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Abstract. We study numerical approximations of a recently proposed phase

field model for the vesicle membrane deformations governed by the variation

of the elastic bending energy. Both the spatial discretization for the equilib-

rium problem with given volume and surface area constraints and the time

discretization of a dynamic problem via gradient flow are considered. Conver-

gence results of the numerical approximations are proved.
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1. Introduction

The elastic bending energy model for bilayer membranes, first developed by Can-
ham, Evans and Helfrich, has been widely used to study the mechanical properties
of vesicle membranes. The elastic bending energy is formulated in the form of a
surface integral on the membrane Γ [23, 26, 27]:

(1) E =
∫

Γ

{
a1 + a2(H − c0)2 + a3G

}
ds,

where a1 represents the surface tension, H = k1+k2
2 is the mean curvature of the

membrane surface, with k1 and k2 as the principle curvatures, and G = k1k2 is the
Gaussian curvature. a2 is the bending rigidity and a3 the stretching rigidity. c0 is
the spontaneous curvature that describes the asymmetry effect of the membrane or
its environment. The equilibrium membrane configurations are the minimizers of
the energy subject to given surface area and volume constraints to account for the
effects of density change and osmotic pressure[12].

In our recent works [12] and [10, 11, 13, 29], some phase field models have
been developed based on a general energetic variational framework using the above
bending elastic energy. In particular, for the simplified case of

(2) E =
∫

Γ

(H − c0)2 ds,

its corresponding form in the phase field model is given by

(3) E(φ) =
∫

Ω

1
2ε

(
ε∆φ+ (

1
ε
φ+ c0

√
2)(1− φ2)

)2
dx .
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The surface area and volume constraints can be specified as

(4) A(φ) =
∫

Ω

φdx = α ,

(5) B(φ) =
∫

Ω

[
ε

2
|∇φ|2 +

1
4ε

(φ2 − 1)2
]
dx = β .

Here, Ω is a fixed computational domain containing the membrane surface Γ which
is defined as the zero level set of the phase field function φ. The parameter ε is
a small regularization constant that determines the typical interfacial width of φ.
The spontaneous curvature c0 is extended the whole domain Ω. For simplicity,
we also define C =

√
2c0 and sometimes just call C the spontaneous curvature.

The equilibrium phase field model is then defined by minimizing E subject to the
constraints (4-5). The consistency of the phase field model to the original sharp-
interface bending elasticity model, as the interfacial width parameter ε → 0, has
been analyzed in [9]. It is actually insightful to choose a special phase field function
of the form φ(x) = tanh(d(x,Γ)√

2ε)
) where d(x,Γ) is the signed distance from a point x ∈

Ω to the surface Γ, the geometric meanings of E and (4-5) would then become clear.
In this paper, we also consider the dynamic problem governed by the constrained
gradient flow of the energy E(φ). We always assume either periodic boundary
conditions or variational boundary conditions as those naturally derived from the
variation of the energy E(φ).

In [12, 13], numerous discretization schemes have been developed for the phase
field model. They have been successfully implemented and used in the numerical
simulation the membrane deformation. Various equilibrium solutions branches and
energy diagrams have been obtained, including interesting new three dimensional
solutions. The purpose of this paper is to give some theoretical analysis to the
convergence of some of the numerical schemes used in earlier works. The theory
given here relies only on the minimal regularity assumptions of the exact solution
of the continuous models. Such convergence analysis not only provides firm math-
ematical foundation to the numerical methods, but also offers further theoretical
understanding of the phase field models, as well as their physical and analytical
properties. Over the years, there have been many works on the numerical analysis
of phase field type of models for various physical problems, starting from [4, 22]
to more recent works [21]. But to out knowledge, the work presented here repre-
sents the first collection of convergence results in the literature on the numerical
approximations to the phase field bending elasticity models.

The paper is organized as follows. We first describe the numerical schemes used
for the equilibrium phase field models. Some properties of the equilibrium prob-
lems and the convergence analysis of the numerical approximation are subsequently
provided. The dynamic problems governed by the gradient flow and its discrete in
time approximations are then presented, followed by a convergence analysis. Fi-
nally, we complement the analysis with some numerical experiments to conclude
our discussion.

2. Spatial discretization of the equilibrium problem

We begin with the spatial discretizations of the equilibrium problem. The numer-
ical schemes developed in [12] and subsequently in [10, 13] include standard finite
difference, finite element and Fourier spectral methods, which were shown to have
their own advantages and limitations in the practical implementation, depending on
the boundary conditions and the problems to be simulated. Here, we focus mainly
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on a finite element spatial discretization on regular triangular meshes. We note
that by using Voronoi triangulation meshes and mass lumping integrations, such
a finite element approximation can also be interpreted as a finite volume scheme
defined on the Voronoi-Delaunay pair [7, 16]. In the particular case of a uniform
Cartesian grid, they also reduce to standard finite difference approximations.

The computational domain Ω is assumed to be a convex polyhedron. A family
of regular Delaunay triangulations {Th} is defined on Ω, h corresponds to the mesh
parameter of Th given by h = maxK∈T h diam(K) where K denotes any tetrahedron
in Th. As usual, the regularity of the triangulation is defined by

Definition 2.1. Th is a family of regular triangulations of the domain Ω if there
exists a constant τ ≥ 1 such that

max
K∈T h

hK

ρK
≤ τ ∀h > 0

where hK := diam(K), ρ(K) := sup{diam(S)|S is a ball contained in K}.

We denote Sh the piecewise linear continuous functions defined on Th [6]. We
use < ·, · > to denote the standard L2 inner product on Ω and ‖·‖ the corresponding
norm.

