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NUMERICAL OPTIMIZATION OF RADIATED ENGINE NOISE

WITH UNCERTAIN WAVENUMBERS

YANZHAO CAO, M. Y. HUSSAINI, AND HONGTAO YANG

Abstract. In this paper, we investigate an efficient numerical method to iden-

tify an optimal impedance factor for mitigating radiated engine noise. The

engine tone-noise wavenumber is treated as a random variable. We prove the

existence of the sensitivity derivative of the state variable (which is the acoustic

pressure) with respect to the random wavenumber. The proposed numerical

method is based on the stratified Monte Carlo algorithm whose convergence is

accelerated by exploiting the sensitivity derivative information.
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1. Introduction

The purpose of this paper is to study the optimal design of the acoustic liner
to minimize fan noise radiation from commercial aircraft engine nacelles. There
have been numerous studies of this problem from an engineering perspective (e.g.,
[12, 26, 27] and references therein). In [8, 11], the search for the liner material
minimizing engine noise radiation was treated as an optimal control problem and
liner impedance factors that yielded significant noise reduction were found both
theoretically and numerically.

Optimal control of systems governed by partial differential equations is a very
active research subject [2, 14, 15, 16, 17, 20]. Most research in this area makes
the natural (but rather unrealistic) assumption that the input data and model pa-
rameters of the control systems are precisely known. But it is well known that
every physical system is subject to uncertainty due to varying operating conditions
and imprecise measurements, and that when a mathematical model is formulated,
further uncertainties may arise due to modeling and discretization errors [3, 18].
Practical experience suggests that uncertainties in the input data and the param-
eters of control systems can drastically reduce the reliability and accuracy of the
deterministic optimal control approach.

Optimal control of stochastic partial differential equations clearly makes the con-
trol models more complex, but more flexible, realistic and hence of practical value.
As the effect of parameter uncertainty is built into the model, one would expect
that the optimal control will be less sensitive to changes in the model parameters,
and hence more robust.
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The key to the numerical solution of the proposed problem is an efficient sim-
ulation method to evaluate the cost function. The Monte Carlo simulation is a
generally applicable solution method for stochastic problems. However, it is a well-
known that as the accuracy requirement increases, the number of realizations (de-
terministic problems to be solved) grows far too rapidly. Consequently, algorithms
that employ the Monte Carlo method may be easy to program, but impossible to
employ on problems of practical interest. Alternatives to the Monte Carlo method
include moment methods and the polynomial chaos method [24, 23, 25]. However,
moment methods are accurate only for small variance problems. The polynomial
chaos method may prove to be a viable alternative.

In this paper, we apply a modified Monte Carlo algorithm using the sensitiv-
ity derivatives of the state variable with respect to the uncertain model parameter
– the acoustic wavenumber in the present case. The method was first developed
in [4] and tested extensively in [6, 7, 28]. We focus on the combination of this
method and the stratified sampling method. We provide the existence result on
sensitivity derivatives as well as the variance reduction analysis on the sensitivity-
derivative enhanced stratified Monte Carlo method (SDSMCM). Numerical exper-
iments demonstrate the efficiency of this numerical method.

2. Optimal control model for the optimal impedance factor

2.1. Model formulation. We assume the problem to be axisymmetric [5]. The
nacelle geometry has the generic shape represented in Figure 1. The modal com-
position of the noise source is supposed to be known on the source plane Γ1. The
nacelle boundary is made up of two parts: the first part being the interior boundary
Γ2 to which some acoustic liner material is attached, and the second part being Γ3

that constitutes the rest of boundary of the nacelle geometry. The boundary Γ4 is
assumed to be sufficiently far from the noise source so that the Sommerfeld radia-
tion boundary condition is an adequate approximation. The nacelle symmetry axis
is denoted by Γ5.

If the meanflow is uniform with Mach number M0, the governing equation for
the acoustic pressure u [21] is

(2.1) (1 −M2
0 )
∂2u

∂x2
+
∂2u

∂y2
− 2ikM0

∂u

∂x
+ k2u = 0.

