M(y, s,D′)(z1,ν , z2,ν)

= (IDy1z1,ν + IDy2z2,ν , (µ−R33)(IDy1z2,ν − IDy2z1,ν)) = (F1, F2).

From the third equation of our Lamé system, we have (observe that s∗ = 0)

F2 = (λ+ 2µ−R33)IDy3z4,ν − 2R13IDy1z4,ν − 2R23IDy2z4,ν + F3

=
√
rλ+2µ

+(y, s,D′)z4,ν + V +
µ −R13IDy1z4,ν −R23IDy2z4,ν + F3

where F3 verifies

(57)
s‖F3‖2

L2(∂G) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

Here, we have denoted

V +
µ = ((λ+ 2µ−R33)IDy3 −R13IDy1 −R23IDy2)z4,ν −

√
rλ+2µ

+(y, s,D′)z4,ν .

Taking into account (48), we deduce that

s‖V +
µ ‖2

L2(∂G) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

Then, since the divergence of a curl is identically zero, we find that

s‖F1‖2
L2(∂G) ≤ ε(δ)s(‖zν‖2

H1,s(∂G) + ‖∂y3zν‖2
L2(∂G)).

Next, using (55), we rewrite the two first equations of our Lamé system (9) as

(58)





−(µ−R33)IDy3z2,ν + 2R13IDy1z2,ν + 2R23IDy2z2,ν

= F4 + (λ+ 2µ−R33)IDy1z4,ν ,

(µ−R33)IDy3z1,ν − 2R13IDy1z1,ν − 2R23IDy2z1,ν

= F5 + (λ+ 2µ−R33)IDy2z4,ν ,

with F4 and F5 satisfying estimate (57).
The principal symbol of the operator M is

(
ξ1 + isϕy1 ξ2 + isϕy2

−(µ−R33)(ξ2 + isϕy2) (µ−R33)(ξ1 + isϕy1)

)
,

which clearly has a nonzero determinant at the point γ∗.
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Therefore, from the definition of M given in (56), we deduce that there exists a
parametrix of this operator such that
(59)

(z1,ν , z2,ν) = M−1(y, s,D′)(0, (
√
rλ+2µ

+(y, s,D′) −R13IDy1 −R23IDy2)z4,ν)

+M−1(y, s,D′)(F1, F6) + T (z1,ν , z2,ν).

In terms of the ξ variables, the principal part of (59) reads
(60)

ẑk,ν = (−1)k
(ξ3−k + isϕy3−k

(y∗))(
√
rλ+2µ

+(y∗, s, ξ′) −R13(y
∗)(ξ1 + isϕy1(y

∗))

(µ−R33)(y∗)((ξ1 + isϕy1(y
∗))2 + (ξ2 + isϕy2(y

∗))2)

−R23(y
∗)(ξ2 + isϕy2(y

∗)))
ẑ4,ν + F̂7,

for k = 1, 2, with F7 satisfying estimate (53). From the fact that ζ∗ = (s∗, ξ∗0 , ξ
∗
1 , ξ

∗
2) ∈

S3 and rµ(γ
∗) = 0, we deduce there exists α, α′ ∈ R such that αξ∗1 + α′ξ∗2 = 1 and√

α2 + (α′)2 = 1.
Let us then introduce the function

z5,ν = −α′z1,ν + αz2,ν ,

which, by virtue of (60), satisfies

(61)

ẑ5,ν =
(α(ξ1 + isϕy1(y

∗)) + α′(ξ2 + isϕy2(y
∗))) Ω33

(µ−R33)(y∗)((ξ1 + isϕy1(y
∗))2 + (ξ2 + isϕy2(y

∗))2)

−R23(y
∗)(ξ2 + isϕy2(y

∗)))
ẑ4,ν + F̂8,

for all ζ ∈ O(δ1), where

Ω33 =
√
rλ+2µ

+(y∗, s, ξ′) −R13(y
∗)(ξ1 + isϕy1(y

∗)

and F8 satisfies estimate (53).
With all these ingredients, we will be able to estimate the term Σ1,3

µ (z5,ν). In-

deed, we can plug identities (58) and (61) into the expression of Σ1,3
µ given in (45)

in order to express it in terms of the z4,ν variable. This yields

(62)

Σ1,3
µ (z5,ν) =

−2sRe
∫
R3

αξ1+α
′ξ2

(µ−R33)(y∗)(ξ2
1
+ξ2

2
)

[
− (λ+ 2µ−R33)(y

∗)(αξ1 + α′ξ2)

+
(αξ1 + α′ξ2)(R13(y

∗)ξ1 +R23(y
∗)ξ2) Ω44

(µ−R33)(y∗)(ξ21 + ξ22)

]
×

Σ1,3
µ ×

(
ϕy0(y

∗)ρ(y∗)ξ0 −
(
µ−R11 −

R2
13

µ−R33

)
(y∗)ϕy1(y

∗)ξ1 − Ω55

+

(
R12 +

R13R23

µ−R33

)
(y∗)(ϕy2(y

∗)ξ1 + ϕy1(y
∗)ξ2)

)

(
√
rλ+2µ

+(y∗, s∗, ξ′) −R13(y∗)ξ1 −R23(y∗)ξ2) |ẑ4,ν |2 dξ′ + I1(zν),

where

Ω44 =
√
rλ+2µ

+(y∗, s∗, ξ′) −R13(y
∗)ξ1 −R23(y

∗)ξ2,

Ω55 =

(
µ−R22 −

R2
23

µ−R33

)
(y∗)ϕy2(y

∗)ξ2.
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Here, the term I1(zν) is bounded by

(63) I1(zν) ≤ C(‖esϕf‖2
H1,s(G) +‖z‖2

H1,s(G))+ε(δ)s(‖zν‖2
H1,s(∂G) +‖∂y3zν‖2

L2(∂G)).