In general, Sh does not belong to H2(Ω), and the phase field energy E is not
readily defined in this case. To resolve this problem, we may interpret the ∆
operator on Sh in the weak sense, or, in the finite element jargon, we may employ a
mixed weak formulation [3, 24] by introducing a new variable in the finite element
space to represent the Laplacian of φ:

Definition 2.2. Given φh ∈ Sh, we define ∆hφ
h as an element in Sh such that

< ∇φh,∇wh >= − < ∆hφ
h, wh >, ∀ wh ∈ Sh .

It is known that, if the mass lumping integration is applied to the right hand side
of the above equation, such a definition coincides with the standard discretization
of the Laplace operator using a co-volume technique (finite volume on the Voronoi-
Delaunay pair) [16, 25]. From this definition, we can define the energy E for φh

by

(6) Eh(φh) =
1
2ε
‖
(
ε∆hφ

h + (
1
ε
φh + c0

√
2)(1− (φh)2)‖2 .

The constraints are given as

(7) < φh, 1 >= α

and

(8)
ε

2
‖∇φh‖2 +

1
4ε
‖φh2 − 1‖2 = β .

The discrete approximation is then defined as minimizing Eh(φh) for all φh ∈ Sh

subject to the constraints (7)-(8).

3. Analysis and approximation of the equilibrium model

We now give some analytical results concerning the minimization of E and Eh.
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3.1. Existence of energy minimizers. First, we state a proposition on the
existence of minimizer for the energy E which largely follows from the analysis
in [9].

Proposition 3.1. Let S denote the feasible set of φ ∈ H2(Ω) such that A(φ) = α
and B(φ) = β, if for some suitable α and β, S is non-empty, then there is a φ∗ ∈ S
minimizing E(φ).

Proof. The energy functional is always non-negative and thus is bounded from
below, and there is a minimizing sequence {φn ∈ S}∞n=1, such that

lim
n→∞

E(φn) = C∗,

where C∗ is the infimum of E . By the constraints, we know φn is uniformly bounded
in H1(Ω). Let p(φ) = 1

ε2 (φ2 − 1)(φ + Cε), then ‖p(φn)‖L2 is uniformly bounded.
Coupling with the uniform bound E(φn), we have ∆φn is bounded uniformly in
L2(Ω). Invoking the H2-regularity theory for elliptic problems, we have φn uni-
formly bounded in H2. Thus, there exists a subsequence of {φn}, denoted as {φn}
again, weakly converging in H2 to some φ∗ in H2(Ω). Using the compact imbedding
and the lower-semicontinuity of norms, we easily get

E(φ∗) ≤ lim inf E(φn) = C∗,

together with

A(φ∗) = lim
n→∞

A(φn) = α and B(φ∗) = lim
n→∞

B(φn) = β .

Thus φ∗ ∈ S is a minimizer of E, satisfying the constraints. �

Let us make some clarification on the conditions on the parameters α and β for
the nonemptyness of the feasible S. Since (|Ω| + α)/2 describes the volume and
3
√

2β/4 describes the surface area [12] , similar to the constructive proof in the
Appendix of [9], we have the following lemma,

Lemma 3.1. If |Ω|+α
2 > 4π

3 ( 3
√

2β
16π )

3
2 , there exist δ > 0, M > 0 such that for all

0 < ε < δ, there exists φ with E(φ) < M , A(φ) = α, B(φ) = β.

Note that when the spontaneous curvature term is absent, a constructive proof of
the above lemma has been given in [9] which remains valid in the case corresponding
to a bounded spontaneous curvature, we omit the details. This lemma gives a
sufficient condition for assuring the feasible set S being not empty. Consequently,
we have,

Corollary 3.1. Under the condition

(9)
|Ω|+ α

2
>

4π
3

(
3
√

2β
16π

)
3
2

there exist δ > 0, such that for all 0 < ε < δ, there is a φ∗ ∈ H2(Ω) minimizing
E(φ) while A(φ∗) = α and B(φ∗) = β.

The above condition on α and β is always assumed in our discussions.

3.2. A penalty formulation. Computationally, it is convenient to use a penalty
formulation for the two constraints (4) and (5). We can use two penalty constants
M1 > 0, M2 > 0 to get a modified Elastic bending energy

(10) EM (φ) = E(φ) +
M1

2
(
A(φ)− α

)2 +
M2

2
(
B(φ)− β

)2
.
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For simplification of notation, let us takeM1 = M2 = M , we then have the following
existence theorem

Theorem 3.1. For any given M > 0, there exists φM ∈ H2(Ω) such that

EM (φM ) = inf
φ∈H2(Ω)

EM (φ).

The proof is essentially the same as that for the proposition 3.1 and we omit the
details. To be more relevant to the numerical approximation, we now prove the
following

Theorem 3.2. With S non-empty, the minimum φ∗ of E(φ) in S can be approx-
imated by the minimum φM of EM (φ), that is, there exists a sequence φMn , which
are minimizers of EMn(φ), converging to some minimum φ∗ of E(φ) in H2(Ω) and
satisfying

E(φ∗) = lim
Mn→∞

EMn
(φMn

) .

Proof. Obviously, for any M > 0,

EM (φM ) = min EM (φ) ≤ EM (φ∗) = E(φ∗) .

Thus, A(φM ), B(φM ) and E(φM ) are uniformly bounded for large M . Similar to
the proof of proposition 3.1, there exists a subsequence of φMn

, such that

φMn ⇀ φ̂ in H2(Ω) and strongly in H1(Ω)

such that
α = lim

n→∞
A(φMn

) = A(φ̂),

β = lim
n→∞

B(φMn
) = B(φ̂),

thus φ̂ ∈ S. Moreover, by the convergence and semi-lower continuity, we have

E(φ̂) ≤ lim
n→∞

E(φMn
) ≤ lim

n→∞
EMn

(φMn
) ≤ E(φ∗) = min

φ∈S
E(φ) .