For simplicity, we set the mean Mach number M0 equal to zero. The acoustic
pressure u then satisfies the Helmholtz equation,

(2.2) ∆u+ k2u = 0 on Ω,

subject to the following boundary conditions on the boundary ∂Ω of Ω:

(2.3)

u |Γ1
= g,

(

∂u
∂n + ik

ξ u
)∣

∣

∣

Γ2

= 0,

∂u
∂n

∣

∣

Γ3
= 0,

(

∂u
∂n + iku

)∣

∣

Γ4
= 0,

∂u
∂n

∣

∣

Γ5
= 0,

where k is the wavenumber and ξ is the complex impedance factor whose real part
represents resistance and the imaginary part reactance. Both the dependent and
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Figure 1. The computational domain

the independent variables in the above equations are assumed to be properly non-
dimensionalized. The wavenumber k is a random variable. At least two factors
contribute to the randomness of k:

• the variability of operating conditions of aircrafts;
• measurement errors in determining the value of k.

We define a functional which measures the level of the noise generated by the
engine:

(2.4) J(ξ, u(ξ, k)) = α

∫

Ω

u2dΩ + β

∫

Ω

|∇u|2dΩ + λ|ξ − ξ0|
2

where α ≥ 0, β ≥ 0, λ ≥ 0 are constants, and ξ0 is a given complex number. The
optimization problem consists in finding the parameter ξ to minimize the noise
propagating to the far field, while respecting some constraints on the boundary
shape. More specifically, we want to find ξ that minimizes expected value of the
cost functional J . If k is a random variable, the cost functional J is a random
function, and we define Ĵ(ξ) as the expectation of J :

Ĵ(ξ) =

∫

J(ξ, u(ξ, k))ρ(k)dk

where ρ is the probability density function of k. Our goal in this paper is to con-
struct an efficient numerical algorithm to find the minimizer for the cost functional
Ĵ .

To conclude this subsection, we introduce the notation used throughout the
paper. For a given integer m, let Hm(Ω) be the Sobelev space of complex-valued
functions on Ω. Its norm and inner product are denoted by ‖ · ‖m and (·, ·)m,
respectively. In particular, H0(Ω) is the space of square integrable complex-valued
functions on Ω, and its inner product is denoted by (·, ·). We also need the space
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H1
E(Ω) = {u ∈ H1(Ω) : u|Γ1

= 0}, which is a subspace of H1(Ω). Similarly, we
define L2(Γ), the space of square integrable complex-valued functions on Γ, a part
of the boundary of Ω. The inner product and norm on L2(Γ) are denoted by 〈·, ·〉Γ
and ‖ · ‖Γ, respectively.

2.2. Existence of sensitivity derivatives. In this subsection, we establish the
existence of the sensitivity derivatives that will be used in the Monte Carlo method
in the evaluation of the expected cost functional values. To this end, we first
formulate the state equation (2.2) together with the boundary conditions (2.3) into
the weak form: For given k and ξ, find u = u(ξ, k) ∈ H1(Ω) with u|Γ1

= g such
that

(2.5) a(ξ, k, u, v) = 0, ∀v ∈ H1
E(Ω),

where

a(ξ, k, u, v) = (∇u,∇v) − k2(u, v) +
ik

ξ
〈u, v〉Γ2

+ ik〈u, v〉Γ4
.

Theorem 1. There is a countable set K of k such that variational problem (2.5)
has a unique solution u for k 6∈ K and ξ ∈ Ξ = {complex numbers with positive real
parts}. Furthermore, u is differentiable with respect to k for k 6∈ K and ξ ∈ Ξ, and
the partial derivative ∂u

∂k ∈ H1
E(Ω) is the unique solution of the following variational

equation:

(2.6) a(ξ, k, uk, v) = 2k(u, v) −
i

ξ
〈u, v〉Γ2

− i〈u, v〉Γ4
, ∀v ∈ H1

E(Ω).

Proof. It follows from the trace theorem (see [1]) that there is a function u∗ ∈
H1(Ω) such that u∗|Γ1

= g. The variational problem (2.5) is equivalent to finding
w = u− u∗ ∈ H1

E(Ω) such that

(2.7) a(ξ, k, w, v) = −a(ξ, k, u∗, v), ∀v ∈ H1
E(Ω).

