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Abstract. We consider the Stokes-Oldroyd equations, defined here as the

Stokes equations with the Newtonian constitutive equation explicitly included.

Thus a polymer-like stress tensor is included so that the dependent variable

structure of a viscoelastic model is in place. The energy equation is cou-

pled with the mass, momentum, and constitutive equations through the use of

temperature-dependent viscosity terms in both the constitutive model and the

momentum equation. Earlier works assumed temperature-dependent constitu-

tive (polymer) and Newtonian (solvent) viscosities when describing the model

equations, but made the simplifying assumption of a constant solvent viscosity

when carrying out analysis and computations; we assume no such simplifica-

tion. Our analysis coupled with numerical solution of the problem with both

temperature-dependent viscosities distinguishes this work from earlier efforts.
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1. Introduction

Viscoelastic flows occur in a variety of applications, including polymer process-
ing. The complexity of the governing equations and the physical domains makes
analysis of the mathematical models and the associated numerical methods espe-
cially difficult. Current efforts to model viscoelastic flows often revolve around
the solution of a (modified) Stokes problem, [5]. The isothermal linear elasticity
equations, modified in form to have the same dependent variable structure as the
equations governing viscoelastic flows, is analyzed along with a numerical solu-
tion in [2]. The Stokes problem is a special case (the incompressible limit) of the
equations considered in that work.

The purpose of this paper is to analyze the finite element solution of the non-
isothermal Stokes problem, modified similarly as in [2]. Thermodynamics play a
prominent role in many viscoelastic flow scenarios, especially in polymer process-
ing. Realistic models must ultimately include temperature dependence, since flow
characteristics such as viscosity vary widely as temperature varies within normal
operating constraints, [1].

The rest of this paper is outlined as follows. The governing equations are pre-
sented in the next section, with particular attention given to the manner in which
temperature dependence is expressed. Details regarding the weak formulation and
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corresponding function spaces are provided in Section 3. In Section 4, the finite
element formulation is developed along with an existence result for the finite ele-
ment solution. Convergence results for the finite element solution are derived in
Section 5, and numerical confirmation of these results are presented in Section 6.
The paper concludes with a summary and a discussion of continuing work.

2. Governing Equations

We consider fluid flowing through a bounded, connected domain Ω ⊂ Rd́, whose
boundary we denote as Γ. Let the velocity be denoted by u, pressure p, extra stress
σ, temperature T , and unit outward normal to the boundary n. For viscoelastic
fluid flow, the extra stress tensor is often split into a solvent and polymer part,

σ = σs + σp.

Normally the solvent part of the extra stress is assumed to be Newtonian, i.e.

σs = 2
ηs(T )
η0(TR)

d(u),

where the rate-of-deformation tensor d(u) is defined as

d(u) =
1
2

(
∇u + (∇u)T

)
,

ηS is the solvent viscosity which depends at most on the temperature, and η0(TR)
is the zero-shear viscosity at a reference temperature TR. A nonlinear differential
or integral constitutive model is imposed for the polymer part σp, [1]. As in [2],
we simplify the constitutive model to a Newtonian relationship, and include this
equation explicitly to preserve the dependent variable structure associated with
viscoelastic constitutive models, such as Giesekus or Oldroyd-B. Whereas only the
isothermal case is considered in [2], we analyze the case where both σp and σs

depend on temperature. Specifically, we assume that

(2.1) σp − 2α1(T )d(u) = 0,

where an Arrhenius equation characterizes the dependence of polymer viscosity
(also scaled to η0(TR)) upon temperature, i.e.

α1(T ) = A1 exp
(

B1

T

)
,

and B1 6= 0. The coefficients A1 and B1 are defined so that 0 < α1(T ) ≤ 1. We
assume the existence of maximum and minimum values for the viscosity

(2.2) α1,min ≤ α1(T ) ≤ α1,max.

The (scaled) solvent viscosity is defined in a similar manner so that

(2.3) σs − 2εα2(T )d(u) = 0,

with

α2(T ) = A2 exp
(

B2

T

)
.

Once again we choose A2 and B2 so that 0 < α2(T ) ≤ 1 and

(2.4) α2,min ≤ α2(T ) ≤ α2,max,

but here we may have B2 = 0. The definition of σs includes ε because the solvent
part of the viscosity is assumed to be much smaller than the polymer part. Further-
more, the term 2εα2(T )d(u) has special significance in that it increases stability.
Hence the parameter ε is considered a penalty parameter, and is assumed small.
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We define the non-isothermal Stokes-Oldroyd equations as the system consisting
of (2.1) along with the conservation of momentum, mass, and energy equations in
following form:

−∇ · [σp + 2εα2(T )d(u)
]
+∇p = f in Ω,(2.5)

∇ · u = 0 in Ω,(2.6)
−∇ · (κ∇T ) + u · ∇T = Q in Ω,(2.7)

u = 0 on Γ,(2.8)
T = 0 on Γ1,(2.9)

κ∇T · n = g on Γ2,(2.10)

where Γ = Γ1∪Γ2. The thermal conductivity coefficient is denoted by κ, body force
f , heat source Q, heat flux g. All variables are dimensionless except for T . Note
that if we make the substitution σp = 2α1(T )d(u), then the momentum equation
(2.5) becomes

−∇ · [(2α1(T ) + 2εα2(T )) d(u)] +∇p = f ,

where 2α1(T ) + 2εα2(T ) is the dimensionless effective viscosity. In the remainder
of this paper, the polymer-like part of the extra stress tensor will be referred to as
σ, i.e. the subscript will be dropped.