So φ̂ reaches the minimum of E(φ) with volume and surface area constraints. More-
over, the above inequality becomes equality which implies the strong convergence
of φMn

to φ̂. �

3.3. Convergence of the numerical Approximation. We now first prove the
convergence of the numerical approximations of minimizer of EM for any M > 0.

We consider the following functional

(11) EM,h(φh) = Eh(φh) +
M

2
(
A(φh)− α

)2
+
M

2
(
B(φh)− β

)2
.

Let us consider φh
M ∈ Sh which gives that EM,h(φh

M ) = infφh∈Sh
EM,h(φh). For

given h, the existence of the minimizer is easy to get as Sh is a finite dimensional
space. First, we show that

Lemma 3.2. Let φ be a minimizer of EM in H2(Ω), and let p = ∆φ, there exists
a sequence φh ∈ Sh such that as h→ 0, φh converges to φ in H1, ∆hφ

h converges
to p in L2, and moreover Eh(φh) converges to E(φ).

Proof. Let us take φδ to be a mollified version of φ, such that φδ is smooth and φδ

converges to φ in H2 as δ → 0. For φδ, we define φh
δ to be the solution of

< ∇φh
δ ,∇wh >=< ∇φδ,∇wh > , ∀wh ∈ Sh

with the constraint
< φh

δ , 1 >=< φδ, 1 > .
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We then have that φh
δ converges to φδ in H1 as h→ 0.

Moreover, by the definition of the ∆h, we have

< ∆hφ
h
δ , w

h >=< ∆φδ, w
h > , ∀wh ∈ Sh .

That is, ph = ∆hφ
h
δ is the L2 projection of ∆φδ in Sh. By the smoothness of

∆φδ, we have ph converges to ∆φδ in L2 as h → 0. Thus, by a diagonal selection
principle, with δ → 0 and h → 0, we can find a sequence of h → 0 such that the
corresponding φh satisfies the above lemma. �

Note that from the proof, we can see that for any sequence hn → 0 as n → ∞,
there exists a subsequence satisfying the above lemma. We next state a convergence
results.

Theorem 3.3. Given M > 0, there exists a sequence φh, the minimizers of
EM,h(φh) in Sh such that φh converges in H1 to a minimizer of EM in H2.

Proof. Let φ∗ be a minimizer of EM in H2(Ω), and let p∗ = ∆φ∗. By lemma 3.2, we
can find a sequence of approximation ψh ∈ Sh with h→ 0, such that ψh converges
to φ∗ in H1 and moreover, ∆hψ

h converges to p∗ in L2. Thus, we have EM,h(ψh)
bounded uniformly by EM (φ∗)+σ as h→ 0. Here, the constant σ > 0 can be made
arbitrarily small as h→ 0. For the corresponding minimum φh ∈ Sh with

EM,h(φh) = inf
wh∈Sh

EM,h(wh) ,

it follows that EM,h(φh) is uniformly bounded above by EM (φ) + σ as h → 0. It
follows that we have φh bounded uniformly in H1 and ∆hφ

h bounded uniformly
in L2. By compact imbedding of Sobolev spaces, we have a subsequence (denoted
still by {φh}), satisfying

φh⇀φ̂ in H1 ,

φh → φ̂ in Lp (p < 6) ,
∆hφ

h⇀p̂ in L2 .

From the boundary condition, it is easy to deduce that < p̂, 1 >= 0, thus, we can
find φ̃ ∈ H2 such that

< ∇φ̃,∇v >= − < p̂, v > , ∀ v ∈ H1(Ω) ,

and < φ̃, 1 >=< φ̂, 1 >.
So for any v ∈ Sh ⊂ H1

lim
h→0

< ∇(φ̃− φh),∇v >= lim
h→0

{− < ∆hφ
h, v > − < ∇φh,∇v >} = 0 .

But, φ̃−φh is uniformly bounded in H1, using the density of Sh in H1(Ω) as h→ 0,
we get

< ∇(φ̃− φ̂),∇v >= lim
h→0

< ∇(φ̃− φh),∇v >= 0 , ∀v ∈ H1(Ω) .

This together with < φ̃, 1 >=< φ̂, 1 > implies that φ̂ = φ̃ ∈ H2(Ω).
Moreover, p̂ = ∆φ̂. Then using the lower semi-continuity of norms and the

strong convergence, we get

EM (φ̂) ≤ lim inf
h→0

EM,h(φh) ≤ EM (φ∗) + σ

for any σ > 0. As σ is arbitrary, we have

EM (φ̂) = EM (φ∗) = inf
φ∈H2(Ω)

EM (φ).
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That is, φ̂ is a minimizer of EM and we also have the convergence of the φh and
∆hφ

h to φ̂ and ∆φ̂ respectively, as well as the convergence of the energy EM,h(φh)
to EM (φ̂). �

The above proof in fact implies that in the above theorem as h → 0, every
convergent subsequence {φh} has its weak limit being a minimizer of EM , moreover,
such a sequence satisfies strong convergence properties, as stated in the following
corollary.

Corollary 3.2. With respect to the weak H1 topology, let φ̂ be in the limit set of
{φh}, the minimizers of EM in Sh, then φ̂ ∈ H2(Ω) is a minimizer of EM and

φh → φ̂ in H1 , and ∆hφ
h → ∆φ̂ in L2 .

In addition, by triangle inequality, we can now conclude:

Theorem 3.4. There exists a sequence φn, the minimizers of EMn,hn
in Sh, such

that as n → ∞, hn → 0 and Mn → ∞, and φn converges strongly in H1 to φ, a
minimizer of E in H2. Moreover, ∆hn

φn converges to ∆φ in L2.

