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Abstract. We propose a mathematical framework to effectively study lattice

materials with periodic and non-periodic structures over entire spaces in one,

two, and three dimensions. The existence and uniqueness of solutions for peri-

odic lattice problems with absolute terms are proved in discrete Sobolev spaces.

By Fourier transform discrete lattice problems are converted to semi-discrete

problems for which similar results are establish in semi-discrete Sobolev spaces.

For lattice problems without absolute terms, additional conditions are imposed

on data for the existence and uniqueness of solutions in discrete energy spaces

in one,two and three dimensions. Two concrete examples are analyzed in the

proposed mathematical framework. The mathematical framework, methodol-

ogy and techniques in this paper can be utilized or generalized to non-periodic

lattices on entire spaces and boundary value problems on lattices.

Key Words. lattice, cell, multi-scale, periodic structures, grids, absolute term,

linear interpolation, Fourier transform.

1. Introduction

Lattice materials are porous materials consisting of periodic cells or non-periodic
cells. The cells are composed of rods, or shells, or solid structures. The size of
cell is usually small with respect to the size of the body filled with the lattice
materials. The lattice materials with simple micro-structures are characterized by
a single length scale, for instance, Lattice Block Materials which are developed by
JAMCORP corporation. The hierarchic lattice materials have hierarchic multi-
scale structures. In either case, we deal with a multi-scale problem. The lattice
materials can offer significantly higher strength-to-weight and stiffness-to-weight
ratio than their base materials. Hence they can be potentially advantageous in
practical engineering applications.

Various micro mechanical models for the lattice materials with periodic and
non-periodic structures have been studied for the analysis of the overall properties,
crack propagation, etc. There are papers addressing these problems, especially
in the mechanics, material science, and physics literatures [8, 12, 17, 19, 21]. For
mathematical theory which is related to the problem of the lattice materials we refer
to the book [5] and her various papers,e.g. [4, 6, 7]. Recently, asymptotic analysis
for periodic lattice problem and multi-scale numerical method based on Fourier
transform and homogenization appeared in [13, 14, 15, 20]. In these papers, the
scale of cells is assumed so small that asymptotic arguments can be utilized and
only problems in presence of absolute term are addressed so that the corresponding
bilinear form satisfies the inf-sup condition on a pair of Sobolev spaces. In practical
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applications, these assumptions may not be valid, a substantial adjustment and
generalization are needed.

In our paper we focus on periodic lattice materials composed of rods and balls
in entire spaces. Such a structure results in a system of difference equations with
infinite number of unknowns. We intend to establish a mathematical framework
for systematical research on such lattice problems in entire spaces of one, two, and
three dimensions. This framework can be used or generalized for lattice materials
with complicated micro-structures such as plates and shells, or three dimensional
solid structures. The analysis and method developed in this paper can be utilized
for boundary value problems on lattices and non-periodic lattice problems, which
will be illustrated in a coming paper [9, 10].

For lattice problems with absolute term, the existence and uniqueness of the
solutions of variational equation and equilibrium equation are proved in these dis-
crete Sobolev spaces over lattices. The Fourier transform is a powerful tool for
studying periodic lattice problems, deriving homogenization results and designing
effective computations. The Fourier transform converts discrete lattice problems
to semi-discrete problems for which the theorem on existence and uniqueness of
solutions is proved in proper semi-discrete Sobolev spaces.

For the lattice problems without absolute terms, we impose additional condition
on the data, and substantially modify the discrete Sobolev spaces for the existence
and uniqueness of solutions. For proving the results in two and three dimensional
lattice problems, we need to utilize the properties of functions in H1(Rd), d = 2, 3,
which are attached in Appendix. To utilizing these properties we extend a grid
function defined on a lattice to a continuous and piecewise linear function defined
over whole space Rd, d = 2, 3 based on a proper triangular or tetrahedral partition
of Rd, and establish the equivalence of discrete Sobolev norms of grid functions and
Sobolev norms of its extension. The techniques of partition and extension can be
generalized to non-periodic lattice problems.

The paper is organized as the follows. In Section 2, we first introduce various
discrete Sobolev and energy spaces, and prove the existence and uniqueness of the
solutions of variational equation for the lattice problems with absolute term. With
help of Fourier transform, we convert a fully discrete problem over lattices to a semi-
discrete problem over a combination of a bounded domain and the micro structure
of the cells. The existence and uniqueness of the solutions for the semi-discrete
problems are proved, which are parallel to those for fully discrete problems. In
Section 3 we address the lattice problems without absolute terms in the energy
spaces for data in the weighted discrete L2 spaces, which lead to the existence and
uniqueness of the solutions. We develop a representation formula for the solutions
of the lattice problems in terms of Fourier transform and its inverse in Section
4. We present two examples of lattice problem in the last section, one is a one-
dimensional model, another is two-dimensional model. Some concrete formulas
for these examples will be derived, which are very helpful to understand lattice
problems in general setting. In Appendix, we give some important properties of
functions in H1(Rd), d = 2, 3, which are essential to analysis of lattice problems
without absolute terms.