Here we relate the values for Ai and Bi to physical quantities and establish con-
ditions to assure that 0 < αi(T ) ≤ 1. The form for the Arrhenius-type temperature
shift factor is

aT = exp
[
∆E

R

(
1
T
− 1

TR

)]
,

where ∆E is the activation energy, R is the ideal gas constant, and TR is a reference
temperature, [1]. Assuming that the polymer and solvent viscosities add up to
the zero-shear-rate viscosity, (as in [10]), it follows that α1(T ) = (1 − ε)aT and
α2(T ) = aT . As a result,

B1 = B2 =
∆E

R
, A2 = exp

[−∆E

R TR

]
, and A1 = (1− ε)A2.

The constraint 0 < αi(T ) ≤ 1 will be satisfied as long as the temperature of the
system stays above TR. This condition is simple to satisfy for the application
considered in this paper, i.e. flow through a fiber or film-forming die.

3. Weak Formulation

In this section we develop the variational formulation of the modified non-
isothermal Stokes-Oldroyd equations. We use the Sobolev spaces Wm,p(D) with
norms ‖ · ‖m,p,D if p < ∞, ‖ · ‖m,∞,D if p = ∞. We denote the Sobolev space Wm,2

by Hm with the norm ‖·‖m. The corresponding spaces of vector-valued and tensor-
valued functions are denoted by Hm. If D = Ω, D is omitted, i.e., (·, ·) = (·, ·)Ω
and ‖ · ‖ = ‖ · ‖Ω . We define the following subspaces

H1
0(Ω) = {v ∈ H1(Ω) : v|Γ = 0},

L2
0(Ω) = {q ∈ L2(Ω) :

∫

Ω

qdΩ = 0},
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and the solution spaces:

Velocity Space : X := H1
0(Ω),

Pressure Space : P := L2
0(Ω),

Stress Space : Σ :=
(
L2(Ω)

)d́×d́ ∩ {τ = (τij) : τij = τji; τij ∈ L2(Ω)},
Temperature Space : E := {S ∈ H1(Ω) : S = 0 on Γ1}

Notice that the velocity and pressure spaces, X and P respectively, satisfy the
inf − sup condition [4, 6]

inf
q∈P

sup
v∈X

(q,∇ · v)
||q||0||v||1 ≥ β > 0.

We also define the weak divergence free space as

V := {v ∈ X :
∫

Ω

q∇ · vdΩ = 0, ∀q ∈ P}.

For weak formulation, we will consider the scaled constitutive equation

(3.11)
σ

2α1(T )
− d(u) = 0,

in order to simplify analysis. The weak formulation of (2.5)-(2.10) and (3.11) is
then to find (u, p, σ, T ) ∈ X× P ×Σ× E such that

(
1

2α1(T )
σ, τ

)
− (d(u), τ) = 0 ∀τ ∈ Σ,(3.12)

(σ, d(v)) + 2ε(α2(T )d(u), d(v))− (p,∇ · v) = (f ,v) ∀v ∈ X,(3.13)
(q,∇ · u) = 0 ∀q ∈ P,(3.14)
κ(∇T,∇S) + (u · ∇T, S) = (Q,S) + (g, S)Γ2 ∀S ∈ E.(3.15)

Recall that u satisfies conservation of mass (∇·u = 0) and is zero on the boundary
Γ, and hence we have that

(3.16) (u · ∇T, T ) = 0.

Also, note that the nonlinear term in (3.15) is bounded as follows. See, for instance,
[7].

(3.17) (u · ∇T, S) ≤ C‖u‖1‖T‖1‖S‖1.
Using the weak-divergence free space, (3.12)-(3.15) is written in the equivalent form:
finding (u, σ, T ) ∈ V ×Σ× E such that

(
1

2α1(T )
σ, τ

)
− (d(u), τ) = 0 ∀τ ∈ Σ,(3.18)

(σ, d(v)) + 2ε(α2(T )d(u), d(v)) = (f ,v) ∀v ∈ V,(3.19)
κ(∇T,∇S) + (u · ∇T, S) = (Q,S) + (g, S)Γ2 ∀S ∈ E.(3.20)

4. Finite Element Approximation

Suppose that we have a triangulation Th of our domain Ω such that Ω̄ = {∪K :
K ∈ Th}, i.e., K is an element of the triangulation. Further suppose that there
exist positive constants c1 and c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of K, ρK is the diameter of the greatest ball included in
K, and h = maxK∈Th

hK . Denote the space of polynomials of degree less than or
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equal to k on K ∈ Th by Pk(K). To approximate the solution (u, p, σ, T ), we define
the following finite-element spaces.

