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A LEAST-SQUARES METHOD FOR CONSISTENT MESH
TYING
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Abstract. In the finite element method, a standard approach to mesh tying is

to apply Lagrange multipliers. If the interface is curved, however, discretization

generally leads to adjoining surfaces that do not coincide spatially. Straight-

forward Lagrange multiplier methods lead to discrete formulations failing a

first-order patch test [12]. A least-squares method is presented here for mesh

tying in the presence of gaps and overlaps. The least-squares formulation for

transmission problems [5] is extended to settings where subdomain boundaries

are not spatially coincident. The new method is consistent in the sense that it

recovers exactly global polynomial solutions that are in the finite element space.

As a result, the least-squares mesh tying method passes a patch test of the or-

der of the finite element space by construction. This attractive computational

property is illustrated by numerical experiments.

Key Words. finite elements, mesh tying, least-squares, first-order elliptic

systems

1. Introduction

Mesh tying, or domain bridging, is the opposite of substructuring. A substructur-
ing method solves a boundary value problem using subdomains formed by clustering
finite elements from a given discretization of a domain Ω. A mesh tying method
solves the same problem by using a discretization of Ω, composed of subdomains
that were meshed completely independently. The weak problem is obtained by join-
ing subdomain problems through a suitable variational principle. The simplest non-
trivial case of mesh tying is as follows. Assume that Ω is an open bounded domain
with Lipschitz continuous boundary Γ, composed of two subdomains; Ω1 ∪Ω2 = Ω
and Ω1 ∩ Ω2 = ∅. The interface between the two domains, σ = Ω1 ∩ Ω2, is a con-
nected, non empty set. We want to solve numerically the elliptic boundary value
problem

(1) −∇ ·A∇ϕ+ αϕ = f in Ω, and ϕ = h on Γ,

using independently defined finite element partitions of Ω1 and Ω2, with boundary
conditions imposed on each Γi = Γ ∩Ωi as shown in Figure 1. This computational
setting arises in several different contexts. Equations with discontinuous coefficients
are ideally formulated as transmission or interface problems with σ aligned to the
discontinuity. Another example is solid mechanics in which two deforming bodies
come into contact at σ. A third example arises when for practical and efficiency
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Figure 1. The domain Ω is composed of two subdomains, shown
on the right.

reasons, grid generation on Ω is replaced by independent meshing of its subdo-
mains. Among other things this approach enables an embarrassingly parallel mesh
generation and simplifies meshing of bodies with complex geometries.

1.1. Specifics of mesh tying. In mesh tying Ω is first partitioned into subdo-
mains and then each subdomain is discretized independently. Let Ωhi denote a
discretization of Ωi, i = 1, 2. The discrete subdomains induce approximations Γh1 ,
Γh2 , σh1 and σh2 of Γ1, Γ2 and the interface σ, respectively. Discretization of Ω
is given by Ωh = Ωh1 ∪ Ωh2 . In mesh tying there are two basic configurations for
the discrete interfaces σh1 and σh2 . The first one is when the adjoining surfaces
spatially coincide, σh1 = σh2 = σh. Typically, this happens when σ is polygonal
and can be matched exactly by, e.g., simplexes; see the bottom row in Figure 2.
Such interfaces may arise from cutting a complex shape into simpler subdomains
to improve efficiency of the mesher. The general case, σh1 6= σh2 , typically happens
when σ is curved and cannot be represented exactly1 even by elements with curved
sides. This configuration, illustrated in the top row of Figure 2, arises in problems
with discontinuous coefficients and contact problems, where the problem definition
naturally leads to curved interfaces. In contrast, in domain decomposition and
substructuring methods, the discrete domain Ωh is determined first, and the sub-
domains are defined afterwards as shown in Figure 3. As a result, in these methods
the adjoining interfaces always coincide, σh1 = σh2 = σh.

