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NEMATIC LIQUIDS IN WEAK CAPILLARY POISEUILLE FLOW:

STRUCTURE SCALING LAWS AND EFFECTIVE

CONDUCTIVITY IMPLICATIONS

HONG ZHOU AND M. GREGORY FOREST

Abstract. We study the scaling properties of heterogeneities in nematic (liq-

uid crystal) polymers that are generated by pressure-driven, capillary Poiseuille

flow. These studies complement our earlier drag-driven structure simulations

and analyses. We use the mesoscopic Doi-Marrucci-Greco model, which incor-

porates excluded-volume interactions of the rod-like particle ensemble, distor-

tional elasticity of the dispersion, and hydrodynamic feedback through orien-

tation dependent viscoelastic stresses. The geometry likewise introduces an-

choring conditions on the nano-rods which touch the solid boundaries. We

first derive flow-orientation steady-state structures for three different anchor-

ing conditions, by asymptotic analysis in the limit of weak pressure gradient.

These closed-form expressions yield scaling laws, which predict how lengthscales

of distortions in the flow and orientational distribution vary with strength of

the excluded volume potential, molecule geometry, and distortional elasticity

constants. Next, the asymptotic structures are verified by direct numerical

simulations, which provide a high level benchmark on the numerical code and

algorithm. Finally, we calculate the effective (thermal or electrical) conductiv-

ity tensor of the composite films, and determine scaling behavior of the effective

property enhancements generated by capillary Poiseuille flow.

Key Words. Liquid crystal (nematic) polymers, asymptotic expansions, par-

tial differential equations, capillary Poiseuille flow, conductivity

1. Introduction

The rheological behavior of Poiseuille flow of liquid crystal polymers is of interest
for technology applications in processing of high performance fibers and films. Rey
and co-workers have studied capillary Poiseuille flows using the Leslie-Ericksen
theory for discotic nematic liquid crystals ([4, 5, 6]). Denniston et al. have used
lattice Boltzmann simulations of Landau-deGennes orientation tensor models to
explore the behavior of liquid crystal polymers subject to Poiseuille flow ([9]). In
this work we study capillary Poiseuille flow using the Doi-Marrucci-Greco model,
which also employs an orientation (second-moment) tensor description of the rod
distribution.

We extend our early work ([3], [17]) in the following ways: 1) asymptotic results
for tilted anchoring condition are derived; 2) the rotary diffusivity is explicitly
coupled in the asymptotic results; 3) direct numerical simulations are carried out
to validate asymptotic results; and 4) effective conductivity properties of Poiseuille
flow-generated composite films are calculated.
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The paper is organized as follows. First, we describe the model of liquid crystal
polymer hydrodynamics proposed by Doi, Marrucci and Greco ([10, 25, 26, 27]).
Second, we present the structure scaling properties of the orientation tensor for
different anchoring conditions; this is achieved by asymptotic analysis that yields
exact orientation modes with spatial variations controlled by material and boundary
conditions in the limit of weak pressure gradient. We perform direct numerical
simulations to verify the asymptotic results, and then observe new properties as
the asymptotic conditions are violated. Finally, we calculate the effective (thermal
or electrical) conductivity tensor of the composite films, and determine scaling
behavior of the effective property enhancements generated by capillary Poiseuille
flow.

2. Model Formulation

We consider capillary Poiseuille flow of nematic liquid crystal polymers (LCPs).
Capillary Poiseuille flow is the flow between two non-slip boundaries at y = −h
and y = h driven by a pressure gradient in this context. The flow is described
by a velocity field v = (vx(y, t), 0, 0) with the centerline of the pipe located at
y = 0. Figure 1 depicts the cross-section of the Poiseuille flow on the (x, y) plane.
For simplicity here we suppress variations in the direction of flow (x) and primary
vorticity direction (z), and transport in the vertical (y) direction.

V=0 ,  Q=Q0

V=0 ,  Q=Q0

Directors

y

x

Figure 1. Plane Poiseuille flow geometry. Non-slip boundary con-
ditions for the velocity and boundary anchoring for the orientation
tensor given by the stable nematic rest state are prescribed, with
major director angle ψ0 = 0 shown here.