Xh := {v ∈ X ∩ (C0(Ω̄))d́ : v|K ∈ P2(K), ∀K ∈ Th},
Ph := {q ∈ P ∩ C0(Ω̄) : q|K ∈ P1(K), ∀K ∈ Th},
Σh := {τ ∈ Σ : τ |K ∈ P1(K), ∀K ∈ Th},
Eh := {T ∈ E ∩ C0(Ω̄) : T |K ∈ P2(K), ∀K ∈ Th}.

We use continuous piecewise quadratic elements for velocity and temperature, con-
tinuous piecewise linear elements for pressure, and discontinuous piecewise linear
elements for stress. The discontinuous finite element space is adopted in anticipa-
tion of applying this method to complex constitutive models which requires a form
of upwinding in the numerical approximation.

Analogous to the continuous function spaces, the discrete spaces Xh and Ph

satisfy the discrete inf − sup condition [4, 6]

(4.21) inf
qh∈P h

sup
vh∈Xh

(qh,∇ · vh)
||qh||0||vh||1 ≥ β > 0.

We also define the discrete weak divergence free space.

Vh := {vh ∈ Xh : (qh,∇ · vh) = 0, ∀qh ∈ Ph}.
We now consider the following problem: find (uh, ph, σh, Th) ∈ (Xh, Ph,Σh, Eh)

such that(
1

2α1(Th)
σh, τh

)
− (d(uh), τh) = 0 ∀τh ∈ Σh,(4.22)

(σh, d(vh)) + 2ε(α2(Th)d(uh), d(vh))− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Xh,(4.23)

(qh,∇ · uh) = 0 ∀qh ∈ Ph,(4.24)

κ(∇Th,∇Sh) + (uh · ∇Th, Sh) = (Q, Sh) + (g, Sh)Γ2 ∀Sh ∈ Eh.(4.25)

Using the discrete weak divergence free space Vh, (4.22)-(4.25) can be written as
(

1
2α1(Th)

σh, τh

)
− (d(uh), τh) = 0 ∀τh ∈ Σh,(4.26)

(σh, d(vh)) + 2ε(α2(Th)d(uh), d(vh)) = (f ,vh) ∀vh ∈ vh,(4.27)

κ(∇Th,∇Sh) + (uh · ∇Th, Sh) = (Q, Sh) + (g, Sh)Γ2 ∀Sh ∈ Eh.(4.28)

In the next theorem we will now show the existence of a solution to the system
(4.22)-(4.25).

Theorem 4.1. There exists a solution (uh, ph, σh, Th) ∈ Xh × Ph ×Σh × Eh of
the equations (4.22)-(4.25) satisfying

(4.29) ‖uh‖1 + ‖σh‖0 + ‖Th‖1 ≤ C(‖f‖0 + ‖Q‖0 + ‖g‖0,Γ2).

Proof: We will first show existence of a solution (uh, σh, Th) ∈ Vh ×Σh ×Eh to
the problem (4.26)-(4.28). Then, existence of (uh, ph, σh, Th) ∈ Xh×Ph×Σh×Eh

satisfying (4.22)-(4.25) will be obtained using the inf − sup condition (4.21).
For a given uh ∈ Vh, consider the bilinear form A(·, ·) : Eh × Eh → R defined

as
A(Th, Sh) = κ(∇Th,∇Sh) + (uh · ∇Th, Sh).
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It can be easily shown using (3.16)-(3.17) that A is continuous and coercive. Thus,
by the Lax-Milgram theorem, for given g ∈ L2(Γ) and Q ∈ L2(Ω), we can find a
unique solution Th ∈ Eh satisfying (4.28) and the estimate

(4.30) ‖Th‖1 ≤ C(‖Q‖0 + ‖g‖0,Γ2) .

Define the mapping F : Vh → Eh by

(4.31) F (uh) = Th,

where (u,h , Th) satisfies (4.28). The problem (4.26)-(4.28) can be reduced to finding
(uh, σh) ∈ Vh ×Σh such that

(
1

2α1(F (uh))
σh, τh

)
− (d(uh), τh) = 0,(4.32)

(σh, d(vh)) + 2ε(α2(F (uh))d(uh), d(vh)) = (f ,vh),(4.33)

for all (vh, τh) ∈ Vh ×Σh. Define the mapping

D : Vh ×Σh → Vh ×Σh,

implicitly by D(zh, λh) = (uh, σh), if and only if
(

1
2α1(F (zh))

σh, τh

)
− (d(uh), τh) = 0,(4.34)

(σh, d(vh)) + 2ε(α2(F (zh))d(uh), d(vh)) = (f ,vh)Ω,(4.35)

for all (vh, τh) ∈ Vh ×Σh. Now, (uh, σh) will be a solution of (4.32)-(4.33) if it is
a fixed point of D(·). By the Leray-Schauder Principle [3, 8], D(·) has at least one
fixed point if

(i) D(·) is absolutely continuous.
(ii) There exists a M > 0 such that, for all Λ ∈ [0, 1] and (vh, τh) ∈

Vh ×Σh, if
(vh, τh) = ΛD((vh, τh)),

then (vh, τh) satisfies ‖(vh, τh)‖
Vh×Σh ≤ M .