2. General Setting in d-dimensions

2.1. Lattice in entire spaces
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Let Q be a master cell in Rd with unit size. A typical lattice and its master
cell are shown in Fig. 2.1. We assume that the master cell is a d-dimensional
cube without losing generality because a non-cubic cell can be mapped to cube
by a linear transformation, e.g. as shown in Fig 2.2. The master cell is extended
periodically in entire space by an integer translation:

Qm =
{

y ∈ Rd
∣

∣y = x+

d
∑

i=1

mit
(i), x ∈ Q

}

,m ∈ Zd. (2.1)

where Z = {0,±1,±2, . . . } denotes the set of all integers, and t(i) is a unit vector
in the xi axis. There is a set KQ of nodes {x(κ)}q

κ=1 in the master cell Q, and a
set Km is the integer translation of KQ by

Km =
{

x(m,κ) = x(κ) +

d
∑

i=1

mit
(i), x(κ) ∈ KQ

}

,m ∈ Zd. (2.2)

(a) A lattice (b) Master cell Q furnished with  springs

Fig. 2.1 A periodic lattice in two dimension

Note that the indices κ of nodes in each cell Qm are the same although the
locations of these points in different cells are different. Hence we denote the set of
indices {1, 2, . . . , q} by K. Without losing generality, we assume that the cells Qm’s
and sets Km’s are mutually disjoint, namely,

Qn ∩Qm = ∅,Kn ∩Km = ∅, n 6= m,n,m ∈ Zd.

For example, Q = [0, 1)2 and nodes within such a cell, shown in Fig. 5.2, will satisfy
the above assumption.

We now further specify the connectivity of lattices. By b(m,κ,n,λ), we denote an
elastic rod connecting the nodes x(m,κ) and x(n,λ) with intersect area A and length
b(m,κ,n,λ). We assume that

(C.1) Each node is connected to others by the rods, at least one node and at most
M nodes;

(C.2) Any two nodes x(m,κ) and x(n,λ) are linked by the shortest chain Lm,κ,n,λ:

x(m,κ) = x(n1,λ1) → x(n2,λ2) → x(n3,λ3) → · · · → x(ns,λs) = x(n,λ) such that x(nt,λt)

is connected to x(nt+1,λt+1), 1 ≤ t ≤ s− 1, and

|x(m,κ) − x(n,λ)| ≤
∑

1≤t≤s−1

|x(nt+1,λt+1) − x(nt,λt)| ≤ η|x(m,κ) − x(n,λ)|,

where η is independent of m,n, κ and λ;

(C.3) The length of rods are uniformly bounded, i.e. for any x(m,κ) and x(n,λ)

which are connected, there holds

b1 ≤ b(m,κ,n,λ) = |x(m,κ) − x(n,λ)| ≤ b2.
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To effectively describe the connectivity of the lattice, we introduce Bκ and Bκ,λ

Bκ = {(n, λ) ∈ Zd ×K such that x(0,κ) and x(n,λ) are connected } (2.3a)

and
Bκ,λ = {n ∈ Zd such that (n, λ) ∈ Bκ}. (2.3b)

Bκ and Bκ,λ, based on the connectivity of the nodes x(0,κ) in the cell Q0, can

be periodically generalized to sets B
(m)
κ and B

(m)
κ,λ for all m ∈ Zd by the integer

translation. Due to the periodicity , it is easy to verify that

n ∈ Bκ,λ if and only if − n ∈ Bλ,κ. (2.4)

For the sake of simplicity, we will omit cell index m whenever m = 0. For
instance, we write x(0,κ) = x(κ) , b(0,κ,n,λ) = b(κ,n,λ), etc. By E(κ,n,λ) we denote
the Young’s modules of the elastic rod b(κ,n,λ). By (2.4) it holds that

E(κ,n,λ) = E(λ,−n,κ). (2.5)

A lattice is characterize by the local structure K, the global and periodical trans-
lation on Zd, and the connectivity Bκ. We now denote the lattice with the above
structures by G = G(K,Zd, Bκ).

2.2. A truss problem on unscaled lattice

Let u = (um)m∈Zd and um = (um,κ)κ∈K be a grid functions on G and K, re-
spectively, and each um,κ is a vector (u1

m,κ, u
2
m,κ, . . . , u

s
m,κ)⊤ with s-components.

In one dimension, s = d = 1, and um,κ denotes the displacement for elastic rods

or the temperature of heat problems at the node x(m,κ). For two and three di-
mensional heat transform problems , um,κ denotes the temperature if s = 1. For
two and three dimensional elastic problem, s ≥ d. If the connections of rods are
non-rigid, then s = d, and um,κ denotes the displacement at the node x(m,κ). If
the connection of rods are rigid, then s = d + 3d−2 for d = 2, 3, and um,κ denotes

the displacement and rotation at the node x(m,κ). We furnish the rods with springs
in the axis directions at each node with Hook’s coefficients denoted by diagonal
matrices C(m,κ) = C(κ),m ∈ Zd, κ ∈ K. We assume that the ratio of the length
of rods and the intersect area A of rods >> 1. For the convenience to characterize
the nature of our methodology, we will focus on the case that s=d, namely, a trust
problem without bending.