We set ξ̃′ = Cξ∗′ where C is a positive constant. The real part of the main
symbol of the pseudodifferential operator appearing in (62) at point (y∗, ξ̃′) equals
(observe that

√
rλ+2µ

+(γ∗) is a pure imaginary number, since rλ+2µ(γ
∗) is real and

negative)
(64)

A(ξ̃0, ξ̃1, ξ̃2)

((ξ̃1)2 + (ξ̃2)2)
= (Im((

rµ
s

)(y∗, s, ξ̃′)))
(R13(y

∗)ξ̃1 +R23(y
∗)ξ̃2)

(µ−R33)(y∗)((ξ̃1)2 + (ξ̃2)2)
×

×
{
−(λ+ 2µ−R33)(y

∗)((ξ̃1)
2 + (ξ̃2)

2) − (R13(y
∗)ξ1 +R23(y

∗)ξ̃2)
2 + |rλ+2µ(y

∗, ξ̃′)|
(µ−R33)(y∗)

}
.

Here, we have taken into account that αξ∗1 + α′ξ∗2 = |(ξ̃1, ξ̃2)|.
Plugging here the expression of rλ+2µ(y

∗, ξ̃′) and taking into account that rµ(γ
∗) =

0, we get

A(ξ̃0, ξ̃1, ξ̃2) = (Im((
rµ
s

)(y∗, 0, ξ̃′)))F(ξ̃1, ξ̃2)

where

(65)

F(ξ1, ξ2) =
R13(y

∗)ξ1 +R23(y
∗)ξ2

(µ−R33)(y∗)
×

×
{
− (λ+ 2µ−R33)

2(y∗)

(µ−R33)(y∗)
((ξ1)

2 + (ξ2)
2) − Ω66

}
.

where

Ω66 =
(λ+ 2µ−R33)(y

∗)(R13(y
∗)ξ1 +R23(y

∗)ξ2)
2

(µ−R33)2(y∗)
.

Again from rµ(γ
∗) = 0, we can put ξ̃0 in terms of ξ̃1 and ξ̃2 in the following way:

ξ̃0 = ±Q(ξ̃1, ξ̃2) where

Q(ξ1, ξ2) =
(
(µ−R11)(y

∗)(ξ1)
2 + (µ−R22)(y

∗)(ξ2)
2 − 2R12(y

∗)ξ1ξ2 − Ω77
)1/2

where

Ω77 =
(R13(y

∗)ξ1 +R23(y
∗)ξ2)

2

(µ−R33)(y∗)
.

Plugging this into the expression (65), we obtain

A(±Q(ξ̃1, ξ̃2), ξ̃1, ξ̃2) = (Im((
rµ
s

)(y∗, 0,±Q(ξ̃1, ξ̃2), ξ̃1, ξ̃2))/2)F(ξ̃1, ξ̃2)

(66)

=
{
±ϕy0ρ(y∗)(y∗)

(
(µ−R11)(y

∗)(ξ̃1)
2 + (µ−R22)(y

∗)(ξ̃2)
2 − 2R12(y

∗)ξ̃1ξ̃2

− (R13(y
∗)ξ∗1 +R23(y

∗)ξ̃2)
2

(µ−R33)(y∗)

)1/2

−
(
µ−R11 −

R2
13

µ−R33

)
(y∗)ϕy1(y

∗)ξ̃1

−
(
µ−R22 −

R2
23

µ−R33

)
(y∗)ϕy2(y

∗)ξ̃2 + Ω88 × (y∗)(ϕy2(y
∗)ξ̃1 + ϕy1(y

∗)ξ̃2)

}

R13(y
∗)ξ̃1 +R23(y

∗)ξ̃2

(µ−R33)(y∗)((ξ̃1)2 + (ξ̃2)2)

{
− (λ+ 2µ−R33)(y

∗)(R13(y
∗)ξ∗1 +R23(y

∗)ξ̃2)
2

(µ−R33)2(y∗)((ξ̃1)2 + (ξ̃2)2)

− (λ+ 2µ−R33)
2(y∗)

(µ−R33)(y∗)

}
.
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where

Ω88 =

(
R12 +

R13R23

µ−R33

)
.

Now, from the expression of Σ1,1
µ (z5,ν) together with the first and second equa-

tions of the Lamé system, we have

Σ1,1
µ (z5,ν) = s

∫

R3

ϕỹ3,µ(y
∗) {|−(λ+ 2µ−R33)(y

∗)(αξ1 + α′ξ2) + Ω99×

(
√
rλ+2µ

+(y∗, s∗, ξ) −R13(y
∗)ξ1 −R23(y

∗)ξ2)
∣∣2
}
|ẑ4,ν |2 dξ′ + I2(z4,ν),

where

Ω99 =
(R13(y

∗)ξ1 +R23(y
∗)ξ2)

(µ−R33)(y∗)(ξ21 + ξ22)
(αξ1 + α′ξ2)

and I2(z4,ν) verifies estimate (63). Consequently, the real part of the principal

symbol of the operator which is now acting on z4,ν at point (y∗, ξ̃′) is

A1(ξ̃1, ξ̃2)

|(ξ̃1, ξ̃2)|
= ϕỹ3(y

∗)(|(λ+ 2µ−R33)(y
∗)|(ξ̃1, ξ̃2)|2 +

(R13(y
∗)ξ̃1 +R23(y

∗)ξ̃2))
2

(µ−R33)(y∗)
|2

+
(R13(y

∗)ξ̃1 +R23(y
∗)ξ̃2))

2

(µ−R33)2(y∗)|(ξ̃1, ξ̃2)|2
rλ+2µ(y

∗, 0,±Qµ(ξ̃1, ξ̃2), ξ̃1, ξ̃2)).

Let us show that Condition B implies

(67) A(±Qµ(ξ1, ξ2), ξ1, ξ2) + A1(ξ1, ξ2) > 0 ∀(ξ1, ξ2) 6= 0.