We will show (i) and (ii) to prove D(·) has a fixed point.
Absolute continuity
Suppose

D(zh
i , λh

i ) = (uh
i , σh

i ),

where (zh
i , λh

i ), (uh
i , σh

i ) ∈ Vh ×Σh for i = 1, 2, i.e.,
(

1
2α1(F (zh

i ))
σh

i , τh

)
− (d(uh

i ), τh) = 0,(4.36)

(σh
i , d(vh)) + 2ε(α2(F (zh

i ))d(uh
i ), d(vh)) = (f ,vh),(4.37)

for all (vh, τh) ∈ Vh ×Σh. We will show there exists a constant Ch such that

(4.38) ‖(uh
2 , σh

2 )− (uh
1 , σh

1 )‖
Vh×Σh ≤ Ch ‖(zh

2 , λh
2 )− (zh

1 , λh
1 )‖

Vh×Σh .

From (4.36)-(4.37) we have
(

1
2α1(F (zh

2 ))
σh

2 −
1

2α1(F (zh
1 ))

σh
1 , τh

)
− (d(uh

2 − uh
1 ), τh)

(σh
2 − σh

1 , d(vh)) + 2ε(α2(F (zh
2 ))d(uh

2 )− α2(F (zh
1 ))d(uh

1 ), d(vh)) = 0,
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which can be written as(
1

2α1(F (zh
2 ))

(σh
2 − σh

1 ), τh

)
− (d(uh

2 − uh
1 ), τh) + (σh

2 − σh
1 , d(vh))

+2ε(α2(F (zh
2 ))d(uh

2 − uh
1 ), d(vh))

= −
((

1
2α1(F (zh

2 ))
− 1

2α1(F (zh
1 ))

)
σh

1 , τh

)

−2ε((α2(F (zh
2 ))− α2(F (zh

1 )))d(uh
1 ), d(vh)).

Letting vh = uh
2 − uh

1 , τh = σh
2 − σh

1 and using (2.2), (2.4), we have
1

2α1,max
‖σh

2 − σh
1‖20 + 2εα2,min‖d(uh

2 − uh
1 )‖20

≤ C

[
1
2

∣∣∣∣
∣∣∣∣

1
α1(F (zh

2 ))
− 1

α1(F (zh
1 ))

∣∣∣∣
∣∣∣∣
0

||σh
1 ||∞‖σh

2 − σh
1‖0

+2ε‖α2(F (zh
2 ))− α2(F (zh

1 ))‖0||d(uh
1 )||∞‖d(uh

2 − uh
1 )‖0

]
.

Note that 1
α1(·) and α2(·) are Lipschitz continuous as they are absolutely bounded

exponential functions. Hence, there exists a constant Ĉ such that∥∥∥∥
1

α1(T2)
− 1

α1(T1)

∥∥∥∥
0

≤ Ĉ‖T2 − T1‖0,(4.39)

‖α2(T2)− α2(T1)‖0 ≤ Ĉ‖T2 − T1|‖0.(4.40)

Thus, using the inverse inequalities [4]

‖σh‖∞ ≤ C h−1 ‖σh‖0,
‖d(uh)‖∞ ≤ C h−1 ‖d(uh)‖0,

the Poincaré-Friedrichs inequality and (4.39)-(4.40),
1

2α1,max
‖σh

2 − σh
1‖20 + 2εα2,min‖uh

2 − uh
1‖21

≤ C h−1‖F (zh
2 )− F (zh

1 )‖1(‖σh
1‖0‖σh

2 − σh
1‖0 + ‖uh

1‖1‖uh
2 − uh

1‖1) .(4.41)

Now, we estimate ‖F (zh
2 )− F (zh

1 )‖1. From (4.28) and (4.31),

κ(∇F (zh
i ),∇Sh) + (zh

i · ∇F (zh
i ), Sh) = (Q,Sh)− (g̃, Sh)Γ ∀Sh ∈ Eh

for i = 1, 2. Hence, we have

κ(∇(F (zh
2 )− F (zh

1 )),∇Sh) = −(zh
2 · ∇F (zh

2 )− zh
1 · ∇F (zh

1 ), Sh) .