Proof. The result follows from theorems 3.2 and 3.3 and corollary 3.2. �

In addition to the above convergence result under minimal regularity assumption
on the exact solution, it is also possible to derive an error estimate for the finite
element approximations to those exact solutions having higher regularity, we refer
to [18] for further discussions.

4. Gradient flow

Gradient flow may be used as an approach to compute the minimizers of the
energies [1]. Meanwhile, they also illustrate interesting dynamic transformations
of the cell membranes. For brevity, we focus on the Allen-Cahn type dynamics,
corresponding to the standard L2 gradient flow. Another popular dynamics to be
studied elsewhere is the Cahn-Hilliard type conservative dynamics corresponding
to the H−1 gradient flow.

As in [13], let us denote

(12)


f(φ) = ε∆φ− 1

ε
(φ2 − 1)φ ,

fc(φ) = ε∆φ− 1
ε
(φ2 − 1)(φ+ Cε) ,

g(φ) = ∆fc(φ)− 1
ε2

(3φ2 + 2Cεφ− 1)fc(φ) .

To preserve the surface area and volume constraints in time, we may consider the
constrained gradient flow for the energy E that incorporates Lagrange multipliers
or again employ a penalty formulation.

The gradient flow with Lagrange multipliers λ1 and λ2 is given as

(13) φt = −γg(φ) + λ1 + λ2f(φ)

where the constant γ > 0 is a time relaxation parameter, λ1, λ2 are Lagrange multi-
pliers which are time dependent constants, they are determined through additional
equations to enforce the constraints [13]. On the other hand, the gradient flow with
the penalty constants M1 = M2 = M is given by

(14) φt = −γ δEM (φ)
δφ

= −γ
(
g(φ) +M(A− α) +M(B − β)f(φ)

)
.
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Here, either periodic boundary conditions or variational boundary conditions as
those naturally derived from the variation of the energy E are assumed. We specify
the initial condition as φ(x, 0) = φ0(x) for any x ∈ Ω.

Similar to the discussion in [11], both gradient flows have their respective energy
laws:

Lemma 4.1. The solution of (13) satisfies

(15)
d

dt
E(φ) + γ‖φt‖2 = 0 ,

while the solution of (14) satisfies

(16)
d

dt
EM (φ) + γ‖φt‖2 = 0 .

Let us define the function space V by

V = H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) .

With the energy laws, it is easy to show the well-posedness of the gradient flow
equations:

Theorem 4.1. For any T > 0 and φ0 ∈ H2(Ω), each of the equations (13) and
(14) has a unique weak solution in V satisfying the respective energy laws (15) or
(16).

The proof can be constructed via a standard Galerkin argument. With both
estimates on the time and spatial derivatives given by the energy laws, one can
apply standard compactness results to get the local existence and then apply uni-
form bounds to extend the solution globally. The uniqueness is also easy to obtain.
In later discussion, we provide another proof of the well posedness via a time dis-
cretization.

4.1. Semi-discrete implicit scheme. In [13], we derived the following fully im-
plicit scheme that preserves a discrete energy law and thus ensures the monotone
decreasing of the energy while preserving the constraints. First, without any con-
fusion, we redefine (or extend) the functions f and g as

f(φ, η) =
ε

2
∆(φ+ η)− 1

4ε
[(φ)2 + (η)2 − 2](φ+ η) ,

and

g(φ, η) =
1
2
∆[fc(φ) + fc(η)]

− 1
2ε2

[
(φ)2 + φη + (η)2 − 1 + Cε(φ+ η)

]
(fc(φ) + fc(η))

where fc is still as defined in (12). Note that the two redefined functions f and
g are symmetric with respect to the two arguments and we have the consistency
with the original functions defined in (12) when the two arguments coincide. Such
generalized definitions of nonlinear terms have been used in, for example [15], to
derive discrete energy laws. They are convenient to use in our discussion here as
well.
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With f and g specified as in the above, and k being the time step size, an implicit
numerical scheme may be introduced as follows:

(17)



φn+1 − φn

k
+ γg(φn+1, φn)− λ

(n+1)
1 − λ

(n+1)
2 f(φn+1, φn) = 0,

λ
(n+1)
1 |Ω|+ λ

(n+1)
2

∫
Ω

f(φn+1, φn) dx− γ

∫
Ω

g(φn+1, φn) dx = 0,

λ
(n+1)
1

∫
Ω

f(φn+1, φn) dx+ λ
(n+1)
2

∫
Ω

f(φn+1, φn)2 dx

−γ
∫
Ω
f(φn+1, φn)g(φn+1, φn) dx = 0 .

Based on the first two equations of the above system, we can easily show

A(φn+1)−A(φn) =
∫

Ω

φn+1 dx−
∫

Ω

φn dx

= −k
∫

Ω

[γg(φn+1, φn)− λ
(n+1)
1 − λ

(n+1)
2 f(φn+1, φn)] dx = 0 .

By the first and the third equations, we have

B(φn+1)−B(φn) =
∫

Ω

(φn+1 − φn)f(φn+1, φn) dx

= −k
∫

Ω

[
γg(φn+1, φn)− λ

(n+1)
1 − λ

(n+1)
2 f(φn+1, φn)

]
f(φn+1, φn) dx = 0 .

Furthermore, we also obtain

Lemma 4.2. The solution of (17) satisfies

E(φn+1)− E(φn) =
∫

Ω

(φn+1 − φn)g(φn+1, φn) dx

= −k
∫

Ω

g(φn+1, φn)
[
γg(φn+1, φn)− λ

(n+1)
1 − λ

(n+1)
2 f(φn+1, φn)

]
dx

= −k
γ

∫
Ω

[
γg(φn+1, φn)− λ

(n+1)
1 − λ

(n+1)
2 f(φn+1, φn)

]2
dx

= − 1
γk

∫
Ω

(φn+1 − φn)2 dx .