A minimal requirement for any mesh-tying or domain bridging method is a con-
sistency condition called patch test. A method passes a patch test of order k if it can
recover any solution of (1) that is a polynomial of degree k. When σh1 6= σh2 mesh
tying methods based on Lagrange multipliers experience difficulties and naively de-
fined schemes fail even a first-order patch test, see [12] for an example. Several
approaches have been proposed to address this problem in both two and three di-
mensions [9, 8, 10, 6, 7, 11, 12]. The methods considered in these papers usually
start by selecting one of the non-matching interfaces as a master and the other as
a slave surface. The approach of [8, 9, 10] defines Lagrange multipliers on the slave

1While finite element methods routinely replace curved boundaries Γ by polygonal approxi-
mations Γh, the situation is fundamentally different when a curved interface σ is replaced by two
spatially distinct discrete interfaces σh

1 and σh
2 . While both cases can be viewed as variational

crimes in the sense of [14, p.193], the former case leads to a perturbation of the original problem
that can be estimated by the Strang’s lemma [14, Lemma 4.1, p.186]. For polygonal approxima-

tions the error in energy is O(h3); see [14, p.196]. In the latter case, the discrete computational

domain Ωh
1 ∪Ωh

2 has gaps and overlaps where the problem ceases to be well-defined. In the overlap

regions the ‘solution’ is multiple valued, and in the voids it is undefined.
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Figure 2. In mesh tying subdomains are defined before discretiza-
tions. When σ is curved the discrete subdomains may have spa-
tially non-coincident interfaces (top row). When σ is polygonal,
interfaces will match (bottom row). The overlap region is shown
in black and the void region is shown in gray.

Figure 3. In domain decomposition subdomains are defined after
partition of Ω and their adjoining surfaces are spatially coincident

surface and uses a projection operator from the master surface. The mesh tying
approaches considered in [6, 7, 11, 12] build additional mesh structures between the
slave and master interfaces using tools that range from mesh imprinting to local L2

projections.
In contrast, our approach for dealing with non-matching interfaces utilizes least-

squares principles and extends a least-squares method for transmission problems
(see Section 2 or [5]), where σh1 = σh2 , to problems where σh1 6= σh2 . Originally,
least-squares methods were conceived as a way to recover the desirable Rayleigh-
Ritz setting even in cases when the boundary value problem could not be associated
with unconstrained optimization of a quadratic energy functional. A least-squares
functional is defined as the sum of the residuals of the differential equations mea-
sured in the norm of some Sobolev space. As a result, such a functional always
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vanishes at the exact solution. By exploiting this property, a least-squares method
for mesh tying is formulated that automatically passes a patch test of the same
order as the finite element space employed in its definition. We start by perturb-
ing the discrete interfaces until there are no void regions between the subdomains.
Then, least-squares principles for each subdomain are joined together by generalized
jump terms defined on the overlap region between the subdomains. By measuring
residual energy and not physical energy, a least-squares functional may measure
energy redundantly in subdomain intersections. This redundancy greatly simpli-
fies the algorithm. Methods that minimize physical energy subject to appropriate
constraints on the interfaces, on the other hand, require additional meshing and
bookkeeping to avoid counting energy twice in the overlap regions.

The contents of the paper are as follows. In the next section we introduce the
notation used throughout the paper. For the convenience of the reader, the method
of [5] is summarized in Section 2. The extension to non-matching interfaces is
presented in Section 3. Numerical examples illustrating the consistency of the least
squares mesh tying method are discussed in Section 4.

1.2. Notations. Our focus is on mesh tying for the case of non-matching inter-
faces. For clarity, throughout the paper we assume that Ω is such that Γh = Γ and
Ωhi match their continuous counterparts everywhere except along the interface σ:

Γhi = Γi but σh1 6= σh2 ,

where σhi = ∂Ωhi /Γ
h
i . The void and overlap regions between Ωh1 and Ωh2 are

ΩV = Ω/(Ω
h

1 ∪ Ω
h

2 ) and ΩO = Ωh1 ∩ Ωh2 ,

respectively. We assume that

(2) Ω = (Ω
h

1/ΩO) ∪ (Ω
h

2/ΩO) ∪ ΩO ∪ ΩV .