First we note that, according to our assumption, we have

(68) A(±Qµ(0, 1), 0, 1) + A1(1, 0) > 0.

Therefore since the function A+A1 is homogeneous and continuous on S2, in order
to prove (67) one need to show that equation

(69) A(±Qµ(ξ1, ξ2), ξ1, ξ2) + A1(ξ1, ξ2) = 0

does not have any solutions on S2. Let us fix the sign of ±Qµ(ξ1, ξ2) in such a way,
that ϕy0(y

∗)(±Qµ(ξ
∗
1 , ξ

∗
2)F(ξ∗1 , ξ

∗
2)) ≤ 0 and after that we move this term into the

right hand side of equation (69). In this new equation, we take the square of both
sides. As a result, we have

(70)
(A(0, ξ1, ξ2) + A1(ξ1, ξ2))

2

= (ϕy0(y
∗)(Qµ(ξ1, ξ2)F(ξ1, ξ2))

2.

In equation (70) we will move all terms from the right hand side into the left
hand side and, as a result, we have a polynomial of order four of ξ1 and ξ2. As a
result we obtain the polynomial P(ξ1, ξ2) introduced in (12). Since polynomial P1

does not have a real roots the equation P(ξ1, ξ2) does not have any solutions of the
form (ξ1, ξ2), ξ2 6= 0. On the other hand by (87) the point (0, 1) is not solution to
this equation also. The proof of (67) is finished.

By (67) there exists Ĉ > 0 such that

Σ1
µ(z5,ν) ≥ Ĉs(‖z4,ν‖2

H1,s(∂G) + ‖∂y3z4,ν‖2
L2(∂G)) − C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G))

−ǫ(δ)s(‖z‖2
H1,s(∂G) + ‖∂y3z‖2

L2(∂G))

This estimate and (55),(58),(60) imply

Σ1
µ(z5,ν) ≥ Ĉ1s(‖zν‖2

H1,s(∂G) + ‖∂y3zν‖2
L2(∂G)) − C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G))
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On the other hand this inequality and the estimate (41) applied to z5,ν imply

s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G))

This estimate and (41) implies (27).

2.2. Second Case: rµ(γ
∗) 6= 0, rλ+2µ(γ

∗) = 0.. In a way similar to above, one
can take δ and δ1 to be small enough so that

(71) |rµ(γ)| ≥ C > 0 ∀γ = (y, ζ) ∈ Bδ ×O(δ1).

In this situation, condition rλ+2µ(γ
∗) = 0 also provides the estimate (47).

We distinguish now three different situations depending on s∗ and ϕỹ3,µ(y
∗).

Case 2.2.1: s∗ = 0 and ϕỹ3,µ(y
∗) > (Im(rµ(γ

∗)/s))/(2
√

Re(rµ(γ∗)))
Under these hypotheses, we can take δ and δ1 small enough and suppose that

−Im Γ±
µ (y, ζ) ≥ Cs ∀γ = (y, ζ) ∈ Bδ ×O(δ1),

since ϕỹ3,µ > 0 (see the expression of Γ±
µ in (34)).

Consequently, we can apply proposition 1 in two different ways and deduce that

Pµ,s(y,D)z′ν = [(µE3 −R)GT ]G(Dy3 − Γ−
µ (y, s,D′))z′+ν + T+

µ,sw
′+
ν

= [(µE3 −R)GT ]G(Dy3 − Γ+
µ (y, s,D′))z′−ν + T−

µ,sw
′−
ν ,

with T±
µ,s ∈ L(H1,s(G),L2(G)). Here, we have set

w′±
ν = (Dy3 − Γ±

µ (y, s,D′))z′ν .

Next, we apply proposition 2 and we get the following estimates:

(72) s‖w′±
ν ‖2

L2(∂G) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)).

On the other hand, since

w′−
ν − w′+

ν = 2
√
rµ(y, s,D

′)z′ν on ∂G
and rµ(γ

∗) 6= 0, we can apply Gärding’s inequality and obtain from (72) that

s‖z′ν‖2
H1,s(∂G) ≤ C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G)).

Again, (72) indicates that the normal derivative of z′ν is also bounded:

(73) s(‖z′ν‖2
H1,s(∂G) + ‖∂y3z′ν‖2

L2(∂G)) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)).

Next, we can estimate ∂y1z4,ν and ∂y2z4,ν by means of (58). This, together with
(47), provides the estimate

(74)
s‖z4,ν‖2

H1,s(∂G) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

Finally, the third equation of the Lamé system (9) gives an estimate of the normal
derivative of z4,ν . Combining this and (74), (73) and (43), we deduce the desired
inequality (27).

Case 2.2.2: s∗ = 0 and ϕỹ3,µ(y
∗) ≤ (Im(rµ(γ

∗)/s))/(2
√

Re(rµ(γ∗)))

We first apply estimate (41) to z4,ν and we obtain

(75)
s‖z4,ν‖2

H1,s(G) + Σ1
λ+2µ(z4,ν) ≤ C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G))

+ε(δ)s(‖z4,ν‖2
H1,s(∂G) + ‖∂y3z4,ν‖2

L2(∂G)),



REMARKS ON CONTROLLABILITY OF THE ANYSOTROPIC LAMÉ SYSTEM 509

where Σ1
λ+2µ(z4,ν) has the form

(76) Σ1
λ+2µ(z4,ν) = Σ1,1

λ+2µ(z4,ν) + Σ1,2
λ+2µ(z4,ν) + Σ1,3

λ+2µ(z4,ν)

and Σ1,k
λ+2µ(z4,ν) (k = 1, 2, 3) can be obtained from the expressions of Σ1,k

µ given in

(44) by just changing µ by λ+ 2µ.

From the fact that rλ+2µ(γ
∗) = 0, one can obtain an estimate of Σ1,2

λ+2µ(z4,ν)
just in the same way as we did in the previous paragraph:

(77) |Σ1,2
λ+2µ(z4,ν)| ≤ ε(δ)s‖z4,ν‖2

H1,s(∂G).