The equation in the above lemma is the discrete analog of the energy law. Note
that at each time step, predictor-corrector type schemes can be used to iteratively
solve the system (17) for φn+1, λ(n+1)

1 and λ(n+1)
2 .

For the penalty formulation, we have a similar but simpler fully implicit scheme
given as follows:

φn+1 − φn

k
= −γ

{
g(φn+1, φn) +

M

2
(A(φn+1) +A(φn)− 2α)

+
M

2
(B(φn+1) +B(φn)− 2β)f(φn+1, φn)

}
.(18)

For the solution of (18), we have

E(φn+1)− E(φn) =
∫

Ω

(φn+1 − φn)g(φn+1, φn) dx(19)

and
M

2
(A(φn+1)− α)2 − M

2
(A(φn)− α)2

=
M

2
(
A(φn+1) +A(φn)− 2α

)(
A(φn+1)−A(φn)

)
=
M

2
(
A(φn+1) +A(φn)− 2α

) ∫
Ω

(φn+1 − φn) dx .(20)
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Also, since

B(φn+1)−B(φn) =
∫

Ω

(φn+1 − φn)f(φn+1, φn) dx ,

we have

M

2
(B(φn+1)− β)2 − M

2
(B(φn)− β)2

=
M

2
(
B(φn+1) +B(φn)− 2β

)(
B(φn+1)−B(φn)

)
=
M

2
(
B(φn+1) +B(φn)− 2β

) ∫
Ω

(φn+1 − φn)f(φn+1, φn) dx .(21)

Putting together (19), (20) and (21), we have the discrete energy law for the
numerical solution corresponding to the penalty formulation:

Lemma 4.3. The solution of (18) satisfies

(22) EM (φn+1)− EM (φn) +
1
γk

∫
Ω

(φn+1 − φn)2 dx = 0 .

Notice that, to discretize the penalty formulation of the gradient flow in time,
we may also adopt a full backward Euler scheme:

(23)
φn+1 − φn

k
= −γ

(
g(φn+1) +M(A(φn+1)− α) +M(B(φn+1)− β)f(φn+1)

)
.

In this case, the discrete energy law no longer holds strictly, instead, we have

Proposition 4.1. For all k > 0 and a given φn ∈ H2(Ω), there exists a solution
φn+1 satisfying the backward Euler scheme (23). Moreover, φn+1 may be given by
the minimizer in H2(Ω) of the modified energy functional

EM (φ) +
1

2γk

∫
Ω

(φ− φn)2 dx .

Furthermore,

(24) EM (φn+1)− EM (φn) +
1

2γk

∫
Ω

(φn+1 − φn)2 dx ≤ 0 .

Proof. The proof of the existence of above modified energy minimizer is the almost
the same as the proof of Theorem 3.1, we omit the details. It is also easy to verify
that the Euler-Lagrange equation of the functional

EM (φ) +
1

2γk

∫
Ω

(φ− φn)2 dx

is equivalent to (23), thus, we have the existence of solution to (23). Moreover,
since φn is a feasible function for the above energy minimization, we have

EM (φn+1) +
1

2γk

∫
Ω

(φn+1 − φn)2 dx ≤ EM (φn) .

The results of the proposition are all proved. �
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4.2. Analysis of the semi-discrete approximation. In this section, we prove
the numerical approximation for the gradient flows. We focus on the scheme (18).
The conclusions for the Lagrange multiplier formulation and the backward Euler
schemes are similar.

First, we have

Proposition 4.2. Given φ0 ∈ H2(Ω), for small enough k > 0, there exists a unique
φn+1 ∈ H2(Ω) satisfying the fully implicit scheme (18) for a given φn ∈ H2(Ω).

Proof. For convenience, let

(25) p(x) =
1
ε
(x2 − 1)(x+ Cε), q(x) = p′(x), r(x) = p′′(x) .

Given ζ = φn, we define a nonlinear map P from H2(Ω) to itself by ρ = Pω with
ρ satisfying:

(26)
ρ− ζ

γk
= −1

2
∆[ε∆(ρ) + fc(ζ)]− ϕ(ω)

where

ϕ(ω) = −1
2
q(ω)∆ω − 1

2
r(ω)|∇ω|2

− 1
2ε2

[
ω2 + ωζ + (ζ)2 + Cε(ζ + ω)− 1

]
(fc(ζ) + fc(ω))

+
M

2
(A(ω) +A(ζ)− 2α) +

M

2
(B(ω) +B(ζ)− 2β)f(ω, ζ) .(27)

The map P is obviously well-defined for any ζ, ω ∈ H2(Ω). Moreover, direct calcu-
lation shows that a solution to (18) is the same as a fixed point of P .

For given parameters α, β, γ, ε, M and ζ ∈ H2(Ω), we define a set

U = {u ∈ H2(Ω) | ‖u‖H2 ≤ C}

for some suitably chosen constant C > 0 to be specified later. We now show that
for k small, P is a contraction from U into itself, thus it has a unique fixed point.

First, by the continuous embedding of H2(Ω) into C(Ω), we easily get ϕ(ω) is a
continuous map from H2(Ω) to L2(Ω) and the it is uniformly continuous for ω ∈ U ,
that is, we have for any ω, ω̂ ∈ U ,

‖ϕ(ω)‖L2 ≤ c1 , ‖ϕ(ω)− ϕ(ω̂)‖L2 ≤ c2‖ω − ω̂‖H2

for some constants c1 and c2 depending on C.
Then, multiplying ρ − ζ on both sides of (26), integrating over Ω and using

integration by parts, we get

1
γk
‖ρ− ζ‖2L2 +

ε

2
‖∆(ρ− ζ)‖2L2 =

1
2

∫
Ω

∆(ζ−ρ)(fc(ζ)+ ε∆ζ)dx−
∫

Ω

(ρ− ζ)ϕ(ω)dx .