If external forces exert on the rods at the nodes, denoted by f = (fm,m ∈ Zd)
with fm = (fm,1, fm,2, · · · , fm,q), we have the equilibrium equation

−
∑

(n,λ)∈Bκ

E(κ,n,λ) (um+n,λ − um,κ) + C(κ)um,κ = fm,κ,∀m ∈ Zd,∀κ ∈ K. (2.6)

with

E(κ,n,λ) = AE(κ,n,λ) (x(n,λ) − x(κ))

|x(n,λ) − x(κ)|2
(x(n,λ) − x(κ))⊤

|x(n,λ) − x(κ)|2 (2.7a)

and
C(κ) = diag(C

(κ)
1 , C

(κ)
2 , . . . , C

(κ)
d ), C

(κ)
ℓ ≥ 0. (2.7b)

Let H1(G) and L2(G) be the Sobolev spaces over the lattice G with the norms

‖u‖2
L2(G) =

∑

m∈Zd

∑

κ∈K

|um,κ|2 (2.8)

and
‖u‖2

H1(G) = |u|2H1(G) + ‖u‖2
L2(G) (2.9a)
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where |u|H1(G) is the semi-norm,

|u|2H1(G) =
∑

m∈Zd

∑

κ∈K

∑

(n,λ)∈Bκ

|um+n,λ − um,κ|2
|x(m+n,λ) − x(m,κ)|2 . (2.9b)

The corresponding variational problem is defined as

B(u, v) = F (v) (2.10)

with the bilinear form on H1(G) ×H1(G)

B(u, v) =
∑

m∈Zd

∑

κ∈K

{

〈C(κ)um,κ, vm,κ〉

+
∑

(n,λ)∈Bκ

〈1
2
E(κ,n,λ)(um+n,λ − um,κ), (vm+n,λ − vm,κ)〉

} (2.11)

and the linear functional on H1(G)

F (v) =
∑

m∈Zd

∑

κ∈K

〈fm,κ, vm,κ〉, (2.12)

where 〈x, y〉 =
∑d

j=1 xjyj is the inner product of two vectors in Rd, and |x|2 =

〈x, x〉.

The strain energy of the trust is

G(u) = B(u, u) =
∑

m∈Zd

∑

κ∈K

{

〈C(κ)um,κ, um,κ〉

+
∑

(n,λ)∈Bκ

〈1
2
E(κ,n,λ)(um+n,λ − um,κ), (um+n,λ − um,κ)〉

}

.
(2.13)

The energy space denoted by E(G) is the family of all grid functions u on G with
finite energy G(u), and ‖u‖E(G)= G(u)1/2 is referred as the energy norm.

Note that

〈E(κ,n,λ) (um+n,λ − um,κ)

|x(m+n,λ) − x(m,κ)| ,
(um+n,λ − um,κ)

|x(m+n,λ) − x(m,κ)| 〉

=
E

|x(m+n,λ) − x(m,κ)|4 |〈x
(m+n,λ) − x(m,κ), um+n,λ − um,κ〉|2

=
E

|x(m+n,λ) − x(m,κ)|2 |um+n,λ − um,κ|2cos2φκ,n,λ

where φκ,n,λ is the angle between the vectors x(m+n,λ)−x(m,κ) and um+n,λ −um,κ.
For s = 1, u is scale, cosφκ,n,λ ≡ 1. Hence

〈E(κ,n,λ) (um+n,λ − um,κ)

|x(m+n,λ) − x(m,κ)| ,
(um+n,λ − um,κ)

|x(m+n,λ) − x(m,κ)| 〉 = 0 (2.14)

if and only if um+n,λ −um,κ ≡ 0 for all m ∈ Zd, κ ∈ K, i.e. u is a constant function
on G. For s = d = 2, cosφκ,n,λ 6≡ 1, then (2.15) holds if and only if um+n,λ−um,κ ≡ 0

or (um+n,λ − um,κ) ⊥ (x(m+n,λ) − x(m,κ)), i.e. um,κ =
∑

1≤i≤2 ciei + c3τ3, where
ei, 1 ≤ i ≤ 2 is a unit vector in the xi-axis, which denotes the translation, τ3 =

(x
(m,κ)
2 ,−x(m,κ)

1 )⊤ for all m ∈ Zd, κ ∈ K,which denotes the rotation. Similarly,
(2.14) holds for s = d = 3 if and only if um,κ =

∑

1≤i≤3 ciei + ci+3τi+3 where
ei, 1 ≤ i ≤ 3 is a unit vector in the xi-axis, which denotes the translation, τ4 =

(x
(m,κ)
2 ,−x(m,κ)

1 , 0)⊤, τ5 = (0, x
(m,κ)
3 ,−x(m,κ)

2 )⊤, and τ6 = (−x(m,κ)
3 , 0, x

(m,κ)
1 )⊤ for

all m ∈ Zd, κ ∈ K,which denote the rotations around the axes.
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Let

Pr = Pc = all constant functions on G for s = 1, 1 ≤ d ≤ 3 (2.15a)

and

Pr = span{ei, 1 ≤ i ≤ d, τd+j , 1 ≤ j ≤ d(d− 1)/2} for 1 < s = d ≤ 3. (2.15b)

which denotes the rigid body motions for truss problems in two and three dimen-
sions. Then we conclude with the following lemma based the analysis above.

Proposition 2.1 Let Pr be the set of grid functions on G as given in (2.15). Then

〈E(κ,n,λ) (um+n,λ − um,κ)

|x(m+n,λ) − x(m,κ)| ,
(um+n,λ − um,κ)

|x(m+n,λ) − x(m,κ)| 〉 = 0

if and only if u ∈ Pr.

A lattice is called mechanically rigid if the strain energy is zero if and only if the
motion of lattices is rigid body motion. All lattices considered in this paper are
assumed rigid.

Lemma 2.2 The variational form B onH1(G)×H1(G) given in (2.10) is continuous,
and it is coercive if C(κ) 6≡ 0 for all κ ∈ K.