On the other hand, let us recall the expression of Σ1,3
λ+2µ(z4,ν):

(78)

Σ1,3
λ+2µ(z4,ν)

= −2sRe
∫
∂G

((λ+ 2µ−R33)(y
∗)Dy3 −R13(y

∗)Dy1 −R23(y
∗)Dy2) z4,ν

×
(
ϕy0(y

∗)ρ(y∗)Dy0z4,ν −
(
λ+ 2µ−R11 −

R2
13

λ+ 2µ−R33

)
(y∗)ϕy1(y

∗)Dy1z4,ν

−
(
λ+ 2µ−R22 −

R2
23

λ+ 2µ−R33

)
(y∗)ϕy2(y

∗)Dy2z4,ν

+

(
R12 +

R13R23

λ+ 2µ−R33

)
(y∗)(ϕy2(y

∗)Dy1z4,ν + ϕy1(y
∗)Dy2z4,ν)

)
dy′.

The next step will be to get an expression of Σ1,3
λ+2µ(z4,ν) just in terms of tangential

derivatives of z4,ν .
First, from proposition 2 applied to z′ν , estimate (72) holds for w′+

ν = (Dy3 −
Γ+
µ (y, s,D′))z′ν , so we have

∂ỹ3,µz
′
ν = (

√
rµ

+(y, s,D′)/(µ−R33))z
′
ν + w′+

ν ,

with
s‖w′+

ν ‖2
L2(∂G) ≤ C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G)).

Now, combining this with the two first equations of the Lamé system (see (58)), we
have

(79)
(
√
rµ

+(y∗, s∗,D′) −R13(y
∗)Dy1 −R23(y

∗)Dy2)zk,ν

= (−1)k+1(λ+ 2µ−R33)(y
∗)Dy3−k

z4,ν +Gk

for k = 1, 2, with Gk satisfying estimate
(80)
s‖Gk‖2

L2(∂G) ≤ C(‖esϕf‖2
H1,s(G) +‖z‖2

H1,s(G))+ε(δ)s(‖zν‖2
H1,s(∂G) +‖∂y3zν‖2

L2(∂G)).

Let us see that

(81) |rµ(γ∗)| > (R13(y
∗)ξ∗1 +R23(y

∗)ξ∗2)2.

Looking at the expression of rµ and taking into account that rλ+2µ(γ
∗) = 0, we

deduce that rµ(γ
∗) is a positive real number, which coincides with

(82) (λ+ µ)(y∗)

(
(R13(y

∗)ξ∗1 +R23(y
∗)ξ∗2)2

(λ+ 2µ−R33)(y∗)
+ (µ−R33)(y

∗)((ξ∗1)2 + (ξ∗2)2)

)
.

Consequently,

rµ(γ
∗) − (R13ξ

∗
1 +R23ξ

∗
2)2

= (µ−R33)(y
∗)

(−(R13(y
∗)ξ∗1 +R23(y

∗)ξ∗2)2

(λ+ 2µ−R33)(y∗)
+ (λ+ µ)(y∗)((ξ∗1)2 + (ξ∗2)2)

)
,
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which is a positive number as long as condition (13) is satisfied, so (81) holds.
This yields that from (79) we can express z1,ν and z2,ν in terms of tangential

derivatives of z4,ν in the following way:
(83)

ẑk,ν = (−1)k+1 (λ+ 2µ−R33)(y
∗)ξ3−k√

rµ
+(y∗, s∗, ξ′) −R13(y∗)ξ1 −R23(y∗)ξ2

ẑ4,ν + T (ẑk,ν) + Ĝk+2,

k = 1, 2, with G3 and G4 satisfying estimate (80).
Now, we recall that from the last equation of the our Lamé we can deduce that

(84)
(λ+ 2µ−R33)(y

∗)∂ỹ3,λ+2µz4,ν
= R13(y

∗)∂y1z4,ν +R23(y
∗)∂y2z4,ν + (µ−R33)(y

∗)(∂y2z1,ν − ∂y1z2,ν) +G5.

with G5 satisfying estimate (80). Denote

q(ξ1, ξ2) = (R13(y
∗)ξ1 +R23(y

∗)ξ2

− (µ−R33)(λ+ 2µ−R33)(y
∗)(ξ21 + ξ22)

√
rµ

+(y∗, 0, ξ′) −R13(y∗)ξ1 −R23(y∗)ξ2
)

Plugging (83) into (78) and taking into account (84), we obtain

(85) Σ1,3
λ+2µ(z4,ν) = I3(zν) − Re

∫

R3

q(ξ1, ξ2)Imrλ+2µ(y
∗, s, ξ′)|ẑ4,ν |2 dξ′,

where I3(zν) is bounded by the expression in (63). In this situation, since rλ+2µ(γ
∗) =

0, we have

ξ∗0 = ±Qλ+2µ(ξ
∗
1 , ξ

∗
2)

= ±
(
(λ+ 2µ−R11)(y

∗)(ξ∗1)2 + (λ+ 2µ−R22)(y
∗)(ξ∗2)2 − 2R12(y

∗)ξ∗1ξ
∗
2

− (R13(y
∗)ξ∗1 +R23(y

∗)ξ∗2)2

(λ+ 2µ−R33)(y∗)

)1/2

.