Recall that the embeddings from H1(Ω) to L2(Ω) and H1/2(∂Ω) to L2(∂Ω) are
compact ([1]). By the Riez Representation Theorem, there are compact bounded
linear operators Bj(j = 0, 2, 4) from H1

E(Ω) to itself such that

(φ, ψ) = (B0φ, ψ)1, 〈φ, ψ〉Γj
= (Bjφ, ψ)1, j = 2, 4, ∀φ, ψ ∈ H1

E(Ω).

By the Riez Representation Theorem again, we have for some f(ξ, k) ∈ H1
0 (Ω)

−a(k, ξ, u∗, v) = (f(ξ, k), v)1, ∀v ∈ H1
0 (Ω).

Hence, the variational problem (2.7) becomes

(I − (1 + k2)B0 + ikB2/ξ + ikB4)w, v)1 = (f(ξ, k), v)1, ∀v ∈ H1
0 (Ω),

which is the same as the following linear equation in H1
0 (Ω):

(2.8) L(ξ, k)w = f(ξ, k),

where

L(ξ, k) = I − (1 + k2)B0 +
ik

ξ
B2 + ikB4.

Since B0 is compact, there is a countable set K of k such that I − (1 + k2)B0

has a bounded inverse for all k 6∈ K. For k 6∈ K and ξ ∈ Ξ, let w be a solution to
the associated homogeneous equation of (2.8). Then we have k 6= 0 and

0 = ℑ((L(ξ, k)w,w)1) = ℑ(a(ξ, k, w,w) =
kℜ(ξ)

|ξ|2
‖w‖2

Γ2
+ k‖w‖2

Γ4
,
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which yields that w = 0 on Γ2 and Γ4. Hence, we have

(I − (1 + k2)B0)w = 0.

Therefore, w = 0. It follows from the compactness of B2 and B4 that L(ξ, k) has a
bounded inverse, i.e., equation (2.8) has a unique solution u(ξ, k) in H1

E(Ω), for all
k 6∈ K and ξ ∈ Ξ.

For (ξ, k) ∈ Ξ × (R\K) and |h| sufficiently small, we have

u(ξ, k + h) − u(ξ, k)

h
=
w(ξ, k + h) − w(ξ, k)

h

= L(ξ, k)−1

(

(2k + h)B0 −
i

ξ
B2 − iB4

)

u(k + h, ξ).

It is apparent that u(ξ, k) defines a continuous mapping from the open set Ξ×(R\K)
to H1

E(Ω). Thus, we get

lim
h→0

u(ξ, k + h) − u(ξ, k)

h
= L(ξ, k)−1

(

2kB0 −
i

ξ
B2 − iB4

)

u(ξ, k) in H1
E(Ω).

Hence, u is differentiable with respect to k for k 6∈ K and ξ ∈ Ξ, and
(

I − (1 + k2)B0 +
ik

ξ
B2 + ikB4

)

∂u

∂k
(ξ, k) =

(

2kB0 −
i

ξ
B2 − iB4

)

u(ξ, k).

It follows that ∂u
∂k ∈ H1

E(Ω) is the unique solution of (2.6). The proof is complete.
�

The assumption that ℑ(ξ) > 0 is a practical requirement (see [26]). It follows
from (2.5) and (2.6) that u(k) and its derivative ∂u

∂k can be computed by the same
finite element procedure.

3. Sensitivity-derivative enhanced stratified Monte Carlo method

In this section, we consider the combination of the stratified sampling Monte
Carlo method and the sensitivity-derivative enhanced Monte Carlo method to com-
pute the cost functional Ĵ(ξ). For notational convenience, we replace J(ξ, u(k))
with J(u(k)). Let Φ(k) denote the cumulative distribution function of the random
variable k:

(3.1) Φ(k) =

∫ k

−∞

ρ(ζ)dζ .

The function Φ is non-decreasing with range [0, 1]. The interval [0, 1] is divided
into S strata, assumed here for simplicity to be of equal length:

(3.2)
[

ηs, ηs+1
]

, s = 0, 1, . . . , S − 1 ,

where

(3.3) ηs =
s

S
, s = 0, 1, . . . , S .