Proof. Note that

(x(n,λ) − x(κ))T

|x(n,λ) − x(κ)|
(x(n,λ) − x(κ))

|x(n,λ) − x(κ)| = (cosθ1, · · · , cosθd)
T (cosθ1, · · · , cosθd)

where θℓ is the angle between the rod b(κ,n,λ) and the xℓ-axis. We have immediately

|B(u, v)| ≤ C‖u‖H1(G)‖v‖H1(G)

with

C = Max{ max
n∈Bκ,λ,κ,λ∈K

E(κ,n,λ), max
1≤ℓ≤d,κ∈K

C
(κ)
ℓ }.

If C(κ) > 0 for all κ ∈ K , then

B(u, u) ≥ d1|u|2H1(G) + d2‖u‖2
L2(G)

with

d1 = min
n∈Bκ,λ,κ,λ∈K

E(κ,n,λ) > 0, d2 = min
1≤ℓ≤d,κ∈K

C
(κ)
ℓ > 0.

Therefore

B(u, u) ≥ d‖u‖2
H1(G)

with d = min{d1, d2}.

If C(κ) = 0 for some κ ∈ K, but there is at least one C(κ) > 0, e.g. C
(κ0)
ℓ > 0 for

some κ0 ∈ K and ℓ = 1, 2, . . . , d, and C(κ) = 0 (null matrix) for all other κ ∈ K, we
have

B(u, u) ≥ d1|u|2H1(G) +
∑

m∈Zd

〈C(κ0)um,κ0
, um,κ0

〉.

Note that

‖u‖2
L2(G) =

∑

m∈Zd

∑

κ∈K

|um,κ|2 ≤ 2
∑

m∈Zd

(

∑

κ∈K

|um,κ − um,κ0
|2 + |um,κ0

|2
)
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x(m,κ) and x(m,κ0) may not be connected, but they are linked by a chain Lm,κ,m,κ0
:

x(m,κ) = x(n1,λ1) → x(n2,λ2) → · · · → x(ns,λs) = x(m,κ0), and due to the assump-
tions (C.2) and (C.3), there holds

sb1 ≤ |x(m,κ) − x(m,κ0)| ≤
∑

1≤t≤s−1

|x(nt+1,λt+1) − x(nt,λt)|

≤ η|x(m,κ) − x(m,κ0)| ≤ ηdQ

where dQ is the diameter of the master cell Q, which implies that the number s of
the nodes on the chain is uniformly bounded,

s ≤ ηdQ

b1
. (2.16)

Therefore, we have
∑

m∈Zd

∑

κ∈K

|um,κ − um,κ0
|2 ≤ C

∑

m∈Zd

∑

κ∈K

∑

(n,λ)∈Bκ

|um,κ − un+m,λ|2.

This leads directly to

‖u‖2
L2(G) ≤ C

(

|u|2H1(G) +
1

C0

∑

m∈Zd

〈C(κ0)um,κ0
, um,κ0

〉
)

≤ C
( 1

d1
B(u, u) +

1

C0

∑

m∈Zd

∑

κ∈K

〈C(κ)um,κ, um,κ〉
)

≤ 1

d̂2

B(u, u)

with d̂2 = ( C
d1

+ C
C0 )−1, and C0 = min1≤ℓ≤d{C(κ0)

ℓ } > 0, which implies

B(u, u) ≥ d1

2
|u|2H1(G) +

d̂2

2
‖u |2L2(G) ≥ d‖u‖2

H1(G)

with d = 1
2 min{d1, d̂2}. �

Theorem 2.3 Suppose that C(κ) 6≡ 0 for all κ ∈ K. Then, for any f ∈ (H1(G))−1,
the variational equation (2.7) has a unique solution u ∈ H1(G), and

‖u‖H1(G) ≤ C‖f‖(H1(G))−1 .

In particular, if f ∈ L2(G), there holds

‖u‖H1(G) ≤ C‖f‖L2(G). (2.17)

Proof. The theorem follows from the previous lemma and Lax-Milgram Theorem.
�

Remark 2.1 If C
(κ)
ℓ 6≡ 0 for all κ ∈ K, the energy norm ‖u‖E(G) is equivalent to the

norm ‖u‖H1(G). If C
(κ)
ℓ ≡ 0 , ‖u‖E(G) is equivalent to the semi-norm |u|H1(G). The

bilinear form B and linear functional F are defined on energy space E(G), which
is no longer a normed space. Therefore Theorem 2.3 can not stand because the
energy space E(G) is not imbeded in L2(G).

In next theorem we deal with the relation between the solution of the equilibrium
equation (2.6) and the solution of the variational equation (2.10).

Theorem 2.4 If u ∈ H1(G) is the solution of the variational equation (2.10), then
it satisfies the equilibrium equation (2.6). Vice versa, If u ∈ H1(G) solves the
equilibrium equation (2.6), it satisfies the variational equation (2.10).
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Proof. We first prove that the solution u of the equilibrium equation (2.6) satisfies
the variation equation (2.10). For v ∈ H1(G), multiplying (2.6) with vm,k and
summarizing with respect to m and κ, we have

−
∑

m∈Zd

∑

κ,λ∈K

∑

n∈Bκ,λ

〈E(κ,n,λ) (um+n,λ − um,κ) , vm,κ〉

+
∑

m∈Zd

∑

κ∈K

〈C(κ)um,κ, vm,κ〉 =
∑

m∈Zd

∑

κ∈K

〈fm,κ, vm,κ〉.