Let Sh = F (zh
2 )− F (zh

1 ), add and subtract terms to obtain

κ‖∇(F (zh
2 )− F (zh

1 ))‖20 = −((zh
2 − zh

1 ) · ∇F (zh
2 ), F (zh

2 )− F (zh
1 ))

−((zh
1 ) · ∇(F (zh

2 )− F (zh
1 )), F (zh

2 )− F (zh
1 )) .(4.42)

By (3.16), (3.17), (4.30) and the Poincaré-Friedrichs inequality,

(4.43) ‖F (zh
2 )− F (zh

1 )‖1 ≤ ‖zh
2 − zh

1‖1(‖Q‖0 + ‖g̃‖0,Γ) .

Finally, we estimate ‖σh
i ‖0 and ‖uh

i ‖1. Letting τh
i = σh

i , vh
i = uh

i in (4.36), (4.37)
and using (2.2), (2.4),

‖σh
i ‖20 + ‖d(uh

i )‖20 ≤ C‖f‖0‖uh
i ‖0,

which implies

(4.44) ‖uh
i ‖1 ≤ C ‖f‖0.
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Also

(4.45) ‖σh
i ‖0 ≤ C ‖f‖0

is obtained by (2.2), (4.36) and (4.44). Now the estimate (4.38) follows from (4.41),
(4.43), (4.44) and (4.45).
Contraction mapping
Assume that Λ ∈ [0, 1], and let (zh, λh) ∈ Vh ×Σh be such that

ΛD((zh, λh)) = (zh, λh).

If Λ = 0, then
(0, 0) = ΛD((zh, λh)) = (zh, λh),

which implies that
zh = 0, λh = 0,

hence ‖(zh, λh)‖
Vh×Σh = 0 and any M will work. Now assume that Λ ∈ (0, 1].

ΛD((zh, λh)) = (zh, λh) implies D((zh, λh)) =
(

1
Λzh, 1

Λλh
)
, which is equivalent to

(
1

2α1(F (zh))
λh

Λ
, τh

)
−

(
d

(
zh

Λ

)
, τh

)
= 0,

(
λh

Λ
, d(vh)

)
+ 2ε

(
α2(F (zh))d

(
zh

Λ

)
, d(vh)

)
= (f ,vh).

Notice that there is no Λ associated with the argument of the terms αi(·). This is
because their argument is determined by the argument of D(·), which is unaffected
by Λ. Sum the above equations and multiply through by Λ to obtain(

1
2α1(F (zh))

λh, τh

)
− (d(zh), τh)

+(λh, d(vh)) + 2ε(α2(F (zh))d(zh), d(vh)) = Λ(f ,vh).

Now letting τh = λh, and vh = zh, we obtain(
1

2α1(F (zh))
λh, λh

)
+ 2ε(α2(F (zh))d(zh), d(zh)) = Λ(f , zh),

which implies

(4.46) ||λh||20 + ||zh||21 ≤ ΛC ‖f‖0‖zh‖1
by (2.2) and (2.4). Therefore, we obtain

‖(zh, λh)‖
Vh×Σh ≤ C‖f‖0 .

As we have shown the hypotheses of the Leray-Schauder Principle, we have the
existence of a solution (uh, σh, F (uh)) = (uh, σh, Th) ∈ Vh ×Σh × Eh. And since
(Xh, Ph) satisfies the inf-sup condition (4.21), there exists ph ∈ Ph such that

(σh, d(vh)) + 2ε(α2(Th)d(uh), d(vh))− (ph,∇ · vh) = (f ,vh) ∀vh ∈ Xh.

Finally, the estimate (4.29) follows directly from (4.30), (4.44) and (4.45). ¤

Remark 4.2. Theorem 4.1 establishes existence of the solution (uh, ph, σh, Th) in
the finite element space Vh × Ph ×Σh × Eh. Note the dependence of the absolute
continuity constant on h in (4.38).
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5. Error Estimate

We begin with introducing the standard approximation results, which will be
used in error estimation. Let σ̃h ∈ Σh be the orthogonal projection of σ on Th in
Σ, and ũh ∈ Vh, T̃h ∈ Eh be the interpolants of u in V and T in E, respectively,
and p̃h ∈ Ph the orthogonal projection of p on Th in P . Then, we have the following
standard estimates [6]:

‖u− ũh‖1 ≤ Chm‖u‖m+1 ∀u ∈ Hm+1(Ω),(5.47)

‖σ − σ̃h‖0 ≤ Chm‖σ‖m ∀σ ∈ Hm(Ω),(5.48)

‖T − T̃h‖1 ≤ Chm‖T‖m+1 ∀T ∈ Hm+1(Ω),(5.49)

‖p− p̃h‖0 ≤ Chm‖p‖m ∀p ∈ Hm(Ω).(5.50)

Theorem 5.1. If (2.1), (2.5)-(2.10) admit a solution (u, p, σ, T ) ∈ H3(Ω) ×
H2(Ω) × H2(Ω) × H3(Ω) such that max{‖u‖3, ‖p‖2, ‖σ‖2, ‖T‖3} ≤ M and the
bound M is sufficiently small, then we have the following error estimate:

(5.51) ||σ − σh||0 + ||u− uh||1 + ||T − Th||1 ≤ Ch2 .