By Cauchy-Schwartz, the bound on ϕ(ω) and the fact that fc(ζ) + ε∆ζ is bounded
in L2 for ζ ∈ H2, we get

1
2γk

‖ρ− ζ‖2L2 +
ε

4
‖∆(ρ− ζ)‖2L2 ≤

1
4ε
‖fc(ζ) + ε∆ζ‖2L2 + 2γk‖ϕ(ω)‖2L2 .

In turn, this implies that
‖ρ‖H2 ≤ C ′ +

√
kc3

for some constant C ′ independent of k and C and constant c3 dependent on C but
independent of k. Hence, if we take C = C ′ + 1 (thus determining c3) and let k
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be small such that
√
kc3 ≤ 1, then we have P maps U into itself. Now, for any

ω1, ω2 ∈ U , let ρi = Pωi for i = 1, 2, we can get

ρ1 − ρ2

γk
+
ε

2
∆2(ρ1 − ρ2) = ϕ(ω2)− ϕ(ω1) .

Again, multiplying ρ1 − ρ2, integrating in Ω and applying integration by parts, we
have

1
γk
‖ρ1 − ρ2‖2L2 +

ε

2
‖∆(ρ1 − ρ2)‖2L2 ≤ ‖ρ1 − ρ2‖L2‖ϕ(ω2)− ϕ(ω1)‖L2

≤ 1
2γk

‖ρ1 − ρ2‖2L2 +
γkc22

2
‖ω1 − ω2‖2H2 .

We easily see that if k is small enough, we get from elliptic regularity theory that
there exists a constant c > 0 such that

‖ρ1 − ρ2‖2H2 ≤ c
{ 1

2γk
‖ρ1 − ρ2‖2L2 +

ε

2
‖∆(ρ1 − ρ2)‖2L2

}
≤ γkcc22

2
‖ω1 − ω2‖2H2 .

Therefore, if k is also small enough to have γkcc2
2

2 < 1, then we get P as a contraction
from U to U .

Finally, note that the discrete energy law gives a uniform bound on φn for all
n, thus, the smallness of k depends only on the initial data when other parameters
are are fixed. The proposition is proved.

�

Note that the existence of solution may also be obtained via Schauder fixed point
theorem using argument similar to the above.

Now, we denote the linear interpolation in time of the discrete solution by φk,
that is,

φk(t) =
1
k

[
(t− nk)φn+1 + ((n+ 1)k − t)φn

]
,

for nk ≤ t ≤ (n+ 1)k. Then, we have

Theorem 4.2. Given T > 0, Nk = T , the solution of (18) satisfies

φk ⇀ φ∗ in V , as k → 0,

where φ∗ is a weak solution of the gradient flow (14). Moreover, this weak solution
φ∗ is unique.

Proof. From the discrete energy law, we know that EM (φn) is uniformly bounded.
Therefore, A(φn), B(φn) and E(φn) are uniformly bounded. Same as in the first
part proof of proposition 3.1, we have φn ∈ H2(Ω) being uniformly bounded in
H2(Ω), and this implies that φk is uniformly bounded in L2(0, T ;H2(Ω)).

Denote

G(φn, φn+1) = −γ
{
g(φn+1, φn) +

1
2
M(A(φn+1) +A(φn)− 2α)

+
1
2
M(B(φn+1) +B(φn)− 2β)f(φn+1, φn)

}
,(28)
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we have φk
t = G(φn, φn+1) for t ∈ (nk, (n+ 1)k) and

EM (φn+1)− EM (φn) = − 1
γk

∫
Ω

(φn+1 − φn)2 dx

= −k
γ

∫
Ω

G(φn, φn+1)2 dx

= − 1
γ

∫ (n+1)k

nk

∫
Ω

G(φn, φn+1)2 dx dt .

Thus for finite T > 0,∫ T

0

∫
Ω

G(φn, φn+1)2 dx dt = γ(EM (φ0)− EM (φN )) ,

and we see that φk
t is uniformly bounded in L2(0, T ;L2(Ω)) by EM (φ0).

Together, we get that φk is uniformly bounded in V. Consequently there exists
a subsequence of φk, denoted as {φk} again, and a function φ∗ ∈ V such that

φk ⇀ φ∗ in L2(0, T ;H2(Ω)) and φk
t ⇀ φ∗t in L2(0, T ;L2(Ω)).

Thus, using compact imbedding results [28], we get the strong convergence of φk

to φ∗ in L2(0, T ;H1(Ω)) (possibly after selecting a subsequence) as k → 0.
Without any confusion, we now denote φ+ as a step-wise function

φ+(t) = φn for t ∈ [nk, (n+ 1)k) .

We have

φk(t)− φ+(t) =
1
k

((n+ 1)k − t)(φn+1 − φn) = ((n+ 1)k − t)G(φn, φn+1) → 0 ,

in L∞(0, T ;L2(Ω)) as k → 0. Similarly, we denote

φ−(t) = φn for t ∈ [(n− 1)k, nk) .