The above sums exist since u, v ∈ H1(G). Letting m+n = m′ and n = −n′, we get
∑

m∈Zd

∑

κ,λ∈K

∑

n∈Bκ,λ

〈E(κ,n,λ) (um+n,λ − um,κ) , vm,κ〉

=
∑

m′∈Zd

∑

κ,λ∈K

∑

−n′∈Bκ,λ

〈E(κ,−n,λ) (um′,λ − um′+n′,κ) , vm′+n′,κ〉

Due to the properties (2.4) and (2.5), there holds
∑

m′∈Zd

∑

κ,λ∈K

∑

−n′∈Bκ,λ

〈E(κ,−n′,λ) (um′,λ − um′+n′,κ) , vm′+n′,κ〉

= − ∑

m′∈Zd

∑

κ,λ∈K

∑

n′∈Bλ,κ

〈E(λ,n′,κ) (um′+n′,κ − um′,λ) , vm′+n′,κ〉

Which leads to the (2.10) immediately.

We now show that the variational solution u ∈ H1(G) solves the equilibrium
equation (2.10). Let v ∈ H1(G) be such that vm,κ = 0 for all κ ∈ K except κ = 1.
Then the variational equation leads to
∑

m∈Zd

∑

κ∈K

∑

n∈Bκ,1

〈1
2
E(κ,n,1) (um+n,1 − um,κ) , vm+n,1〉 +

∑

m∈Zd

〈C(κ)um,1, , vm,1〉

−
∑

m∈Zd

∑

λ∈K

∑

n∈B1,λ

〈1
2
E(1,n,1) (um+n,λ − um,1) , vm,1〉 =

∑

m∈Zd

〈fm,1, vm,1〉.

Selecting vm,1 such that vm,1 = 0 for all m ∈ Z except v1,1, we obtain

−
∑

λ∈Bκ

∑

n∈B1,λ

〈E(κ,n,λ) (u1+n,λ − u1,1) , v1.1〉 + 〈C(1)u1,1, v1.1〉 = 〈f1,1, v1.1〉

which implies

−
∑

λ∈Bκ

∑

n∈B1,λ

E(κ,n,λ) (u1+n,λ − u1,1) + C(1)u1,1 = f1,1

Similarly, there holds for any m ∈ Zd

−
∑

λ∈Bκ

∑

n∈B1,λ

E(κ,n,λ) (um+n,λ − um,1) + C(1)um,1 = fm,1,

Actually, the above argument can be carried for any κ ∈ K. Thus, we have the
equation (2.6). �

2.3 Fourier transform for lattice problems

For grid functions u on the lattice G we introduce the Fourier transform

F(u) =
∑

m∈Zd

ume
i〈m,t〉 = û(t) (2.18a)
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which is a linear functional over the space C∞
per(I

d) =
{

û ∈ C∞(Id)|û(t) is a 2π-

periodic function } with Id = (−π, π)d. û(t) is a complex-valued vector function
(û1(t), û1(t), · · · , ûq(t)), and each ûκ(t) has s components ûℓ

κ(t), 1 ≤ ℓ ≤ s, and

ûκ(t) =
∑

m∈Zd

um,κe
i<m,t>, ∀κ ∈ K. (2.18b)

The inverse Fourier transform is defined as

F−1(û) = (um)m∈Zd (2.19a)

for any û(t) ∈ C∞
per(I

d), and

um = (2π)−d

∫

Id

û(t)e−i<m,t>dt (2.19b)

For lattice problems we are interested in some of specific spaces over G, e.g.
L2(G), then F(u) ∈ L2(Id), which has a stronger topology than the linear functional
on the space C∞

per(I
d). In particular, we are interested in the Fourier transform on

the spaces L2
ν(G), ν ≥ 0 with the norm

‖u‖2
L2

ν(G) =
∑

m∈Zd

∑

κ∈K

(1 + |m|2)ν |um,κ|2.

Lemma 2.5 The Fourier transform realizes isomorphism: L2(G) ↔ L2(Id) and
L2

ν(G) ↔ Hν
per(I

d), where Hν
per(I

d) is the subspace of 2π- periodic functions in

Hν(Id), and

‖u‖2
L2(G) = (2π)−d‖û‖2

L2(Id), (2.20a)

‖u‖2
L2

ν(G)
∼= ‖û‖2

Hν(Id). (2.20b)

Hereafter ”∼=” means equivalent with constants independent of major subjects, e.g.
the functions u and û.

Proof It is easy to verify that

‖û‖2
L2(Id) =

∫

Id

∑

m∈Zd

∑

κ∈K

∑

0≤ℓ≤s

|ûℓ
κ|2dt =

∫

Id

∑

m∈Zd

∑

κ∈K

∑

0≤ℓ≤s

|uℓ
m,κe

i<m,t>|2dt

= (2π)d
∑

m∈Zd

∑

κ∈K

∑

0≤ℓ≤s

|uℓ
m,κ|2 = (2π)d

∑

m∈Zd

|um|2 = (2π)d‖u‖2
L2(G)

which implies an isomorphism : L2(G) ↔ L2(Id) and (2.20a). For û(t) ∈ Hν
per(I

d)
with integer ν ≥ 0, there holds

Dαû(t) =

d
∏

ℓ=1

(imℓ)
αℓ û(t)

for any α = (α1, α2, . . . , αd) with |α| =
∑

1≤i≤d αi ≤ ν, which leads to

‖û‖2
Hν(Id)

∼=
∑

m∈Zd

(1 + |m|2)ν |um|2 = ‖u‖2
L2

ν(G).