Variational settings will be discussed in terms of standard finite element notation.
As usual, L2(D) will stand for the Hilbert space of all square integrable functions
defined over a domain D. Similarly H(div,D) will stand for the Hilbert space of all
functions in (L2(D))n with square integrable divergence, equipped with the norm

‖v‖div,D =
(
‖v‖20,D + ‖∇ · v‖20,D

)1/2
.

For k > 0, Hk(D) denotes the subspace of L2(D) that consists of all functions
having square integrable derivatives up to order k. The space H1

0 (D) contains all
functions in H1(D) that vanish on ∂D. In situations when ∂D is partitioned into
two disjoint pieces Γ and σ, we will use H1

Γ(D) to denote all functions in H1(D)
that vanish on Γ only. The inner product and norm on Hk(D) are denoted by
(·, ·)k,D and ‖ · ‖k,D, respectively.

To discuss least squares for mesh tying we need the tensor product space

(3) H1 = {ϕ = (ϕ1, ϕ2) |ϕi ∈ H1(Ωi); i = 1, 2} ,

its subspace H1
0 consisting of pairs (ϕ1, ϕ2) ∈ H1

Γ1
(Ω1) × H1

Γ2
(Ω2) that vanish on

Γi, and the space

(4) H(div) = {v = (v1,v2)|vi ∈ H(Ωi,div); i = 1, 2)}.

The spaces H1 and H(div) equipped with the inner products

� ϕ,ψ �1=
2∑
i=1

(ϕi, ψi)1,Ωi
and � u,v �div=

2∑
i=1

(ui,vi)div,Ωi
,
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respectively, are Hilbert spaces. Their norms are denoted by ||| · |||1 and ||| · |||div.

2. A least-squares methods for transmission problems

Consider a symmetric and positive definite matrix function A that is continuous
in Ω with the exception of a piecewise smooth surface σ that divides Ω into two
simply connected sub-domains Ω1 and Ω2, see Figure 1. We consider least-squares
methods for the transmission problem

−∇ ·Ak∇ϕi + αiϕi = fi in Ωi, i = 1, 2,(5)
ϕi = 0 on Γi, i = 1, 2,(6)
ϕ1 = ϕ2 on σ.(7)

where Ai = A|Ωi and fi are given source terms. Standard least-squares methods
[3] formulate (5) as the equivalent first-order system

(8) ∇ · ui + αiϕi = fi and ui + Ai∇ϕi = 0 in Ωi, i = 1, 2

augmented with the boundary condition (6), the interface condition (7) and the
additional flux balance condition

(9) u1 · n1 + u2 · n2 = 0 .

The least-squares method for the transmission problem is formulated in the case
that Ωh1 and Ωh2 have a matching interface, σh = σh1 = σh2 (see Section 3 for the
non-matching case). Let

[ψ] = ψ1 − ψ2 and [v] = v1 · n1 + v2 · n2

and Hh denote a finite element subspace of H = H1
0×H(div). Gunzburger and Cao

[5] proposed to solve (5)-(7) numerically by minimizing the quadratic functional

(10)
Jh(ψh,vh; f) =

1
2

2∑
i=1

(
‖∇ · vhi + αiψi − fi‖20,Ωh

i
+ ‖vhi + Ai∇ψhi ‖20,Ωh

i

)
+

1
2h1+ε0

∫
σh

[ψh]2ds+
1

2hε1

∫
σh

[vh]2ds

over Hh. Note that the functional Jh is mesh-dependent and is only defined over
finite dimensional subspaces Hh of H1

0 ×H(div) parameterized by h. The values
of ε0 and ε1 are real parameters that can be adjusted to improve convergence.

A similar method, but based on least-squares principle for the second order
problem (5) was considered by Aziz et al [1]. This method requires conforming
subspaces of H2 that are more difficult to construct on general unstructured grids.

The minimizer of (10) is the solution (ϕh,uh) ∈ Hh of the Euler equation:

(11) Bh(ϕh,uh;ψh,vh) = Fh(ψh,vh) ∀(ψh,vh) ∈ Hh.