Let us now compute the term Σ1,1
λ+2µ(z4,ν). We first recall that it is given by

Σ1,1
λ+2µ(z4,ν) = s

∫

∂G

(λ+ 2µ−R33)
2(y∗)ϕỹ3,λ+2µ(y

∗)

×(|∂ỹ3,λ+2µz4,ν |2 + s2ϕ2
ỹ3,λ+2µ|z4,ν |2) dy′,

so we can write it like follows:

Σ1,1
λ+2µ(z4,ν) = s

∫

∂G

(λ+ 2µ−R33)
2(y∗)ϕỹ3,λ+2µ(y

∗)|∂ỹ3,λ+2µz4,ν |2 dy′ + I4(zν),

where I4(zν) satisfies estimate (63).
Using the same argument as before (that is to say, using the third equation of

the Lamé system together with (83)), we obtain

Σ1,1
λ+2µ(z4,ν) = s

∫

R3

ϕỹ3,λ+2µ(y
∗)|q(ξ1, ξ2)|2|ẑ4,ν |2 dξ′ + I5(zν),

(recall that the principal symbol of the operator
√
rµ

+(y, s,D′) at point γ∗ is real),
where I5(zν) satisfies estimate (63).

Now let us show that Condition C implies that

(86) q(ξ∗1 , ξ
∗
2)2 − q(ξ∗1 , ξ

∗
2)(Imrλ+2µ/s)(y

∗, s, (ξ′)∗) > 0

Really this is equivalent to
(87)
q(ξ1, ξ2)

2 − q(ξ1, ξ2)(Imrλ+2µ/s)(y
∗, s,±Qλ+2µ(ξ1, ξ2), ξ1, ξ2) > 0 ∀|(ξ1, ξ2)| = 1.
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Using then (86) to apply Garding’s inequality and taking into account (76)-(77),
we obtain estimates of the tangential derivatives of z4,ν :

Σ1
λ+2µ(z4,ν) ≥ Cs‖z4,ν‖2

H1,s(G) − C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)).

Putting this together with (75) and using (54) and (72), we have
(88)

s
∑4
j=3(‖zj,ν‖2

H1,s(G) + ‖zj,ν‖2
H1,s(∂G)) + s‖∂y3z3,ν‖2

L2(∂G)

≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)) + ε(δ)s‖∂y3z4,ν‖2
L2(∂G).

We use now the representation formulas of ẑ1,ν and ẑ2,ν in terms of ẑ4,ν (see
(83)). Then, (88) also provides estimates for the tangential derivatives of z1,ν and
z2,ν :
(89)

s
∑4
j=1(‖zj,ν‖2

H1,s(G) + ‖zj,ν‖2
H1,s(∂G)) + s‖∂y3z3,ν‖2

L2(∂G)

≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)) + ε(δ)s‖∂y3z4,ν‖2
L2(∂G).

Finally, the two first equations of the Lamé system (see (58)) provides estimates
of the normal derivatives of z1,ν and z2,ν , while the third equation (see (84)) gives
the estimate for the normal derivative of z4,ν . Consequently, from (89) we deduce
the desired estimate (27) in this case.

Case 2.2.3: s∗ 6= 0
We first apply estimate (41) to z4,ν and get

(90)
s‖z4,ν‖2

H1,s(G) + Σ1
λ+2µ(z4,ν)

≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)) + ε(δ)s(‖z4,ν‖2
H1,s(∂G) + ‖∂y3z4,ν‖2

L2(∂G)),

with Σ1
λ+2µ(z4,ν) given by (76).

In order to estimate Σ1,2
λ+2µ(z4,ν), we use that rλ+2µ(γ

∗) = 0 and we obtain

|Σ1,2
λ+2µ(z4,ν)| ≤ ε(δ1)s‖z4,ν‖2

H1,s(∂G).

Also, from rλ+2µ(γ
∗) = 0 and (47), we obtain for small δ1 that

s

∣∣∣∣ρ(y
∗)ϕy0(y

∗)ξ0 −
(
λ+ 2µ−R11 −

R2
13

λ+ 2µ−R33

)
(y∗)ϕy1(y

∗)ξ1

−
(
λ+ 2µ−R22 −

R2
23

λ+ 2µ−R33

)
ϕy2(y

∗)ξ2

+

(
R12 +

R13R23

λ+ 2µ−R33

)
(y∗) (ϕy2(y

∗)ξ1 + ϕy1(y
∗)ξ2)

∣∣∣∣

≤ ε(δ1)(s
2 + ξ21 + ξ22) ∀ζ ∈ O(δ1),

which yields

|Σ1,3
λ+2µ(z4,ν)| ≤ ε(δ1)s(‖z4,ν‖2

H1,s(∂G) + ‖∂y3z4,ν‖2
L2(∂G)).

Consequently, we have

Σ1
λ+2µ(z4,ν) ≥ −ε(δ1)s(‖z4,ν‖2

H1,s(∂G) + ‖∂y3z4,ν‖2
L2(∂G))

+s(s2‖z4,ν‖2
L2(∂G) + ‖∂y3z4,ν‖2

L2(∂G)).

From the fact that s∗ 6= 0, we also deduce that

Σ1
λ+2µ(z4,ν) ≥ s(‖z4,ν‖2

H1,s(∂G) + ‖∂y3z4,ν‖2
L2(∂G)),
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which, together with (90), gives

(91)
s‖z4,ν‖2

H1,s(G) + s(‖z4,ν‖2
H1,s(∂G) + ‖∂y3z4,ν‖2

L2(∂G))

≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)).

In this situation, estimates (54) and (72) also hold and give

(92)
s(‖z3,ν‖2

H1,s(∂G) + ‖∂y3z3,ν‖2
L2(∂G)) ≤ C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

The next step will be to estimate the functions z1,ν and z2,ν . To this end, we
first observe that the case where

(93) (
√
rµ

+(γ) −R13(ξ
∗
1 + is∗ϕy1) −R23(ξ

∗
2 + is∗ϕy2)) 6= 0

directly gives good estimates; indeed, the two first equations in (9) can be rewritten
as

(
√
rµ

+(y, s,D′) −R13(Dy1 + isϕy1) −R23(Dy2 + isϕy2))z2,ν = F8

and

(
√
rµ

+(y, s,D′) −R13(Dy1 + isϕy1) −R23(Dy2 + isϕy2))z1,ν = F9

respectively, with F8 and F9 satisfying estimate (57). To prove this, it suffices to
take into account (91) and (72). Now, from (93), we can apply Gärding’s inequality
to the two previous equations and we find out estimates of the H1,s norm of z1,ν
and z2,ν on ∂G. Finally, (72) provides the estimate of the normal derivative too.