For non-integer ν > 0,Hν
per(I

d) is defined as an interpolation space, and (2.19b)
stands for non-integer ν as well. �
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We now apply Fourier transform to the variational problem (2.10). We introduce

a bilinear form B̂ and a linear functional F̂ , namely,

B̂ (û, v̂) =

∫

Id

∑

κ∈K

{

∑

(n,λ)∈Bκ

1

2
〈E(κ,n,λ)(ûλe

−i<n,t> − ûκ),

(v̂λe
−i<n,t> − v̂κ)〉〈C(κ)ûκ, v̂κ〉

}

dt

(2.21a)

and

F̂ (v̂) =
∑

κ∈K

∫

Id

〈f̂ , v̂κ〉dt. (2.21b)

Lemma 2.6 Let u, v ∈ H1(G) and f ∈ L2(G), and let û, v̂, f̂ be their Fourier
transforms, respectively. Then there hold

B(u, v) = (2π)−dB(û, v̂) (2.22)

and
F (v) = (2π)−dF̂ (v̂). (2.23)

Proof. For v̂ =
∑

m∈Zd vme
i<m,t> and f̂ =

∑

m∈Zd fme
i<m,t>, there holds

F̂ (v̂) =
∑

κ∈K

∫

Id

〈f̂κ, v̂κ〉dt =
∑

κ∈K

∫

Id

〈
∑

n∈Zd

fn,κe
i<n,t>,

∑

m∈Zd

vm,κe
i<m,t>〉dt

=
∑

κ∈K

∫

Id

∑

n,m∈Zd

〈fn,κ, vm,κ〉ei<(n−m),t>dt

= (2π)d
∑

κ∈K

∑

m∈Zd

< fm,κ, vm,κ > .

This leads to (2.23). Similarly we have
∑

κ∈K

∫

Id

〈C(κ)ûκ, v̂κ〉dt = (2π)d
∑

κ∈K

∑

m∈Zd

〈C(κ)um,κ, vm,κ〉. (2.24)

It is easy to see that
∫

Id

∑

κ∈K

∑

(n,λ)∈Bκ

1

2
〈E(κ,n,λ)

(

ûλe
−i<n,t> − ûκ

)

,
(

v̂λe
−i<n,t> − v̂κ

)

〉dt

=

∫

Id

∑

κ∈K

∑

(n,λ)∈Bκ

1

2
〈E(κ,n,λ)(

∑

m∈Zd

um,λe
i<(m−n),t> −

∑

m∈Zd

um,κe
i<m,t>),

(
∑

m′∈Zd

vm′,λe
−i<m′−n,t> −

∑

m′∈Zd

vm′,κe
i<m′,t>)〉dt

=

∫

Id

∑

κ∈K

∑

(n,λ)∈Bκ

∑

m∈Zd

1

2
〈E(κ,n,λ) (um+n,λ − um,κ) , (vm+n,λ − vm,κ)〉dt

= (2π)
d
∑

m∈Zd

∑

κ∈K

∑

(n,λ)∈Bκ

1

2
〈E(κ,n,λ) (um+n,λ − um,κ) , (vm+n,λ − vm,κ)〉.

which together with (2.24) yields (2.22). �

In order to properly define a variational problem over Id ×KQ,we need to intro-
duce new function spaces. Let L2(KQ) and H1(KQ) be the spaces of grid functions
on KQ with the following norms

‖w‖2
L2(KQ) =

∑

κ∈K

|wκ|2 =
∑

κ∈K

∑

1≤ℓ≤s

|wℓ
κ|2



FRAMEWORK FOR LATTICE PROBLEMS 317

and

‖w‖2
H1(KQ) =

∑

κ∈K

∑

(n,λ)∈Bκ

|wn,λ − wκ|2
|x(n,λ) − x(κ)|2 + ‖w‖2

L2(KQ).

L2
(

Id,H1(KQ)
)

and L2
(

Id, L2(KQ)
)

are spaces furnished with the norms :

‖ŵ‖2
L2(Id,H1(KQ)) =

∫

Id

‖ŵ(t)‖2
H1(KQ)dt

and

‖ŵ‖2
L2(Id,L2(KQ)) =

∫

Id

‖ŵ(t)‖2
L2(KQ)dt.

Lemma 2.7 If f ∈ Hℓ(G), then f̂(t) ∈ L2
(

Id,Hℓ(KQ)
)

, ℓ = 0, 1, and

‖f̂(t)‖L2(Id,Hℓ(KQ)) = (2π)d‖f‖Hℓ(G)

Proof. The assertion follows easily from the definition of the spaces. �

Remark 2.2 The functions û = û(t) in the space H l(Id), l = 0, 1 are vector functions
with sq components, and the functions û = û(t, x(κ)) in L2

(

Id, L2(KQ)
)

are those

defined on a semi-discrete domain Id × KQ with s components,. Obviously, the
space L2

(

Id
)

coincides with the space L2
(

Id, L2(KQ)
)

, and

‖f̂‖L2(Id,L2(KQ)) = ‖f̂‖L2(Id).

But the space H1(Id) is totally different from the space L2
(

Id,H1(KQ)
)

. The
latter is related to the connectivity Bκ, and the former is not. Furthermore, the
spaceH1(Id) is an isomorphism of the space L2

1(G) according to Lemma 2.5, and the
space L2

(

Id,H1(KQ)
)

is an isomorphism of the space H1(G) according to Lemma
2.6.