The bilinear form for Jh(ψh,vh; f) is

(12)

Bh(ϕh,uh;ψh,vh) =
2∑
i=1

(
∇ · uhi + αiϕi,∇ · vhi + αiψi

)
0,Ωh

i

+
2∑
i=1

(
uhi + Ai∇ϕhi ,vi + Ai∇ψi

)
0,Ωh

i

+
1

h1+ε0

∫
σh

[ϕh][ψh] ds+
1
hε1

∫
σh

[uh][vh] ds

and the right hand side functional is Fh(ψh,vh) =
∑
i(fi,∇·vhi )0,Ωh

i
+(fi, ψhi )0,Ωh

i
.
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The least-squares method (11) is well understood. Under some reasonable as-
sumptions Gunzburger and Cao [5] proved that for any proper subspace Hh of H
the bilinear form (12) is coercive on Hh × Hh. In particular, coercivity holds if
the scalar and the vector variables on each sub-domain are approximated by the
same finite element spaces. For example, we can use piecewise linear elements
to approximate all unknown fields. Other discretization choices are also possible.
Bochev and Gunzburger [4] have shown that by using H(div) conforming elements
for the flux the least-squares method acquires some additional properties such as
local conservation. We will not consider this type of elements for Hh in this paper.
Coercivity of the bilinear form B(·, ·) implies that the weak equation (11) has a
unique solution. The jump terms in (10) are computed using field expansions from
each sub-domain, and so the grids on σh1 and σh2 are not required to match. Note
that in mortar methods a separate grid on σh may be required for the discrete
Lagrange multiplier.

3. Least squares method for mesh tying

A least-squares method for spatially non-coincident interfaces is developed next.
In order to focus the discussion on a simple type of mesh tying instead of general
transmission problems, we assume that A is the identity and α ≡ 1. When σh1 6= σh2
the main problem with (10) is the definition of the interface jump terms. To moti-
vate our approach, note that these terms can be viewed as a “glue” that is applied
to the common interface to hold together the sub-domain problems. When the
surfaces don’t match but there’s a sufficient overlap ΩO between the sub-domains,
they can be joined together by applying the glue to the overlap region. Variational
realization of this “glue” are the generalized jump terms

(13) ‖ϕh1 − ϕh2‖21,ΩO
and ‖vh1 − vh2‖2div,ΩO

,

respectively, which replace the standard interface jump terms in (10). Because a
least-squares functional measures residual rather than physical energy, there’s no
need to subtract energy from ΩO.

3.1. The mesh tying region. Our least-squares functional is defined in the case
of overlapping regions, ΩV = ∅. If the intersection σh = σh1 ∩ σh2 is nontrivial, then
the corresponding terms in the least-squares for transmission problems apply in σh.
In the case of non-coincident sub-domains we propose to augment the least-squares
functional (10) by adding the generalized jump terms (13). We define the mesh
tying ‘region’ as

(14) Σh = ΩO ∪ σh = Ω
h

1 ∩ Ω
h

2 .

In words Σh is the union of the overlap region and any spatially coincident segments
of the discrete interfaces.

If Ωhi are such that ΩV 6= ∅ we proceed as follows to perturb the interface to
close the voids. Bear in mind that in the case of polygonal domains and quasi-
uniform meshes, the diameter of the overlap and void regions is O(h2). Let N(σhi )
denote the set of all vertices on interface σhi , i = 1, 2 that are not on the Dirichlet
boundary Γ. For each vertex zi ∈ N(σhi ) we consider a perturbation δzi and define
the perturbed subdomains Ω̂hi by changing zi ∈ N(σhi ) to zi + δzi. Note that the
only elements in Ω̂hi that differ from the elements in Ωhi are those that have a vertex
on the interface. We assume that Ωhi are such that there exist perturbations δz
with the following properties; see Figure 4:

(1) The void region, ΩV , of the perturbed subdomains is empty.
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Figure 4. Interface perturbations give sub-domains with no gaps
between them.