Proof: If (u, p, σ, T ) is a solution of (2.1) and (2.5)-(2.10), it also solves the
scaled constitutive equation (3.11). Hence (u, σ, T ) satisfies the weak problem
(3.18)-(3.20). Now subtracting the discrete system (4.26)-(4.28) from the continu-
ous system (3.18)-(3.20) yields

(
1

2α1(T )
σ − 1

2α1(Th)
σh, τh

)

Ω

− (d(u)− d(uh), σh) = 0,

(σ − σh, d(vh))Ω + 2ε(α2(T )d(u)− α2(Th)d(uh), d(vh))Ω − (p,∇ · vh) = 0,

κ(∇(T − Th), Sh) + (u · ∇T − uh · ∇Th, Sh)Ω = 0,

for (τh,vh, Sh) ∈ Σh ×Vh × Eh. Notice that (p,∇ · vh) 6= 0 for p ∈ P , vh ∈ Vh.
The above system is equivalent to

(
1

2α1(T )
σ − 1

2α1(Th)
σh, τh

)

+2ε(α2(T )d(u)− α2(Th)d(uh), d(vh)) + (u · ∇T − uh · ∇Th, Sh)

−(d(u− uh), τh) + (σ − σh, d(vh))− (p,∇ · vh) + κ(∇(T − Th),∇Sh)
= 0 .(5.52)

Adding and subtracting terms, we obtain

(
1

2α1(T )
σ − 1

2α1(Th)
σh, τh

)
=

([
1

2α1(T )
− 1

2α1(T̃h)

]
σ, τh

)

+
([

1
2α1(T̃h)

− 1
2α1(Th)

]
σ, τh

)
+

(
1

2α1(Th)
(σ − σ̃h), τh

)

+
(

1
2α1(Th)

(σ̃h − σh), τh

)
.(5.53)
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Similarly,

2ε(α2(T )d(u)− α2(Th)d(uh), d(vh)) + (u · ∇T − uh · ∇Th, Sh)

= 2ε([α2(T )− α2(T̃h)]d(u), d(vh)) + 2ε([α2(T̃h)− α2(Th)]d(u), d(vh))

+2ε(α2(Th)(d(u− ũh)), d(vh)) + 2ε(α2(Th)(d(ũh − uh), d(vh))

+((u− ũh) · ∇T, Sh) + ((ũh − uh) · ∇T, Sh)

+(uh · ∇(T − T̃h), Sh) + (uh · ∇(T̃h − Th), Sh) ,(5.54)

and

−(d(u− uh), τh) + (σ − σh, d(vh))− (p,∇ · vh) + κ(∇(T − Th),∇Sh)

= −(d(u− ũh), τh)− (d(ũh − uh), τh)

+(σ − σ̃h, d(vh)) + (σ̃h − σh, d(vh))

−(p− p̃h,∇ · vh) + κ(∇(T − T̃h),∇Sh) + κ(∇(T̃h − Th),∇Sh) ,(5.55)

where we used (p̃h,∇ · vh) = 0 for vh ∈ V h. Therefore, rearranging terms, we can
rewrite (5.52) as

(
1

2α1(Th)
(σ̃h − σh), τh

)
+ 2ε (α2(Th) d(ũh − uh), d(vh))

+(uh · ∇(T̃h − Th), Sh)

−(d(ũh − uh), τh) + (σ̃h − σh, d(vh)) + κ(∇(T̃h − Th),∇Sh)

= −
([

1
2α1(T )

− 1
2α1(T̃h)

]
σ, τh

)
−

([
1

2α1(T̃h)
− 1

2α1(Th)
)
]

σ, τh

)

−
(

1
2α1(Th)

(σ − σ̃h), τh

)

−2ε([α2(T )− α2(T̃h)]d(u), d(vh))− 2ε([α2(T̃h)− α2(Th)]d(u), d(vh))

−2ε(α2(Th) d(u− ũh), d(vh))

−((u− ũh) · ∇T, Sh)− ((ũh − uh) · ∇T, Sh)− (uh · ∇(T − T̃h), Sh)

+(d(u− ũh), τh)− (σ − σ̃h, d(vh))

+(p− p̃h,∇ · vh)− κ(∇(T − T̃h),∇Sh) .(5.56)

Letting vh = ũh − uh, τh = σ̃h − σh, Sh = T̃h − Th and using (2.2), (2.4), (3.16),

LHS of (5.56)

≥ 1
2α1,max

‖σ̃h − σh‖20 + 2εα2,min‖d(ũh − uh)‖20 + κ‖∇(T̃h − Th)‖20 .(5.57)
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Now, we will get an estimate for the right hand side of (5.56). Using the imbedding
theorem of H2 in L∞, (2.2), (4.39), (5.48), (5.49) and the Young’s inequality,

−
([

1
2α1(T )