The bilinear form B̂ in (2.20) and linear functional F̂ in (2.21) are defined on
L2
(

Id,H1(KQ)
)

×L2
(

Id,H1(KQ)
)

and L2
(

Id,H1(KQ)
)

, respectively. The energy

space Ê = Ê
(

Id ×KQ

)

is defined as one equivalent to L2
(

Id,H1(KQ)
)

if C(κ) 6≡ 0,
with an energy norm

‖ŵ‖2
Ê(Id×KQ)

= B̂(ŵ, ŵ)1/2.

We are now able to precisely address the variational problem over the domain
Id ×KQ.

Theorem 2.8 Let B̂ be the bilinear form on L2
(

Id,H1(KQ)
)

× L2
(

Id,H1(KQ)
)

and F̂ be linear functional on L2
(

Id,H1(KQ)
)

as given in (2.20) and (2.21), re-

spectively. If f̂ ∈ L2
(

Id, L2(KQ)
)

and C(κ) 6≡ 0,∀κ ∈ K, then the problem:

B̂ (û, v̂) = F̂ (v̂), ∀v̂ ∈ L2
(

Id,H1(KQ)
)

(2.25)

has a unique solution û ∈ L2
(

Id,H1(KQ)
)

, and

‖û‖L2(Id,H1(KQ)) ≤ C‖f̂‖(L2(Id,L2(KQ))). (2.26)

Remark 2.3 Combining Theorem 2.7 with Theorem 2.2 and Lemma 2.5, we have the
equivalence between the problem (2.10) and the problem (2.27), i.e. the equation
(2.25) has a unique solution û ∈ L2

(

Id,H1(KQ)
)

and the estimate (2.26) holds for

f̂ ∈
(

Id, L2(KQ)
)

if and only if the problem (2.10) has a unique solution u ∈ H1(G)

and the estimate (2.17) holds for f = F−1(f̂) ∈ L2(G), and u = F−1(û).
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Applying the Fourier transform to the variational equation (2.10) yields the vari-
ational equation (2.25). Applying Fourier transform to the equilibrium Equations
(2.6) leads to a equilibrium Equations over Id ×KQ

−
∑

(n,λ)∈Bκ

E(κ,n,λ)
(

ûλe
−i<n,t> − ûκ

)

+ C(κ)ûκ = f̂κ,∀κ ∈ K. (2.27)

Then we have a theorem indicating the relation between the solution of (2.25) and
the solution of (2.27).

Theorem 2.9 If û ∈ L2
(

Id,H1(KQ)
)

is the solution of the variational equation

(2.25) with f̂ ∈ L2
(

Id, L2(KQ)
)

, then it satisfies the equilibrium equation (2.27).

Vice versa, if û ∈ L2
(

Id,H1(KQ)
)

solves the equilibrium equation (2.27) with

f̂ ∈ L2
(

Id, L2(KQ)
)

, then it satisfies the variational equation (2.25).

Proof. The proof is analogous to that for Theorem 2.3. �

3. Lattice Problems Without Absolute Terms

In practical applications, many lattice problems are associated with no absolute
terms, i.e. C(κ) ≡ 0 for all κ ∈ K. We seek u ∈ E(G) such that

B(u, v) = F (v), ∀v ∈ E(G) (3.1)

with

B(u, v) =
∑

m∈Zd

∑

κ∈K

∑

(n,λ)∈Bκ

1

2
〈E(κ,n,λ) (um+n,λ,−um,κ) , (vm+n,λ − vm,κ)〉 (3.2a)

and

F (v) = 〈f, v〉G =
∑

m∈Zd

∑

κ∈K

〈fm,κ, vm,κ〉. (3.2b)

It is extremely important for us to address properly these problems. Without
the absolute term the energy space E(G) is not equivalent to the space H1(G), and
E(G) is not embedded in L2(G). Actually, the “energy norm” ‖u‖E(G) is equivalent
to the semi-norm |u|H1(G). Consequently, the solution of the lattice problem is not

unique in E(G) and may not exist in H1(G). Hence we have to modify the space

H1(G), such that the solution exists uniquely in modified space H̃1(G) with the
norm equivalent to semi-norm of H1(G).

The modification of the spaces in one, two and three dimensions are quite dif-
ferent. We shall address them differently in this section. We need to introduce a
weighted space L2

ν,σ(G) for all dimensions with the norm

‖u‖L2
ν,σ(G) =







∑

m∈Zd

∑

κ∈K

(

1 + |m|2
)ν

log2σ(1 + |m|) |um,κ|2






1
2

(3.3)

where ν and σ are real numbers. We shall write L2
0,0(G) = L2(G), L2

ν,0(G) = L2
ν(G).

Obviously, L2
ν,σ(G) ⊇ L2(G) if ν, σ ≤ 0, and L2

ν,σ(G) ⊆ L2(G) if ν, σ ≥ 0.

3.1 Lattice problems with C(κ) ≡ 0 in one dimension

Lemma 3.1 If v ∈ E(G), and v0,1 = 0, then

‖v‖L2
−1(G) ≤ C|v|H1(G). (3.4)
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Proof. First, suppose that x(n,κ) and x(n,1) are always connected for any κ ∈ K
with κ 6= 1. Then

∑

m∈Z

∑

κ∈K

|vm,κ|2
1 +m2

≤ C
(

∑

m∈Z

∑

κ∈K

(vm,κ − vm,1)
2

+
∑

m∈Z

|vm,1|2
1 +m2

)

≤ C
(

|v|2H1(G) +
∑

m∈Z

|vm,1|2
1 +m2

)

.