The dimensionless governing equations consist of the balance of linear momen-
tum, stress constitutive equation, continuity equation, and the equation for the
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orientation tensor ([17]):

dv
dt = ∇ · (−pI + τ), p = ǫ x,
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(1)

where v is the velocity field for the flowing LCP, p is the pressure, I is the unit tensor,
τ is the total stress, a is a dimensionless parameter depending on the molecular
aspect ratio r of spheroidal molecules

a =
r2 − 1

r2 + 1
,

Re is the solvent Reynolds number, Er is the Ericksen number which is a reciprocal
elasticity constant, µi (i = 1, 2, 3) are three nematic Reynolds numbers, α is a
normalized entropic parameter, D is the rate-of-strain tensor and Ω is the vorticity
tensor,

(2) D =
1

2
(∇v + ∇vT ), Ω =

1

2
(∇v −∇vT ).

Here the superscript T denotes the transpose of a second order tensor.

(3) F (Q) = (1 −N/3)Q −NQ2 +NQ : Q(Q + I/3),

(4) Λ =







1, with constant rotary diffusivity,

(1 − 3
2Q : Q)2, with orientation-dependent rotary diffusivity.

The no slip condition at the bounding surfaces is used for the scaled axial velocity
vx:

vx|y=±1 = 0.(5)

Homogeneous mesophase anchoring is assumed at the boundaries, which assumes
that the rod ensemble is in an equilibrium bulk phase. We work at a concentration
where the rest state is a stable ordered equilibrium, called the nematic phase:

Q|y=±1 = s0(nn − I

3 ),

s0 = 1
4 (1 + 3

√

1 − 8
3N ),

(6)

where s0 is the stable uniaxial order parameter specified by the nematic concen-
tration N > 8

3 , and n is the equilibrium uniaxial director. We will fix N > 3 so
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that the nematic phase is the unique stable equilibrium, limiting the chances of
potential hysteresis and bi-stability in flow-induced structures. We assume n lies
in the flow-flow gradient plane at some experimentally dictated anchoring angle ψ0

with respect to the flow direction,

n = (cosψ0, sinψ0, 0).(7)

ψ0 = 0, ψ0 = π
2 , and 0 < ψ0 <

π
2 correspond to tangential, homeotropic and tilted

anchoring, respectively.
We consider the in-plane mesophase orientation of LCPs with two directors of Q

confined to the plane (x, y), but still admitting biaxiality. This restriction is not eas-
ily lifted for the analysis to follow; numerically, there is not limitation. The point,
however, is to glean some prediction of the types of spatial structures that arise,
out of equilibrium phases, due to the combined influences of a pressure gradient
induced flow, and anchoring of the rod ensemble at the walls. We will find, consis-
tent with our earlier analyses, two types of structure modes: extended structures in
the orientational distribution which accompany the Poiseuille flow geometry; and,
boundary layers which arise due to wall confinement. Drilling somewhat deeper
in these analytical, though asymptotic, insights into structures, a more important
question is a prediction of the scaling laws of each type of structure mode. Namely,
it is impossible to explore this multi-parameter space even with large-scale com-
putations; guidance as to how the lengthscales of spatial heterogeneity vary with
parameters is of paramount value in guiding our subsequent numerical simulations.
Thus, we make no apologies either for the reduction in physical space dimensions
from three to one, or for the reduction in orientational degrees of freedom, namely
from a full probability distribution function with infinite degrees of freedom to a
second-moment tensor with generally five degrees of freedom, and now to a second-
moment whose peak axis of orientation must lie in the plane of the primary flow
and flow-gradient directions. These assumptions shall lead to explicit structure
modes and scaling laws, in flow and particle orientation, as well as an indication of
when these asymptotic approximations will break down. Those insights will then
indicate grid-scale resolution of algorithms across parameter space.

The in-plane orientational constraint implies that two components in the Carte-
sian representation of Q must vanish, Qxz = Qyz = 0. Alternatively, the orientation
tensor can be written in terms of directors and order parameters:

Q = s(y, t)(nn −
I

3
) + β(y, t)(n⊥n⊥ −

I

3
),(8)

with the directors n,n⊥ confined to the (x, y) plane and parametrized by the in-
plane Leslie angle ψ(y, t),

n = (cosψ, sinψ, 0),n⊥ = (− sinψ, cosψ, 0).(9)

The third director is rigidly constrained along the vorticity axis.
The explicit coordinate change between these Q representations is:

Qxx = s(cos2 ψ −
1

3
) + β(sin2 ψ −

1

3
) ,

Qxy = (s− β) sinψ cosψ ,

Qyy = s(sin2 ψ −
1

3
) + β(cos2 ψ −

1

3
) .