− 1
2α1(T̃h)

]
σ, σ̃h − σh

)
−

([
1

2α1(T̃h)
− 1

2α1(Th)

]
σ, σ̃h − σh

)

−
(

1
2α1(Th)

(σ − σ̃h), σ̃h − σh

)

≤ C

[∥∥∥∥
1

α1(T )
− 1

α1(T̃h)

∥∥∥∥
0

‖σ‖2‖σ̃h − σh‖0

+
∥∥∥∥

1
α1(T̃h)

− 1
α1(Th)

∥∥∥∥
0

‖σ‖2‖σ̃h − σh‖+
1

2α1,min
‖σ − σ̃h‖0‖σ̃h − σh‖0

]

≤ C
[
Ĉ‖T − T̃h‖1M‖σ̃h − σh‖0 + Ĉ‖T̃h − Th‖1M‖σ̃h − σh‖0

+
1

2α1,min
‖σ − σ̃h‖0‖σ̃h − σh‖0

]

≤ C

[
Ĉ2C

2
M4h4

4ε1
+

Ĉ2M2

4ε2
‖T̃h − Th‖21 +

C
2
M2h4

16α2
1,minε3

+(ε1 + ε2 + ε3)‖σ̃h − σh‖20
]

.(5.58)

The next three terms in (5.56) are bounded using (2.4), (4.40), (5.47), (5.49), the
imbedding theorem of H2 in L∞ and the Poincaré-Friedrichs inequality:

−2ε([α2(T )− α2(T̃h)]d(u), d(ũh − uh))

−2ε([α2(T̃h)− α2(Th)]d(u), d(ũh − uh))

−2ε(α2(Th) d(u− ũh), d(ũh − uh))

≤ C
[
‖α2(T )− α2(T̃h)‖0‖d(u)‖∞‖d(ũh − uh)‖0

+‖α2(T̃h)− α2(Th)‖0‖d(u)‖∞‖d(ũh − uh)‖0
+α2,max‖d(u− ũh)‖0‖d(ũh − uh)‖0

]

≤ C
[
Ĉ‖T − T̃h‖1M‖ũh − uh‖1 + Ĉ‖T̃h − Th‖1M‖ũh − uh‖1

+α2,max‖u− ũh‖1‖ũh − uh‖1
]

≤ C

[
Ĉ2C

2
M4h4

4ε4
+

Ĉ2M2

4ε5
‖T̃h − Th‖21 +

α2
2,maxC

2
M2h4

4ε6

+(ε4 + ε5 + ε6)‖ũh − uh‖21
]

.(5.59)
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Also, by (3.17), (4.29), (5.47), (5.49) and the Young’s inequality,

−((u− ũh) · ∇T, T̃h − Th)− ((ũh − uh) · ∇T, T̃h − Th)

−(uh · ∇(T − T̃h), T̃h − Th)

≤ C
[
‖u− ũh‖1‖T‖1‖T̃h − Th‖1 + ‖ũh − uh‖1‖T‖1‖T̃h − Th‖1

+‖uh‖1‖T − T̃h‖1‖T̃h − Th‖1
]

≤ C ′
[
Ch2M2‖T̃h − Th‖1 + M‖ũh − uh‖1‖T̃h − Th‖1

+ Ch2M‖T̃h − Th‖1
]

≤ C ′
[

C
2
M4h4

4ε7
+

M2

4ε8
‖ũh − uh‖21 +

C
2
M2h4

4ε9

+(ε7 + ε8 + ε9)‖T̃h − Th‖21
]

.(5.60)

The last four terms in (5.56) are bounded using (5.47)-(5.50):

(d(u− ũh), σ̃h − σh)− (σ − σ̃h, d(ũh − uh)) + (p− p̃h,∇ · (ũh − uh))

−κ(∇(T − T̃h),∇(T̃h − Th))

≤ C
[‖u− ũh‖1‖σ̃h − σh‖0 + ‖σ − σ̃h‖0‖ũh − uh‖1

+‖p− p̃h‖0‖ũh − uh‖1 + κ‖T − T̃h‖1‖T̃h − Th‖1
]

≤ C

[
C

2
M2h4

4ε10
+

C
2
M2h4

4ε11
+

C
2
M2h4

4ε12
+

C
2
M2h4

4ε13
+ ε10‖σ̃h − σh‖20

+(ε11 + ε12)‖ũh − uh‖1 + ε13‖T̃h − Th‖21
]

.(5.61)

Combining all estimates (5.58)-(5.61) and the lower bound (5.57), we have
[

1
2α1,max

− C(ε1 + ε2 + ε3 + ε10)
]
‖σ̃h − σh‖20

+
[
2εα2,min − C(ε4 + ε5 + ε6 + ε11 + ε12 +

M2

4ε8
)
]
‖ũh − uh‖20

+

[
κ− C(ε7 + ε8 + ε9 + ε13 +

Ĉ2M2

4ε2
+

Ĉ2M2

4ε5
)