Then, φk(t)− φ−(t) → 0 in L∞(0, T ;L2(Ω)).
Furthermore, as EM (φn) is uniformly bounded by EM (φ0), we get EM (φk) uni-

formly bounded by EM (φ0) for all t ∈ (0, T ). This, in turn, implies that E(φn) is
uniformly bounded and E(φk) is uniformly bounded in (0, T ). Same as in the first
part proof of proposition 3.1, we have φk uniformly bounded in L∞(0, T ;H2(Ω)) as
k → 0 and ∆φk uniformly bounded in L∞(0, T ;L2(Ω)). Meanwhile, for the step-
wise function we have also φ±(t) ∈ L∞(0, T ;H2(Ω)) and ∆φ± ∈ L∞(0, T ;L2(Ω))
with

∆φ± ⇀ ∆φ̂

in L2(0, T ;L2(Ω)) for some φ̂ ∈ L2(0, T ;H2(Ω)). Now using the uniqueness of the
weak limit and the convergence properties of φk along with the fact that φk(t) −
φ±(t) → 0 in L∞(0, T ;L2(Ω)) as discussed in the above, we get φ∗ = φ̂.

As φk satisfies φk
t = G(φ+, φ−), we have

< φk
t , v > +γ <

1
2
(fc(φ−) + fc(φ+)),∆v >

+γ < − 1
2ε2

[
(φ−)2 + φ−φ+ + (φ+)2 − 1

]
(fc(φ−) + fc(φ+)), v >

+γ < Cε(φ− + φ+)(fc(φ−) + fc(φ+)), v >

+γ <
1
2
M(A(φ−) +A(φ+)− 2α), v >

+γ <
1
2
Mf(φ+, φ−)(B(φ−) +B(φ+)− 2β), v >= 0 ,(29)
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for each v ∈ H2
0 (Ω) and time 0 ≤ t ≤ T .

Now we claim f(φ+, φ−) ⇀ f(φ∗) in L2(0, T ;L2(Ω)).
In fact, by the continuous embedding of H2(Ω) into C(Ω), we get φ±(t), φk(t)

and φ∗(t) are uniformly bounded in L∞((0, T )× Ω). On the other hand, from

φk → φ∗ in L2(0, T ;H1(Ω)) and φn − φk → 0 in L∞(0, T ;L2(Ω)),

we have
φ± → φ∗ in L2(0, T ;L2(Ω)).

Thus

|(φ±)3 − (φ∗)3| = |φ± − φ∗||(φ±)2 + φ±φ
∗ + (φ∗)2| ≤ C|φ± − φ∗|,

and we get (φ±)3 → (φ∗)3 in L2(0, T ;L2(Ω)). Also,

|(φ+)2φ− − (φ∗)3| ≤ |(φ+)3 − (φ∗)3|+ |(φ+)2(φ− − φ+)| → 0 ,

so we finally have
1
4ε

[(φ−)2 + (φ+)2 − 2](φ− + φ+) → 1
ε
((φ∗)2 − 1)φ∗ in L2(0, T ;L2(Ω)) .

Together with ∆φ± ⇀ ∆φ∗, we have

f(φ−, φ+) ⇀ f(φ∗) and fc(φ+), fc(φ−) ⇀ fc(φ∗)

in L2(0, T ;L2(Ω)). Denote, for t ∈ [nk, (n+ 1)k),

un =
1

2ε2
[
(φ−)2 + φ−φ+ + (φ+)2 − 1 + Cε(φ− + φ+)

]
,

u∗ =
1
ε2

(3(φ∗)2 + 2Cεφ∗ − 1) ,

and
vn = fc(φn

−) + fc(φn
+) , v∗ = fc(φ∗).

We have
un → u∗ and vn ⇀ v∗ in L2(0, T ;L2(Ω)) .

Since un and u∗ are uniformly bounded in L∞((0, T )× Ω), we have

| < unvn − u∗v∗, w > | ≤ | < (vn − v∗)u∗, w > |+ | < (un − u∗)vn, w > | → 0

for any w ∈ L∞((0, T ;L2(Ω)). Thus

unvn ⇀ u∗v∗ in L2(0, T ;L2(Ω)) .

Following from φ± → φ∗ in L2(0, T ;L2(Ω)), we have

A(φ±) → A(φ∗) in L2(0, T ).

Also it is obvious that

B(φ±) → B(φ∗) in L2(0, T ).

All together, from (29), we have∫ T

0

{
< φ∗t , v > +γ < fc(φ∗),∆v > −γ < 1

ε2
(3(φ∗)2 + 2Cεφ∗ − 1)fc(φ∗), v >

+γ < M(A− α), v > +γ < Mf(B − β), v >} dt = 0

for all v ∈ L2(0, T ;H2
0 (Ω)). Thus φ∗ is a weak solution of the gradient flow (14).

And the weak solution φ∗ actually belongs to C(0, T ;L2(Ω)). Then the initial phase
field function of the gradient flow φ(0) = φ0 makes sense.

We finally prove the uniqueness of φ∗ for a given initial phase field function φ0.
Suppose there are two weak solutions φ1, φ2 in V of the gradient flow (14), then
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from the energy estimates, we can easily get first that φ1 and φ2 are uniformly
bounded in C(Ω).

Then letting u = φ1 − φ2, we have
1
γ
< ut, v > + < fc(φ1)− fc(φ2),∆v > − < q(φ1)fc(φ1)− q(φ2)fc(φ2), v >

+ < M(A(φ1)−A(φ2)), v > + < M(f(φ1)B(φ1)− f(φ2)B(φ2)), v >= 0 .

where the polynomial q is defined as in (25).
It is obvious that A(φi), B(φi) are uniformly bounded for i = 1, 2. As φ1, φ2 are

uniformly bounded in C(Ω), taking the formulae of fc and f , and setting v = u,
we finally have

d

dt
‖u‖2L2

+ γε‖∆u‖2L2
≤ M̃‖u‖H2‖u‖L2

where M̃ is a constant independent of u. Thus, we have for a suitable constant
M̂ > 0,

d

dt
‖u‖2L2

≤ M̂‖u‖2L2 .