Outside this particular situation, we distinguish another two cases when (93)
does not hold:

• If (ξ∗1 + isϕy1(y
∗))2 + (ξ∗2 + isϕy2(y

∗))2 6= 0
Then, one can also represent (z1,ν , z2,ν) on ∂G as in (59) by means of a similar

argument but using (91) instead of (48). Consequently,

(94)
s

2∑

j=1

‖zj,ν‖2
H1,s(∂G) ≤ C(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G))

Finally, the estimate of ∂y3zj,ν (j = 1, 2) comes from (72). As a conclusion, we have

s

2∑

j=1

(‖zj,ν‖2
H1,s(∂G) + ‖∂y3zj,ν‖2

L2(∂G)) ≤ C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G))

+ε(δ)s(‖zν‖2
H1,s(∂G) + ‖∂y3zν‖2

L2(∂G)).

• If (ξ∗1 + is∗ϕy1(y
∗))2 + (ξ∗2 + is∗ϕy2(y

∗))2 = 0
Let us apply estimate (43) to z1,ν and z2,ν :

(95)
s‖zj,ν‖2

H1,s(G) + Σ1
µ(zj,ν) ≤ ε(δ)s(‖zj,ν‖2

H1,s(∂G) + ‖∂y3zj,ν‖2
L2(∂G))

+C(‖esϕf‖2
H1,s(G) + ‖z‖2

H1,s(G)) for j = 1, 2,

where Σ1
µ(zj,ν) are given just after (44).
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Let us estimate Σ1,2
µ (zj,ν). First, we rewrite it in the form

Σ1,2
µ (zj,ν) = s

∫

∂G

(µ−R33)(y
∗)ϕỹ3,λ+2µ(y

∗)
[
ρ(y∗)|∂y0zj,ν |2 − s2ρ(y∗)ϕ2

y0(y
∗)|zj,ν |2

−
(
λ+ 2µ−R11 −

R2
13

λ+ 2µ−R33

)
(y∗)(|∂y1zj,ν |2 − s2ϕ2

y1(y
∗)|zj,ν |2)

−
(
λ+ 2µ−R22 −

R2
23

λ+ 2µ−R33

)
(y∗)(|∂y2zj,ν |2 − s2ϕ2

y2(y
∗)|zj,ν |2)

+2

(
R12 +

R13R23

λ+ 2µ−R33

)
(y∗)(∂y1zj,ν ∂y2zj,ν − s2ϕy1(y

∗)ϕy2(y
∗))|zj,ν |2

]
dy′

+s

∫

∂G

(µ−R33)(y
∗)ϕỹ3

[
(λ+ µ)

(
|∂y1zj,ν |2 + |∂y2zj,ν |2 − s2ϕ2

y1(y
∗)|zj,ν |2

−s2ϕ2
y2(y

∗)|zj,ν |2
)
− (λ+ 2µ−R33)

−1
(y∗)

(
R2

13(y
∗)
(
|∂y1zj,ν |2

−s2ϕ2
y1(y

∗)|zj,ν |2
)

+R2
23(y

∗)
(
|∂y2zj,ν |2 − s2ϕ2

y2(y
∗)|zj,ν |2

)

+2R13(y
∗)R23(y

∗)
(
∂y1zj,ν∂y2zj,ν − s2ϕy1ϕy2 |zj,ν |2

))]
dy′

= J4(zj,ν) + J5(zj,ν).

From Re(rλ+2µ(γ
∗)) = 0, we deduce that

(96) |J4(zj,ν)| ≤ ε(δ1)s‖zj,ν‖2
H1,s(∂G).

Let us now estimate J5(zj,ν); we observe that

J5(zj,ν) = s

∫

R3

(µ−R33)(y
∗)ϕỹ3,λ+2µ(y

∗)
[
(λ+ µ)

(
ξ21 + ξ22 − s2ϕ2

y1(y
∗)

−s2ϕ2
y2(y

∗)
)
− (λ+ 2µ−R33)

−1
(y∗) Re (R13(y

∗)(ξ1 + isϕy1(y
∗))

+R23(y
∗)(ξ2 + isϕy2(y

∗)))
2
]
|ẑj,ν |2 dξ1 dξ2.

We first realize that, since rλ+2µ(γ
∗) = 0 and

(
√
rµ

+(γ∗) −R13(ξ
∗
1 + is∗ϕy1) −R23(ξ

∗
2 + is∗ϕy2)) = 0,

we have

Re (R13(y
∗)(ξ∗1 + isϕy1(y

∗)) +R23(y
∗)(ξ∗2 + isϕy2(y

∗)))
2

= (λ+ 2µ−R33)(y
∗)(λ+ µ) Re

(
(ξ∗1 + isϕy1(y

∗))2 + (ξ∗2 + isϕy2(y
∗))2

)
.

Then, it is readily seen that J5(zj,ν) can be bounded as in (96). Consequently,

(97) |J5(zj,ν)| ≤ ε(δ1)s‖zj,ν‖2
H1,s(∂G).

For Σ1,3
µ (zj,ν), we use the third equation of the Lamé system (9) (see (58)) in

combination with (91) and we apply Young’s inequality. We deduce that

|Σ1,3
µ (zj,ν)|
≤ ε(δ1)(‖zν‖2

H1,s(∂G) + ‖∂y3zν‖2
L2(∂G)) + C(δ1)(‖esϕf‖2

H1,s(G) + ‖z‖2
H1,s(G)),

where the constant C(δ1) may tend to infinity when δ1 tends to zero.
As a conclusion of this, (91), (95) and (97), we deduce the desired inequality

(27).
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2.3. Third Case: rµ(γ
∗) 6= 0 and rλ+2µ(γ

∗) 6= 0 or rµ(γ
∗) = rλ+2µ(γ

∗) = 0.
It is in this paragraph where we will use Calderon’s method. The ideas we develop
here are similar to those in [15].