]
‖T̃h − Th‖21

≤ C

[
Ĉ2C

2
M4h4

4ε1
+

C
2
M2h4

16α2
1,minε3

+
Ĉ2C

2
M4h4

4ε4
+

α2
2,maxC

2
M2h4

4ε6

+
C

2
M4h4

4ε7
+

C
2
M2h4

4ε9
+

C
2
M2h4

4ε10
+

C
2
M2h4

4ε11
+

C
2
M2h4

4ε12
+

C
2
M2h4

4ε13

]
.(5.62)

Finally, if we choose εi appropriately for i = 1, 2, . . . , 13 and M is sufficiently small,
the error bound (5.51) is obtained by the triangle inequality, (5.47)-(5.49) and
(5.62). ¤
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6. Numerical Examples

We now present numerical results of two examples. The first is a test problem
with the domain Ω = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and a specified solution.
The second is a four-to-one contraction channel flow problem with mixed boundary
conditions. The following viscosity parameters used in both examples correspond
to polystyrene [10]:

∆E

R
= 14500,

ε = 0.001.

We also set TR = 500 and κ = 1.
Example 1. We adjust the right hand side functions in (2.1), (2.5)-(2.7) so that
the system has the exact solution

u(x, y) =
[

x2(1− x)y(1− y)
−(2x− 3x2)

(
1
2y2 − 1

3y3
)

]
,

p(x, y) = −100x2 + 100,

T (x, y) = x2(1− x)y(1− y) + 600.

Although we assumed that u = 0 on Γ for analysis, it turns out that the homo-
geneous boundary condition is not necessary for the numerical experiments. We
calculated errors on successively refined meshes. The convergence rate was then
computed, and the results are shown in Table 1. The table shows that our compu-

Mesh Size u σ T
h H1 Error Rate L2 Error Rate H1 Error Rate
1 0.129× 100 NA 0.164× 10−2 NA 0.663× 10−1 NA
1
2 0.425× 10−1 1.60 0.580× 10−3 1.50 0.254× 10−1 1.38
1
4 0.111× 10−1 1.94 0.155× 10−3 1.91 0.720× 10−2 1.82
1
8 0.282× 10−2 1.98 0.399× 10−4 1.96 0.186× 10−2 1.95
1
16 0.709× 10−3 1.99 0.101× 10−4 1.98 0.471× 10−3 1.99
1
32 0.181× 10−3 1.97 0.256× 10−5 1.98 0.118× 10−3 1.99

Table 1. Example 1: Errors and rates

tational results are well matched with the analytical result (5.51).
Example 2. We consider a four-to-one contraction domain, as depicted in Figure
1. Fluid flows from left to right, and this domain is characterized by the sudden
width reduction of 75%. The boundary Γ is divided into four parts: the inflow
boundary Γin, the wall boundary Γwall, the outflow boundary Γout, and the sym-
metry boundary Γsym (so that Γ = Γin ∪ Γwall ∪ Γout ∪ Γsym). Let n and t be the
unit outward normal and tangential vectors to Γ, respectively. Let π be the total
stress. Then the boundary conditions are as follows [10].

• Inflow boundary Γin:

u = uin,

T = Tin.

• Wall boundary Γwall:

u = 0,

∇T · n = 0.
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Figure 1. Example 2: Computational domain Ω.

• Outflow boundary Γout:

u = uout,

∇T · n = 0.

• Symmetry boundary Γsym:

u · n = 0,

∇T · n = 0,

π : nt = 0.

Notice that we can interpret ∇T ·n = 0 as an insulated boundary condition, u = 0
as the fluid does not move if it touches the wall, and that the condition u · n = 0
along Γsym implies that the flow in this half of the domain does not affect the flow in
the other ‘half’ of the domain. The condition π : nt = 0 along Γsym is interpreted
as a vanishing tangential contact force. We then set

uin =

[
6

(
1− (

y
4

)2
)

0

]
, uout =

[
24(1− y2)

0

]

Tin = 540 +
5
2
y.

Note that
∫
Γ
u · n dΓ = 0 for the incompressibility condition ∇ · u = 0. The

equations are simulated, and typical profiles for velocity, temperature, and pressure
are presented in Figures 2 and 3.

7. Concluding remarks

In this paper, the finite element solution of the non-isothermal Stokes-Oldroyd
problem was investigated. We proved that a bounded approximate solution exists
and also derived an error estimate for the solution. As mentioned earlier, this
work is our initial step toward the numerical study of the equations governing
non-isothermal viscoelastic flows characterized by, for example, the Oldroyd-B or
Giesekus constitutive model. There are numerous engineering publications (for
example, [9, 10, 11]) which consider non-isothermal viscoelastic flows and related
application problems. However, further mathematical and numerical analysis of the
problem is needed due to the complexity of the model equations. Details concerning
numerical analysis and other computational issues will be addressed in a later paper.
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Figure 2. Solution profiles of the components of velocity.
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