In the standard stratified sampling method, one chooses NS random samples,
ψs

i , i = 1, . . . , NS , uniformly distributed in
[

ηs, ηs+1
]

for each s, and computes
the corresponding random samples in the variable ξ by inverting the cumulative
distribution function:

(3.4) ks
i = Φ−1(ψs

i ), i = 1, . . . , NS .
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This procedure ensures that the ks
i are distributed according to the density function

ρ(k). The expected value of J is then approximated by

(3.5) Ĵ ≈
1

S NS

S−1
∑

s=0

NS
∑

i=1

J(u(ks
i )) .

For the the sensitive-derivative enhanced stratified sampling, one first computes
the contribution to (3.5) from each stratum by applying the sensitivity derivative
enhanced Monte Carlo method (see [10] for details of the method). In particular,

(3.6) Ĵ ≈
1

S

S
∑

s=1

J̃s ,

where

(3.7) J̃s = J(u(k̄s)) +
1

NS

NS
∑

i=1

(

J(u(ks
i )) − Js

1 (ks
i )
)

,

with

(3.8) Js
1 (k) = J

(

u
(

k̄s
))

+ Ju

(

u
(

k̄s
))

uk

(

k̄s
) (

k − k̄s
)

,

where Ju denotes the gradient of J , uk denotes the sensitivity derivative of u with
respect to k and k̄s is the mean value of k in the s-th stratum, given by

(3.9) k̄s =

∫ ks+1

ks kρ(k)dk
∫ ks+1

ks ρ(k)dk
,

where ks is computed from the ηs from (3.4).
Next we examine the variance reduction effects of the sensitivity derivative en-

hanced stratified sampling method. Assume that k is uniformly distributed on
[a, b], i.e., k ∼ U(a, b). Let ki ∼ U(µi, µi+1). Then the standard stratified sampling
method (3.5) for the evaluation of the expected value of J(u(k)) is equivalent to

the evaluation of the expectation of the random variable 1
S

∑S
i=1 J(u(ki)) by the

standard Monte Carlo method, while the sensitivity derivative enhanced stratified
sampling method is equivalent to the evaluation of the expectation of the random

variable 1
S

∑S
i=1

(

J
(

u
(

ki
))

− J1

(

ki
))

by the standard Monte Carlo method. Let
E(χ) and V (χ) denote the expectation and variance of the random variable χ, re-
spectively. We have the following estimates for the variances of these two random
variables.

Theorem 2. Let m = max
∣

∣

d
dkJ(u(k))

∣

∣ and M = max
∣

∣

∣

d2

dk2 J(u(k))
∣

∣

∣
. Then

(3.10) V

(

1

S

S
∑

i=1

J
(

u(ki)
)

)

≤
m2

6S3
(b− a)2

and

(3.11) V

(

1

S

S
∑

i=1

(

J
(

u(ki)
)

− J1

(

ki
)

)

)

≤
7M2

720S5
(b− a)4.
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Proof. By Equation (7) of [9], we have that V (J(u(ki))) ≤ m2

2
V (ki). Thus

V

(

1

S

S
∑

i=1

J
(

u(ki)
)

)

≤
1

S2

S
∑

i=1

m2

2
V (ki) =

m2

6S3
(b− a)2.

From equation (8) of [9], we have that

V
(

J(u(ki)) − J1(k
i)
)

≤
M2

2

[

V 2(ki) + E(k − ki))
4
]

.

Therefore

V

(

1

S

S
∑

i=1

(J(u(ki)) − J1(k
i))

)

≤
1

S2

S
∑

i=1

M2

2

[

V 2(ki) + E(k − ki))
4
]

=
M2

2S2

S
∑

i=1

(

(b− a)4

144S4
+

(b− a)4

80S4

)

=
7M2

720S5
(b− a)4.

�

Based on (3.10) and (3.11), we observe that

• the smaller the variance of k, the more effective is the stratified sampling
method, and

• for sufficiently large S, the standard stratified sampling method accelerates
the convergence of the standard Monte Carlo method by variance reduction,
and the sensitivity-derivative enhanced stratified sampling method further
accelerates convergence of sampling.