(10)
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With the biaxial representation (8) of Q, the tensor equation in (5) can be
written explicitly in terms of the two order parameters (s, β) and the Leslie angle
ψ:
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(11)

where

U(s) = s(1 − N
3 (1 − s)(2s+ 1)) ,

g(s, β) = 1 + 3sβ − β + 2s− 3s2 .
(12)

The momentum equation is reduced to a single equation for the axial velocity
component vx,

∂vx
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where

γ(s, β) = g(s, β) + g(β, s),

h(s, β) = (1 − β + 2s)(1 + β − s).
(14)

We seek steady solutions of the dimensionless governing equations (11-14) subject
to the boundary conditions

vx|y=±1 = 0, s|y=±1 = s0, β|y=±1 = 0, ψ|y=±1 = ψ0.(15)

We posit a formal asymptotic expansion in the small ǫ limit, consistent with the
above boundary conditions:

vx =

∞
∑

k=1

v(k)
x (y)ǫk, ψ =

∞
∑

k=0

ψ(k)(y)ǫk,

s =
∞
∑

k=0

s(k)(y)ǫk, β =
∞
∑

k=1

β(k)(y)ǫk.

(16)

Alternatively, the Cartesian representation of Q is expanded in the form:

Q =
∞
∑

k=0

Q(k)(y) ǫk ,(17)

with Q(0) a quiescent, homogeneous equilibrium given by (6). ψ(1), s(1), β(1) and
the components of Q(1) are explicitly related by :

ψ(1) =
2Q

(1)
xy cos 2ψ0 − (Q

(1)
xx −Q

(1)
yy ) sin 2ψ0

2 s
,

s(1) =
3

2
(Q(1)

xx +Q(1)
yy ) +

1

2
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xx −Q(1)
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xy sin 2ψ0,(18)
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3

2
(Q(1)

xx +Q(1)
yy ) −

1

2
(Q(1)

xx −Q(1)
yy ) cos 2ψ0 −Q(1)

xy sin 2ψ0.

We remark that anchoring conditions at the two boundaries are assumed iden-
tical. Different conditions at each boundary require a non-homogeneous steady
structure at leading order ([34]), which we will not pursue for this study.

3. Steady Asymptotic Structures

From either representation of Q, the above expansions are inserted into the full
system of flow-nematic equations, (1)-(4) or (11)-(12), equations for the O(ǫ) and
O(ǫ2) variables derived, and then systematically solved. We now state the results,
following the notation in expansion (16).

3.1. Velocity Structure. The axial velocity at O(ǫ), v
(1)
x , reproduces the simple

Poiseuille flow structure:

v(1)
x = Cv (1 − y2),(19)
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where

Cv =
3

6
Re + µ1(2 + s0) + 3µ3 + 3

2µ2s20 sin2(2ψ0) + (M1M2 +M3)α
,

M1 =
3Λ

2 + s0
(1 − λL cos 2ψ0),

M2 = 3s20 (1 − λL cos 2ψ0),

M3 = a2 sin2(2ψ0) Λ (2 + s0 − 3s20),

λL =
a(2 + s0)

3s0
.

(20)

3.2. Director Structure. The first consequence of these exact mesoscopic so-
lutions is quite striking: the director is seen to only participate in the long-range
extended structure and to not vary in the boundary layers. From equation (18), the
director angle ψ is explicitly given by

ψ = ψ0 + ǫCp y (1 − y2) +O(ǫ2), Cp = Cv M1Er.(21)

By inference, the confinement-induced boundary layer structures are therefore re-
sponsible only for focusing of the orientational distribution.

It is easy to show that M1M2 + M3 > 0. Then, in the denominator of Cv, all
terms are positive definite, so that Cv is positive definite. M1, however, is not:
it depends on whether the Leslie parameter λL is greater or less than one. As in
Couette (plate-driven) flow ([17]), this controls the direction of twist of the major
director from plate to plate, from formula (21).