(2) The overlap region Ω̂O = Ω̂h1 ∩ Ω̂h2 6= ∅ or if Ω̂O = ∅, then σh1 = σh2 = σh.
(3) All perturbed elements in Ω̂hi are non-degenerate.

The hypothesis that ΩV = ∅ is satisfied by defining Σh as in (14), but in terms
of the perturbed subdomains. In most situations of practical interest, the above
conditions can be easily met. An example of domain perturbation used in our
numerical experiments is given in Section 4. In some cases, such as an interface
σ containing a polygonal subregion, perturbations such that σh1 ∩ σh2 is nontrivial
are available. The overlap region ΩO may not be simply connected. However, it
is important to note that the purpose of the interface node perturbations is not to
match the interfaces (which in general is impossible), but only to eliminate the void
region. Mesh imprinting techniques are much more complicated.

3.2. A least-squares principle for mesh tying. In what follows H1 and H(div)
denote the spaces (3) and (4) defined with respect to Ωh1 and Ωh2 . The least-squares
functional Jh on the finite element subspace Hh of H1 ×H(div) considered here is

(15)

Jh(ψh,vh; f) =
1
2

( 2∑
i=1

‖∇ · vhi + ψhi − fi‖20,Ωh
i

+ ‖vhi +∇ψhi ‖20,Ωh
i

+
1

h1+ε0

∫
σh

[ψh]2 ds+
1
hε1

∫
σh

[vh]2 ds
)

+ωφ‖ψh1 − ψh2 ‖21,ΩO
+ ωv‖vh1 − vh2‖2div,ΩO

,

where σh is the set from (14). The first two lines in (15) coincide with the least
squares functional (10) for the transmission problem. The last line contains terms
that can be viewed as the proper extensions of the jump terms to the overlap
regions. The weights ωφ and ωv are positive real numbers that are independent of
the mesh size h. The least-squares principle for (15) is

(16) min
(ψh,vh)∈Hh

Jh(ψh,vh; f).

The finite element minimizer (ϕh,uh) ∈ Hh of (16) solves the Euler equation

(17) BhΣ(ϕh,uh;ψh,vh) = FhΣ(ψh,vh) ∀(ψh,vh) ∈ Hh.
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Figure 5. Computational domains Ωh1 (red) and Ωh2 (green) used
in the numerical experiments. The dotted line is the true curved
interface σ. The left plot shows the discretized sub-domains before
the perturbation. The void regions are clearly visible. The right
plot shows the sub-domains after the perturbation to remove the
gaps. The nodes on the interior disk Ωh1 are not perturbed. The
interface nodes on the annulus Ωh2 are perturbed. The circles mark
the original interface node locations.

The bilinear form and functional in (16) are given by

(18)

BhΣ(ϕh,uh;ψh,vh)

=
2∑
i=1

(
∇ · uhi + ϕi,∇ · vhi + ψi

)
0,Ωh

i

+
(
uhi +∇ϕhi ,vi +∇ψi

)
0,Ωh

i

+
1

h1+ε0

∫
σh

[ϕh][ψh] ds+
1
hε1

∫
σh

[uh][vh] ds

+ωφ
(
ϕh1 − ϕh2 , ψ

h
1 − ψh2

)
1,ΩO

+ ωv

(
uh1 − uh2 ,v

h
1 − vh2

)
div,ΩO

and FhΣ(ψh,vh) =
∑
i(fi,∇ · vhi )0,Ωh

i
+ (fi, ψhi )0,Ωh

i
, respectively.

The analysis of the mesh tying least-squares method, including the automatic
passage of patch tests of all orders, will be presented in the forthcoming paper [2].
Motivated by the analysis in this paper we choose ωφ = ωv = 3.

4. Implementation and numerical results

In this section we briefly comment on the computational geometry used in the
sub-domain perturbations that eliminate the void. Then we present some numerical
experiments with the least-squares mesh tying method. In all experiments the
computational domain Ω is a disk of radius two. It is partitioned into a disk of
radius one (the sub-domain Ω1) and an annulus (the sub-domain Ω2); see Fig. 5.
Linear systems were solved using MATLAB’s sparse direct Cholesky factorization
algorithm.