Let us introduce the variables U = (Uj)
6
j=1, given by

(U1, U2, U3) = Λ(s,D′)(esϕu), (U4, U5, U6) = IDy3(e
sϕu),

where Λ is the pseudodifferential operator with symbol (1 + s2 + |ξ′|2). With these
notations, we can rewrite the Lamé system (9) as

(98)





Dy3U = K(y, s,D′)U + F in R3 × [0, 1/Z2],

(U1, U2, U3) = 0 on {y3 ≡ 0},
U = 0 on {y3 ≡ 1/Z2},

where F = (0, esϕf) and K(y, s,D′) is a pseudodifferential operator whose principal
symbol is

K1(γ) =

(
0 Λ1E3

A−1K11Λ
−1 A−1K12

)
− isϕy3E6.

Here, we have set

(99)

A = (λ+ µ)GGT + [((µE3 −R)GT )G]E3,

K11 = −(λ+ µ)θθT + [(ξ0 + isϕy0)
2 − ((µE3 −R)θT )θ]E3,

K12 = −(λ+ µ)(θGT +GθT ) − 2((µE3 −R)θT )GE3,

with θ = (ξ1 + isϕy1 , ξ2 + isϕy2 , 0)T . Recall that G was defined (also as a column
vector field) in (26).

In this context, one can check that the eigenvalues of the matrix K1 coincide
with Γ±

β (given in (34)).
Let us consider again several situations:

Case 2.3.1: rµ(γ
∗) = 0 = rλ+2µ(γ

∗)
Then, the expression of rβ indicates directly that Im(Γ±

β ((γ∗)) < 0 for β ∈
{µ, λ+2µ}; this comes from the fact that ϕỹ3,β > 0. Consequently, the eigenvalues
of the matrix K1 have negative imaginary parts and we can suppose that

Im(Γ±
β (γ)) < −C|ζ| ∀γ ∈ Bδ ×O(δ1).

Now, using standard arguments (see, for instance, Chapter 7 in [19]), we obtain
that

‖χνU‖2
H2,s(G) ≤ C(‖esϕf‖2

H1,s(G) + ‖esϕu‖2
H1,s(G)).

From this inequality, estimate (27) is readily deduced.

Case 2.3.2: rµ(γ
∗) 6= 0, rλ+2µ(γ

∗) 6= 0 and rµ(γ
∗) 6= rλ+2µ(γ

∗)
In this situation, the matrix K1 has four eigenvalues which are given by (34) and

the corresponding eigenvectors:

(100)
v±1 = ((θT + α±

λ+2µG
t)Λ−1

1 , α±
λ+2µ(θ

T + α±
λ+2µG

T )Λ−2
1 )T ,

v±2 = (v±21, α
±
µ v

±
21Λ

−1
1 )T , v±3 = (v±31, α

±
µ v

±
31Λ

−1
1 )T ,

with

v±21 = (ℓy2α
±
µ − θ2,−ℓy1α±

µ + θ1, 0)Λ−1
1

and

v±31 = (α±
µ (θ1 − ℓy1α

±
µ ), α±

µ (θ2 − ℓy2α
±
µ ),−

2∑

j=1

(θj − ℓyj
α±
µ )2)Λ−2

1 .
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Observe that {v±2 , v±3 } is a basis of the orthogonal space to the vector θ + α±
µG.

Let us take the symbol S(γ) in the form S = {v+
1 , v

+
2 , v

+
3 , v

−
1 , v

−
2 , v

−
3 } and let us

extend it as an homogeneous function of order 0 and of class C3 in the ζ variables.
Now, U is determined by (98). Let us introduce W = S−1(y, s,D′)U. Then,
system (98) takes the form

Dy3W = K̃(y, s,D′)W + T (y, s,D′)W + F̃,

where K̃ is a diagonal matrix and T ∈ L∞(0, 1;L(H1,s(R3));H1,s(R3)). A stan-
dard argument for pseudodifferential systems allows to estimate the last three com-
ponents of W as follows (see for instance [19]):

(101) s‖(W4,W5,W6)‖2
H1,s(∂G) ≤ C(‖esϕf‖2

H1,s(G) + ‖esϕu‖2
H2,s(G)).

Finally, the first three components can be bounded in terms of the last three by
means of the first-squared 3 × 3 matrix inside S, which is

Λ−1
1




θ1 − α+
λ+2µℓy1 −θ2 + ℓy2α

+
µ α+

µ (θ1 − ℓy1α
+
µ )Λ−1

1

θ2 − α+
λ+2µℓy2 θ1 − ℓy1α

+
µ α+

µ (θ2 − ℓy2α
+
µ )Λ−1

1

α+
λ+2µ 0 −∑2

j=1(θj − ℓyj
α+
µ )2Λ−1

1




This yields

s‖(W1,W2,W3)‖2
H1,s(∂G) ≤ C(‖esϕf‖2

H1,s(G) + ‖esϕu‖2
H2,s(G)),

which, in combination with (101) and (41), provides (27).

Case 2.3.3: rµ(γ
∗) = rλ+2µ(γ

∗) 6= 0
The argument needed to prove estimate (27) in this case coincides exactly with

the one developed in [15].

This ends the proof of Lemma 2.

3. Controllability of the Lamé system.

In this section we obtain some exact controllability results for the Lamé system
with controls locally distributed over the cylinder Qω = ω × (0, T ).

First, we need a Carleman estimate similar to (15) but with the right hand side
in the spaces L2(Q) and H−1(Q). In order to prove such an estimate, we need a
pseudoconvex function ψ which satisfies the additional condition:

(102) ∂x0
ψ(·, 0) > 0, ∂x0

ψ(·, T ) < 0 ∀x ∈ Ω.