3.3. Order Parameter Structure. We now extract degree and scales of molec-
ular elasticity induced by slow Poiseuille flow. The striking feature is extreme
sensitivity to anchoring angle. From the s, β formulas, (18), it follows that s(1) and
β(1) vanish if and only if ψ0 = 0, π

2 (mod π). These were the sole boundary condi-
tions considered in ([3]), so the tilted structures presented here will have different
features, again matching the similar phenomenon discovered in Couette flow ([17]).

• Tangential anchoring (ψ0 = 0)
Order parameter distortions enter at O(ǫ2) through two boundary layers and the

long-range permeation structure:

s = s0 + ǫ2 s(2) +O(ǫ3),

β = ǫ2 β(2) +O(ǫ3),

β(2) = C
(2)
1 cosh(Er1/2Gy) +A

(2)
2 y4 + C

(2)
2 y2 + E

(2)
2 ,

s(2) = 2C
(2)
3 cosh(Er1/2H y) + 2C

(2)
5 cosh(Er1/2Gy)

+C
(2)
7 y4 + C

(2)
9 y2 + C

(2)
11 ,

(22)
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where
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√
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Combined with the director results, (21), we conclude that tangential anchoring
leads to a director-dominated, non-uniform, long-range structure with Er−1 mean
scaling, the same behavior as in Couette flow. This implies that pressure-driven
and drag-driven flows, which are respectively parabolic and linear shear layers, do
not alter the molecular elasticity-dominated orientational gradients.

• Normal (homeotropic) anchoring (ψ0 = π/2)

The structure model (11)-(15) for in-plane Q tensors admits a symmetry: (a, ψ)
→ (−a, π

2 +ψ). This property implies the asymptotic solution with ψ0 = π/2 can be
obtained directly from (22). Thus normal and tangential anchoring structures are
quantitatively different, with changes in numerical pre-factors, yet have qualitatively
similar scaling laws. The figures will illustrate these features.

• Tilted anchoring (0 < ψ0 < π/2 or π/2 < ψ0 < π)
Any pre-tilt induces an order parameter response of the same amplitude, O(ǫ),

as the director distortion, yet localized in the two boundary layers:

s = s0 + ǫ s(1) +O(ǫ2),

β = ǫ β(1) +O(ǫ2),

(23)
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where

β(1) = 2A1 sinh(Er1/2Dy) +A2 y,

s(1) = 2C1 sinh(Er1/2Fy) − C2 y + 2C3 sinh(Er1/2Dy),

B = 9 + 6Ns0 − 3N + 6Ns20, D =

√

B

1 − s0
,

A2 =
6aCvΛ sin(2ψ0) (1 − s0)

B
, A1 = −
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B1 = 18Ns20 − 3N − 6Ns0 + 9, B2 = 6aCvΛ sin(2ψ0) (1 + 2s0 − 3s20),
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6Ns0(1 − s0)A2 +B2
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,
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√
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,
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(1 + s0 − 2s20 −B1Er)ErD2
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B3 − 2C3 sinh(Er1/2D)

2 sinh(Er1/2F )
.

This result for Poiseuille flow is qualitatively similar to Couette flow in the slow
flow limit ([3], [17]). It suggests a flow-nematic structure mechanism: molecular
elasticity is amplified in local boundary layers when the major director is pinned
at an angle tilted with respect to the flow-flow gradient axes. This result forebodes
a phenomenon that only occurs at much higher driving conditions or with much
”softer” elasticity constants, namely the appearance of defects in the orientational
distribution. These structures correspond to local regions of isotropy (randomness)
of the orientational distribution. In such regions, the local principal axes of orienta-
tion are not able to align with the primary flow axes, which causes sharp boundary
layers with even smaller lengthscales, on the order of Er−

1

2 according to the predic-
tions above. Since Er for nematic polymers are on the order of 106, this suggests a
very stringent grid-scale will be required to resolve these structures, and, an adap-
tive mesh refinement technique will be required since there is no a priori knowledge
of where these defects will arise. Finally, in nematic polymers as opposed to liquid
crystals, defects are transient as opposed to preserved, and attractors are dynamic
rather than predominantly steady; this means under-resolution in time integrators
or simply a focus on steady structures are essentially useless.