4. Numerical experiments

In this section, we present numerical results to show that the choice of optimal
impedance parameter results in reducing the noise level significantly. The varia-
tional problem (2.5) is solved by a linear finite-element method. The computational
domains are triangulated by Triangle (by J.R. Shewchuk at http://www.cs.cmu.edu/
∼quake/triangle.html). The resulting linear system is solved by the BiCG method.
In the following, we take γ = 0 and the noise source g(y) = 20.0+exp(3y) sin(10πy).
We also assume that k is uniformly distributed on (2π − 0.2, 2π + 0.2), which is
simulated by the random number generator gsl ran uniform of the GNU Scientific
Library (http://www.gnu.org/software/gsl/).

First, we compare the sensitivity-derivative enhanced stratified Monte Carlo
method (SDSMCM) with the traditional stratified Monte Carlo (SMCM). To this

end, we consider computing Ĵ(ξ) for ξ = 5 − i with the computational domain
and its triangulation specified in Figure 2 (a), for which the mesh size is approxi-

mately 0.2919. Using the Simpson rule, we obtain Ĵ(5 − i) = 1355.1192 which is
taken as the “exact value”. For S = 10, we display the errors (with respect to this
“exact value”) of SMCM and SDSMCM as well as the ratios between the them in
Table 1, which show that SDSMCM converges much faster than SMCM. We also
observe that SDSMCM is quite accurate even when the total sample size is only
32 × 10 = 320.

Next, we compare the value of Ĵ when the hard-wall condition is imposed on Γ2

and its value at a minimum ξ∗ obtained by using APPSPACK 4.0 (see [13, 22]). It
should be pointed out that the hard-wall condition corresponds to |ξ| = ∞. In this
case, we use the computational domain and its triangulation specified in Figure 2
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Figure 2. The computational domains and their triangulation

Table 1. SMCM and SDSMCM

NS SMCM SDSMCM SMCM/SDSMCM
4 0.83359988 0.18739076 4.4485
8 0.55246987 0.13558235 4.0748
16 0.19973568 0.11324156 1.7638
32 0.17677950 0.06135548 2.8812
64 0.15025451 0.04273177 3.5162
128 0.10705324 0.02690782 3.9785
256 0.06522164 0.02046095 3.1876
512 0.04597298 0.01471749 3.1237

(b), for which the mesh size is approximately 0.0415 near the noise source and 0.2917
in the far field. In Table 2, we display the results for S = 10 and NS = 32. Table
2 shows that the noise level is reduced significantly when the optimal impedance
factor is used.

Table 2. The optimal impedance factors

α β Ĵ(∞) ξ∗ Ĵ(χ∗) (Ĵ(∞) − Ĵ(χ∗))/Ĵ(∞)
1 0 3375 0.390625 − 1.09375i 2012 40%
1 1 137613 0.46875 − 1.09375i 85158 38%

Finally, we display the contour maps of the amplitude of E(u) in Figures 3 and
4. We observe that the distribution of noise is practically confined to the proximity
of the inlet when the liner impedance factor ξ is optimal as in the case of the
deterministic wavenumber (see [8]).

5. Conclusions

A sampling technique is proposed for the numerical solution of optimal control
of stochastic partial differential equations, and its performance is demonstrated
in the case of engine noise mitigation problem. Its performance is found to be
significantly better than the traditional Monte Carlo sampling. As the sensitivity
derivatives can be computed at a fraction of the cost of an analysis computation,
and as they are usually available as part of many analysis codes, this sampling
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Figure 3. The contour maps of |E(u(ξ))| for α = 1, β = 0 :
(left) ξ = ∞ and (right) ξ = ξ∗

Figure 4. The contour maps of |E(u(ξ))| for α = 1, β = 1 :
(left) ξ = ∞ and (right) ξ = ξ∗

technique has the potential for application to practical problems. Future research
will focus on multiple random parameters, random control variables and enhancing
the performance of quasi Monte Carlo and Latin Hypercube methods with the
sensitivity derivative information.
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