4.1. Sub-domain perturbations and assembly. To discretize Ω1 and Ω2 we
used the grid generation package Triangle [13]. The initial discrete subdomains Ωh1
and Ωh2 represented polygonal approximations of the disk and the annulus. Because
our goal was to test the mesh tying least-squares method for overlapping domains,
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the mesh was generated in such a way that σh1 and σh2 were two distinct interfaces;
see Fig. 5.

The complexity of the finite precision arithmetic computational geometry re-
quired to determine the overlap domain was reduced by using two simplifications.
First, in all the meshes used no interface edge was refined from the input curves.
Second, in the numerical experiments the overlap regions were always contained in
the union of the elements from either domain with an interface vertex. Further-
more, for our geometry, only the interface nodes on the annulus are perturbed. The
nodes are perturbed until they intersect the opposite boundary, and then a small
amount more.

To assemble the matrix for the least-squares problem in (16) some interpolation
was required in the overlap regions to compute the element contributions from the
generalized jump terms (13). The triangle intersection triangulations needed for
this purpose were determined using a shortest edge criterion.

4.2. Patch test and convergence studies. We show results for a patch test us-
ing piecewise linear elements. We carried out experiments on different combinations
of grids for Ωh1 and Ωh2 that had different amounts of overlap (after perturbations).
A representative example of our patch test is shown in Fig. 6. The exact solution is
ϕ(x, y) = y. The Dirichlet data on the discrete boundary ∂Ωh is set by evaluating
the exact solution at the boundary nodes. The plots show that the least-squares
mesh tying method recovers the exact solution and its derivatives. The width of
the overlap had no impact on the outcomes of the patch tests.

We conclude this section with a convergence study of the least-squares mesh tying
method. The convergence results shown below were obtained by using a manufac-
tured solution given by the first eigenfunction of the partial differential equation
for Dirichlet boundary conditions. The eigenfunctions are radially symmetric and
have representations in terms of Bessel’s function of the first kind of order zero,
j0(r). Specifically, −∆ϕ + ϕ = ϕ(1 + ω2), for ϕ(x, y) = j0(rω/2), r =

√
x2 + y2

and ω = 2.404825557695707 . . .. In the mesh convergence studies, the finest meshes
were determined by uniform mesh refinement from coarser meshes.

One can show that on a sub-domain Ωhi the least-squares functional (15) is
equivalent to the energy norm ‖v‖div,Ωh

i
+ ‖ϕ‖1,Ωh

i
. (For the norm equivalence

properties of the functional on Ω1
h ∩ Ωh2 we refer to [2].) Therefore, for piecewise

linear elements we expect to observe linear convergence rates for the H1 and H(div)
semi-norm errors in the scalar and the vector variables, respectively. Our results
are shown in Fig. 7. In this figure, errors are reported separately for each one of
the sub-domains. We see that as the mesh is refined, errors on both sub-domains
become closely clustered and converge at approximately the same linear rate. While
the amount of overlap did not prove important for passing the linear patch test, we
found that it had some effect on the numerical convergence rates. Results on Fig. 7
were obtained with overlap of width h/6. Preliminary experiments with minimal
h1.75/6 overlap produced slightly lower convergence rates.

5. Conclusions

A least-squares mesh tying method is presented in Section 3 for the partial dif-
ferential equation −∇2ϕ+ αϕ = f posed over a domain that consists of two over-
lapping subdomains. The corresponding finite element meshes are non-coincident.
The least-squares functional ties the meshes together across the curved interface
covered by the subdomains intersection. Advantages of the formulation, including
patch test consistency and optimal convergence rates, are demonstrated.
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Figure 6. Results for the patch test with solution u(x, y) = y
are displayed. The top two figures show the components of the
gradient, and bottom figure shows the displacement. The solution
is exact to within round off error. In the top figure the vertical
scale is from −5×10−15 to 5×10−15. The overlap region is visible
in the bottom figure.
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