4. Effective Conductivity Tensors

We now take the results from above on pressure-driven processing flows, and
predict what kinds of conductivity features are associated with these orientational
distributions. This is part of an effort within our larger research group to link
processing of nematic polymer nano-composites (NPNCs) to effective properties.
In ([32]), we developed a connection between the probability distribution function
of nematic polymers and the effective conductivity tensor of low-volume-fraction
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nanocomposite materials based on homogenization theory. One simply needs to
posit the properties of the nano-rods and of the matrix, where each phase is assumed
to be an isotropic material. Extensions to anisotropic nano and matrix phases are
straightforward, but a detail that only clouds the essential predictions we wish to
convey here.

This approach considers spheroidal molecules (rods in this instance) with molec-
ular orientation m, aspect ratio r, isotropic conductivity σ2 and volume fraction
θ2 (assumed quite small, indeed in practical nano-composites on the order of 1%)
populated in a matrix of conductivity σ1 according to the orientation distribution
function f(m) of the ensemble. Conductivity obeys elliptic equations which are vir-
tually identical for thermal, electric, and dielectric properties. The volume fraction,
θ2, of the nematic polymer inclusions is proportional to the dimensionless strength,
N , of the Maier-Saupe excluded volume potential:

(24) θ2 =
Nπ

8r
,

where r = l/d is the aspect ratio of the molecular spheroids with length l and
diameter d. Then, the effective conductivity tensor in closed form is derived in the
low-volume-fraction limit (θ2 << 1) as:

(25)

σe = σ1I + σ1θ2(σ2 − σ1)

{

2

σ2 + σ1 − (σ2 − σ1)La
I

+
(σ2 − σ1)(1 − 3La)

[(σ2 + σ1) − (σ2 − σ1)La][σ1 + ((σ2 − σ1)La]
M(f)

}

+O(θ22),

where I is the 3 by 3 identity matrix, La is the spheroidal depolarization factor
depending on the nematogen aspect ratio r through the relation

(26) La =
1 − ǫ2

ǫ2

[

1

2ǫ
ln

(

1 + ǫ

1 − ǫ

)

− 1

]

, ǫ =
√

1 − r−2.

Here the orientation probability distribution function of the LCP inclusions, f , is
governed by the Smoluchowski equation of the Doi-Hess kinetic theory for quiescent
or flowing nematic polymers ([18]); M(f) is the second-moment of the orientation
probability density f . Recall that the orientation tensor Q of the previous devel-
opment is simply Q = M − 1

3I.
From equation (25) it is obvious that the effective conductivity shares the same

three principal axes with the second moment tensor M(f). We denote the three
principle values of conductivity (i.e. eigenvalues of σe) as σe

1 ≥ σe
2 ≥ σe

3, where
the largest principal value, σe

1, is the maximum effective conductivity. The relative
principal value enhancements are given by

(27) εi =
σe

i − σ1

σ1
, i = 1, 2, 3,

where ε1 ≥ ε2 ≥ ε3. The value ε1 − ε2 depicts property anisotropy with respect to
the two principal conductivity directions, whereas ε1 captures the maximum scalar
enhancement due to the nematic polymer inclusions. For example, ε1 = 1 implies
σe

1 = 2σ1 or 100% gain of the bulk composite conductivity.
Heterogeneous effective properties of sheared and extension-enhanced nematic

polymer nanocomposites have been studied in ([18, 33]). In the next section we
will study the anisotropy and effective properties enhanced by Poiseuille flows.
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5. Numerical Results

5.1. Numerical Methods. In order to numerically find the steady state solutions
of the boundary value problem (11-15), we use Newton’s method to iteratively ob-
tain the steady state solutions. Our codes cannot resolve parameter regimes where
Er is above a critical threshold value; this may be either due to singular structures
or due to structure transitions where steady structures give rise to transient at-
tractors. In the high Ericksen number limit, where the lengthscales of distortional
elasticity are predicted to scale like Er−1 and Er−1/2, adaptive gridding will be
required since one does not know a priori where these internal boundary layers will
form. Some of these numerical tools have been developed in our group, but none
have yet been applied to pressure-driven flows.

5.2. Numerical validation of the asymptotic results and vice versa. Fig-
ures 2-4 compare the exact asymptotic formulas for the director angle ψ, order
parameters s, β, and flow velocity vx, with direct numerical solutions of the steady,
boundary value problem. Figure 4 also gives shear stress and light scattering in-
tensity predictions, which provide a basis for experimental validation. For the
computations shown here, we fix a concentration in the nematic regime N = 6 and
the aspect ratio r = 3 (i.e., a = 0.8), consistent with our earlier studies ([14, 17]).