As u|t=0 = 0, we have ‖u‖2L2
= 0 for all t > 0. Thus φ1 = φ2. Finally, due to

the uniqueness of φ∗, we actually get that the convergence of the whole sequence
φk ⇀ φ∗ as k → 0.

�

By similar argument, we can also get the following convergence results for the
backward Euler scheme and the formulation in Lagrange multipliers, the proofs are
omitted.

Theorem 4.3. Given T > 0, Nk = T , the solution of (17) satisfies

φk ⇀ φ∗ in V , as k → 0,

where φ∗ is the weak solution of the gradient flow (13).

Theorem 4.4. Given T > 0, Nk = T , the solution of (23) satisfies

φk ⇀ φ∗ in V , as k → 0,

where φ∗ is the weak solution of the gradient flow (14).

5. Numerical simulation results

Here, we briefly present a few sample numerical experiments, one for the equi-
librium problem, and the other for the gradient flow. These experimental results
confirm the convergence analysis presented earlier in the paper. Equilibrium state
of the vesicle shape can also be computed via (14), the gradient flow of the penalty
formulation. We use the implicit numerical scheme (17) for the time discretization.
For the spatial discretizations, we may use any of the Finite Difference, Finite El-
ement and spectral methods. Due to the periodic boundary condition we assume
here, the spectral Fourier method is used for the results documented here.

In our experiments, the computational domain is taken as [−π, π]3. The other
parameter values are: volume parameter α = −202.67, surface area parameter
β = 45.43 and ε = 0.255254. In addition, we set bending rigidity to be 10.0 and we
do not consider the spontaneous curvature, that is, we let c0 = 0.0.

The first experiment is to test the computation of the equilibrium shape with
fixed volume and surface area. We use a penalty constant M = 10000 which is
sufficiently large to enforce the volume and surface area constraints. The time
step k is dynamically adjusted to balance the stability and the fast computation of
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the steady state [12]. To verify the convergence of the numerical approximations,
we repeat the same experiment with four different spatial meshes: 16 × 16 × 16,
32 × 32 × 32, 48 × 48 × 48 and 64 × 64 × 64. The initial starting shape of the
membrane is a flat elliptic shaped disk (see left most picture of figure 1), which, for
the given volume and surface area, is not an equilibrium shape. As time increases,
it pinches off to be a torus, which is the final equilibrium shape. The detailed
dynamic process computed with a 64× 64× 64 grid is depicted in figure 1.

Figure 1. The pinch-off of a disk to a torus (cut view).

Figure 2. Final equilibrium shapes (cut view) on 16 × 16 × 16,
32× 32× 32, 48× 48× 48 and 64× 64× 64 meshes.

Comparisons of the final equilibrium shapes computed with different spatial
meshes are made in figure 2, which provide verification to the convergence of our
numerical simulation. Table 1 illustrates the final elastic bending energy E(φ), from
which we see the convergence of the energy. Note that the energy values computed
on the coarse grids have additional errors from numerical quadratures whose effects
diminish on the finer grids.

Mesh sizes 16× 16× 16 32× 32× 32 48× 48× 48 64× 64× 64
Energy 409.22535 423.20807 423.20086 423.20087

Table 1. Energy comparison of the experiments in Figure 2

The second experiment is to test the convergence for the gradient flow. We
repeat the same experiment with a spatial mesh size 64×64×64 but with different
time step sizes. Two different constant step sizes were adopted: 6.0 × 10−8 and
3.0× 10−8. Figure 3 gives the plot of the decreasing energy for the gradient flows.
As the energy decays very fast, we draw the energy in a log scale against the time,
that is, the curves in the figure are for log(EM − 423.20) against time, where the
number 423.20 is nearly the value of the energy minimum.

The plot again confirms the numerical convergence of the simulation results
with the different time step sizes. The agreement remained excellent even after 3.7
million steps. More numerical simulation results can be found in [12] and [10, 13]
and our subsequent works.
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Figure 3. Energy of gradient flows for different time steps.

6. Conclusion

The phase field models developed in [12, 13] and [10, 11] for the equilibrium
and dynamic vesicle deformations have been shown to be very effective tools to
study the mechanical properties of the cell membranes and their interactions with
external fields, through extensive computational studies. In this paper, some rigor-
ous mathematical analysis on the equilibrium phase field model, its gradient flow,
and their numerical approximations has been carried out to make the numerical
simulations on a more solid theoretical ground. For the equilibrium problems, the
focus is on finite element spatial discretizations, while for the gradient flow, the
attention is given to a time-discretization preserving the energy law at the discrete
level. The convergence analysis of the numerical approximations further substan-
tiates the reliability of the experimental results. Our theory relies only on the
minimal regularity assumptions of the exact solutions of the continuous models,
but it is also limited to the simple case where no external field is introduced. In the
future, the convergence of fully discrete schemes for the time-dependent problem,
being either the Allen-Cahn type dynamics considered here or the Cahn-Hilliard
dynamics, may be analyzed, similar to the studies given in [15, 19, 20]. The exten-
sion to more general settings such as those involving membrane fluid interactions
(see discussions in [2, 8] and a more rigorously derived model in [11]) may also be
considered. Extension may also include the study of models for multicomponent
and open membranes studied in [30]. Other possible directions of study include a
more careful examination on the order of convergence when more regularity of the
solutions can be postulated [18] and adaptive schemes based on a posterior error
estimates [17]. Convergence analysis of the discretization in the sharp interface
limit, that is, as ε→ 0, will also be of practical interests [21]. Naturally, more nu-
merical simulations may be carried out to provide more insight into the interesting
properties of the membrane vesicles.
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