We have the following result:

Theorem 2. Let f ∈ L2(Q) and assume that (2), (4), (6) and (102) hold true.

Suppose there exists a function ψ which satisfies condition A. Then, there exists

τ∗ > 0 such that, for any τ > τ∗, there exists s∗ > 0 such that

(103) ‖u‖H1,s(Q) ≤ C(‖esφf‖L2(Q) + ‖u‖H1,s(Qω)) ∀s > s∗

for some positive constant C independent of s and for any solution u ∈ H1(Q) of

(9).

Next, we consider a situation with the function f in the space H−1(Q).
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Theorem 3. Let f = f−1 +
∑3
k=0 ∂xk

fk, where f0, f1, f2, f3 ∈ L2(Q) and assume

that (2), (4), (6) and (102) hold true. Suppose there exists a function ψ which

satisfies condition A. Then, there exists τ∗ > 0 such that, for any τ > τ∗, there

exists s∗ > 0 such that

(104) ‖u‖L2(Q) ≤ C(‖esφf−1‖H−1(Q) +

3∑

k=0

‖fkesφ‖L2(Q) + ‖u‖L2(Qω)) ∀s > s∗

for some positive constant C independent of s and for any solution u ∈ L2(Q) of

(9).

The proofs of theorems 2 and 3 rely on theorem 1 and are similar to the proofs
of the similar results presented in [14]).

Next, we consider the controllability problem

(105)

{
P (x,D)u = f + χωv in Q, u = 0 on Σ,

u(·, 0) = u0, ∂x0
u(·, 0) = u1 in Ω.

Here f ,u0,u1 are given functions and v is a control. Recall that the operator P
was defined in (9). Suppose that two target functions u2 and u3 are given. We
have to find a control v such that

(106) u(·, T ) = u2, ∂x0
u(·, T ) = u3 in Ω.

Condition B. Suppose that there exists t∗ ∈ (0, T ) such that

min
x′∈Ω\ω

ψ(x′, t∗) > max{ max
x′∈Ω\ω

ψ(x′, 0), max
x′∈Ω\ω

ψ(x′, T )}.

Before presenting the main result of this section, let us remind a well known result
on the solvability of the Lamé system

(107)

{
P (x,D)p = q in Q, p = 0 on Σ,

p(·, 0) = p0, ∂x0
p(·, 0) = p1 in Ω.

We have the following:

Theorem 4. Assume that (2) and (6) hold. Then, if q ∈ L2(Q), p0 ∈ H1
0(Ω) and

p1 ∈ L2(Ω), problem (107) possesses exactly one solution p ∈ H1(Q).
Furthermore, if q ∈ H−1(Q), p0 ∈ L2(Ω) and p1 ∈ H−1(Ω) then there exists a

solution to problem (107) possesses exactly one solution p ∈ L2(Q).

Now, we state the main result of this section:

Theorem 5. Assume that (2), (4) and (6) hold. Suppose that there exists a function

ψ which satisfies condition A, condition B and (102). Then if f ∈ L2(Q), u0 ∈
H1

0(Ω) and u1 ∈ L2(Ω), there exists a solution (u,v) ∈ H1(Q) × L2(Qω) to the

controllability problem (105)–(106).
Furthermore, if f ∈ H−1(Q), u0 ∈ L2(Ω) and u1 ∈ H−1(Ω), there exists a

solution (u,v) ∈ L2(Q) × H−1(Qω) to (105)–(106).

Proof. Let ǫ be a sufficiently small positive number such that t∗ ∈ (ǫ, T − ǫ)
and set

M = min
x′∈Ω\ω

ψ(x′, t∗) > max{ max
x′∈Ω\ω

ψ(x′, ǫ), max
x′∈Ω\ω

ψ(x′, T − ǫ)}
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We introduce a cut-off function χ(x0) ∈ C∞
0 ([0, T ]) such that χ|[ǫ,T−ǫ] = 1. Let p

be a solution to the system

(108)

{
P (x,D)p ≡ ρ(x′)∂2

x0
p − L(x,D)p = q in Q,

p = 0 on Σ.

Then the function p̃ = χ(x0)p satisfies the equation

(109)

{
P (x,D)p̃(x) = χq − [χ, ∂2

x0
]p in Q,

p = 0 on Σ.

Note that [χ, ∂2
x0

] is a first order operator with coefficients having support in [0, ǫ]∪
[T − ǫ, T ] × Ω. Therefore, we have the following a priori estimates:

‖[χ, ∂2
x0

]pesφ‖L2(Q) ≤ eδM‖p‖H1(Q), ‖[χ, ∂2
x0

]pesφ‖H−1(Q) ≤ eδM‖p‖L2(Q).

Additionally, we apply Carleman estimate (15) to the equation (109) and we obtain
that

‖p̃‖Hk,s(Q) ≤ C(‖qesφ‖Hk−1(Q) + ‖p̃‖Hk,s(Qω) + esδM‖p‖H1−k(Q)).

Note that, for any sufficiently small ǫ > 0 there exists a δ1 > δ such that

esδ1M‖(p(·, t∗), ∂x0
p(·, t∗))‖Hk(Ω)×Hk−1(Ω)

≤ C(‖p̃‖Hk,s(Q) + ‖qesϕ‖Hk−1(Q) + ‖p̃‖Hk,s(Qω) + eδM‖p‖H1−k(Q)).

Since δ1 > δ, taking the parameter s sufficiently large in the previous inequality
thanks to the theorem 4, we arrive at the observability estimate

‖p‖Hk(Q) ≤ C(‖q‖Hk−1(Q) + ‖p‖Hk(Qω)).

This observability estimate can be readily converted into the controllability re-
sults stated in our theorem by the well known HUM method (see [24]).

This ends the proof of Theorem 5. �
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