We begin with confirmation of the formulas for 0 < ǫ ≪ 1 and 0 < ǫ · Er ≪
1, Figure 2, where the asymptotic formulas are nearly identical to the numerical
solutions. For tangential and normal anchoring, we set ǫ = 0.1, Er = 1; for tilted
anchoring, ψ0 = π

6 , we have to lower ǫ = 0.05 with the same Er = 1 to maintain
agreement between the asymptotic formulas and the numerical solutions.

Next we illustrate breakdown of the asymptotic formulas with direct numerical
solutions when either of the two asymptotic conditions, ǫ ≪ 1 and ǫ · Er ≪ 1, are
gradually pushed out of the asymptotic regime. Our purpose here is to monitor
emergence of new, non-asymptotic structures, and to identify sources of additional
scaling behavior.

Figure 3 imposes tangential (Figure 3c and d) and normal anchoring (Figure 3e
and f) with ǫ = 0.3, Er = 10. For tilted anchoring, Figures 3a, 3b, a more stringent
ǫ · Er condition is needed for asymptotic agreement, with ǫ = 0.5, Er = 1. One
finds quantitative asymptotic accuracy.

In Figure 4a,b, we raise the pressure gradient to (ǫ = 0.5), with Er = 20 (for
which ǫ ·Er = 10), and present results only with normal anchoring. Note that the
velocity profile departs from being parabolic near the boundaries. The concavity
of the velocity profile changes from concave-up to concave-down and then concave-
up again. We further give predictions of shear-gap stresses (Figure 4c) and light
intensity patterns (Figure 4d) associated with these steady structures. Neither N1

nor N2 changes sign across the rectangular pipe. The light scattering intensity
across the pipe associated with the numerical solutions is given in Figure 4d. This
intensity pattern can be viewed as a combination of pure nematic patterns of the
Doi-Marrucci-Greco theory, ([15, 16]), where the flow coupling has led to selection
of order-parameter structures near the plates and director structures in the interior.

5.3. Effective conductivity properties. Our main focus in this subsection is
the determination of effective properties associated with capillary Poiseuille flow.
We consider typical model NPNCs with the nanorod aspect ratio r = 100 (and
one with r = 3 for comparison) and the conductivity contrast between the matrix
solvent and nanophase as σ1/σ2 = 10−5. This ratio is, in fact, quite modest;
some composites have contrasts of ten or greater orders of magnitude. Figure 5
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Figure 2. Comparison of the numerical solutions (circles or trian-
gles) of the steady boundary value problem and the exact asymp-
totic formulas (solid or dashed lines ). Top row: tilted anchoring
(ψ0 = π

6 ) with ǫ = 0.05 and Er = 1. Middle row: parallel an-
choring (ψ0 = 0) with ǫ = 0.1 and Er = 1. Bottom row: normal
anchoring (ψ0 = π

2 ) with ǫ = 0.1 and Er = 1. In all figures, circles
and solid lines use the left (vertcal) axis; diamonds and dashed
lines use the right axis.

shows the maximum scalar conductivity enhancement (εmax) across the gap for
three different anchoring conditions. The top row corresponds to the aspect ratio
r = 100 whereas for the bottom row r = 3. It is apparent that one can achieve
different effective conductivity enhancements across the gap by tuning anchoring
conditions. The nematogen aspect ratio effect is also significant from this figure.
The larger the aspect ratio, the more enhancement in effective conductivity.

It is also interesting to note that the shape of the solution for tangential anchoring
is sensitive to the value of aspect ratio. In Figure 6 we plot the maximum effective
conductivity enhancement and anisotropy versus Poiseuille flow rate (Figure 6a and
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Figure 3. Comparison of the numerical solutions (circles or trian-
gles) of the steady boundary value problem and the exact asymp-
totic formulas (solid or dashed lines). Top row: tilted anchoring
(ψ0 = π

6 ) with ǫ = 0.5 and Er = 1. Middle row: parallel anchor-
ing (ψ0 = 0) with ǫ = 0.3 and Er = 10. Bottom row: normal
anchoring (ψ0 = π

2 ) with ǫ = 0.3 and Er = 10.

c) and volume fraction (Figure 6b and d) for three different anchoring conditions.
The parameters used here are r = 100 and Er = 1. In Figure 6a and c, the volume
fraction is fixed to be θ2 = 0.0236 and we vary the Poiseuille flow rate. In this
case, tilted anchoring gives the largest conductivity enhancement and anisotropy.
In Figure 6b and d, the flow rate ǫ is fixed to be 0.1 and we vary the volume
fraction θ2. It turns out that the conductivity enhancement and anisotropy are
both increasing functions of θ2 and insensitive to anchoring conditions.

6. Conclusions

We have studied the structure scaling properties of nematic liquid crystal poly-
mers under pressure-driven Poiseuille flow both analytically and numerically. A
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Figure 4. Top row: Comparison of the numerical solutions (cir-
cles or diamonds) of the steady boundary value problem and the
exact asymptotic formulas (solid or dashed lines) for normal an-
choring (ψ0 = π/2) with ǫ = 0.5 and Er = 20. Bottom row:
Rheological structure profiles associated with the numerical re-
sults of the top row. Here we provide the first (N1 = τ11 − τ22)
and second (N2 = τ22 − τ33) normal stress differences, the shear
stress (τ12), and the light scattering intensity function ([28]),
I = I0 sin2(2πa1s), across the plate gap, where a1 is the ratio
of the sample thickness to the wavelength of incident light. The
normalized birefringence s measures the difference between orien-
tation along the flow direction and along the vorticity axis.

rich phenomenology is apparent because of the coupling between the rod ensemble
(through excluded volume and distortional elasticity) and the flow field. When the
normalized pressure gradient ǫ and the scaled Ericksen number ǫ·Er are both small,
the mesoscopic Doi-Marrucci-Greco model predicts: an Er−1/2 scaling associated
with boundary layer modes residing only in the order parameters; and, an Er−1
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Figure 5. Effective conductivity enhancements for 3 different an-
choring conditions. Top row: r = 100; Bottom row: r = 3. First
column: parallel anchoring; Second columm: normal anchoring;
Third column: titled anchoring (ψ0 = π

6 ). Here ǫ = 0.5, Er = 1.

mean scaling law across the rectangular pipe residing in the principal axes of ori-
entation. The self-consistent, leading order, flow velocity is a parabolic Poiseuille
flow, attenuated by an explicit prefactor which accounts for the stored energy in
the rod dispersion. Anchoring conditions play an important role in the amplitude
response of order parameters, which describe the relative focusing or defocusing of
the rod ensemble distribution function.

This paper presents a combined approach to understanding flow-induced behav-
ior of rod-like macromolecular dispersions, namely blending modeling, asymptotic
analysis, homogenization theory, numerical analysis, and scientific computation.
This is, however, just the beginning in an overall strategy to design nano-composite
materials from the bottom up. The ideal strategy consists of a control wrapper code,
where one is specifying performance features such as current distributions across



NEMATIC LIQUIDS IN WEAK CAPILLARY POISEUILLE FLOW 475

0 0.5 1 1.5 2
46.5

47

47.5

48

48.5

ε

ε m
a

x
(a)

tangential

normal

tilted

0 0.01 0.02 0.03 0.04
0

20

40

60

80

100

θ
2

ε m
a

x

(b)

tangential

normal

tilted

0 0.5 1 1.5 2
43

43.5

44

44.5

45

45.5

46

ε

ε 1
−

ε 2

(c)

normal

tangential

tilted

0 0.01 0.02 0.03 0.04
0

20

40

60

80

θ
2

ε 1
−

ε 2
(d)

tangential

normal

tilted

Figure 6. Effective conductivity enhancement and anisotropy
versus Poiseuille flow rate ǫ (a and c) or volume fraction θ2 (b
and d) for 3 different anchoring conditions.

a material during operating conditions. Using composition information, process-
ing controls, and effective property characterizations, the challenge is to be able
to modify composition and processing controls to achieve a specified performance
target. It is this challenge that we have only begun to put into a framework, and
where the guidance of modern applied mathematics can play a critical role. This
paper is dedicated to Max Gunzburger, whose work and consultation over the years
has inspired our group to envision such a control strategy in the first place, and
whose contributions will be a key to our anticipated success.
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