(3.5)

If there are some κ ∈ K such that x(m,κ) and x(m,1) are not connected, there al-
ways exists by (C.3) a chain Lm,1,m,κ : x(m,1) = x(n1,λ1) → x(n2,λ2) · · · → x(ns,λs) =

x(m,κ), and due to (2.15)
∑

m∈Z

|vm,κ − vm,1|2 ≤ C
∑

m∈Z

∑

κ∈K

∑

(n,λ)∈BK

|x(m+n,λ) − x(m,κ)|2 ≤ C|v|2H1(G). (3.6)

Hence, (3.5) holds for the cases that x(m,κ) and x(m,1) are connected or not con-
nected.

Let wm = vm,1. It is sufficient to show that

∞
∑

m=1

|wm|2
1 +m2

≤ C
∞
∑

m=1

|wm − wm−1|2 (3.7)

Since w0 = 0 and wm =
∑m

j=1 (wj − wj−1), we have with ε > 0 by Cauchy inequal-
ity

∞
∑

m=1

|wm|2
1 +m2

≤
∞
∑

m=1

1

1 +m2





m
∑

j=1

(wj − wj−1)
2
jε









m
∑

j=1

j−ε





≤ C

∞
∑

m=1

m1−ε

1 +m2

m
∑

j=1

(wj − wj−1)
2
jε ≤ C

∞
∑

j=1

(wj − wj−1)
2
jε

∞
∑

m=j

m−ε

1 +m2
.

Note that
∞
∑

m=j

m−ε

1 +m2
≤ C

∞
∑

m=j

m−1−ε ≤ C

∫ ∞

j

ξ−1−εdξ ≤ Cj−ε

which leads to (3.7). Therefore
∞
∑

m=1

|vm,1|2
1 +m2

≤ C
∞
∑

m=1

|vm,1 − vm−1,1|2 . (3.8a)

Similarly, it can be prove that

0
∑

m=−∞

|vm,1|2
1 +m2

≤ C
−∞
∑

m=0

|vm,1 − vm−1,1|2 . (3.8b)

Combining (3.8a) and (3.8b), we have

∑

m∈Z

|vm,1|2
1 +m2

≤ C
∑

m∈Z

|vm,1 − vm−1,1|2 . (3.9)

Although vm,1 and vm−1,1 may be connected or not connected, we have due to
(C.3)

∑

m∈Z

|vm,1 − vm−1,1|2 ≤ C
∑

m∈Z

∑

κ∈K

∑

(n,λ)∈Bκ

|vm+n,λ − vm,κ|2 ≤ C |v|2H1(G) ,
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which together with (3.5) and (3.9) leads to (3.4). �

Theorem 3.2 If f ∈ L2
1(G) and

∑

m∈Z

∑

κ∈K fm,κ = 0, then for any v ∈ E(G) it
holds that

|〈f, v〉G | =

∣

∣

∣

∣

∣

∑

m∈Z

∑

κ∈K

fm,κvm,κ

∣

∣

∣

∣

∣

≤ C‖f‖L2
1(G)|v|H1(G) (3.10)

Proof. Note that by Schwarz inequality
(

∑

m∈Z

∑

κ∈K

|fm,κ|
)2

≤
∑

m∈Z

∑

κ∈K

|fm,κ|2(1 +m2)
∑

m∈Z

∑

κ∈K

1

1 +m2
≤ C‖f |‖L2

1(G).

Hence, f ∈ L1(G). Because
∑

m∈Z

∑

κ∈K fm,κ = 0, we have by Lemma 3.1

|〈f, v〉G | =

∣

∣

∣

∣

∣

∑

m∈Z

∑

κ∈K

fm,κvm,κ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m∈Z

∑

κ∈K

fm,κ (vm,κ − v0,1)

∣

∣

∣

∣

∣

≤
(

∑

m∈Z

∑

κ∈K

(

1 +m2
)

|fm,κ|2
)1/2(

∑

m∈Z

∑

κ∈K

(vm,κ − v0,1)
2

1 +m2

)1/2

≤ C‖f‖L2
1(G)|v|H1(G).

�

We introduce the space H̃1(G) with the norm

‖u‖H̃1(G) =
{

‖u‖2
L2

−1(G) + |u|2H1(G)

}1/2

,

and a quotient space

Ĥ1(G) = H̃1(G)/P0

with norm

‖u‖Ĥ1(G) = inf
α∈P0

‖u− α‖H̃1(G)

where P0 is a subspace of H̃1(G), containing all constant grid functions on G. Due
to Lemma 3.1 it is easy to show that

‖u‖Ĥ1(G)
∼= |u|H1(G).

In the framework of the space H̃1(G) and Ĥ1(G) we are addressing the existence
and uniqueness of the solution of the variational problem (3.1) with d = 1.

Theorem 3.3 If f ∈ L2
1(G) and

∑

m∈Z

∑

κ∈K fm,κ = 0, then the problem (3.1)
with d = 1 has a solution u ∈ E(G), and

|u|H1(G) ≤ C‖f‖L2
1(G). (3.11)

The solution is unique up to a constant.

Proof. Due to the equivalence between |u|H1(G) and ‖u‖Ĥ1(G)

|B(u, v)| ≤ C|u|H1(G)|v|H1(G) ≤ C‖u‖Ĥ1(G)‖v‖Ĥ(G)

and

|B(u, u)| ≥ D|u|2H1(G) ≥ D‖u‖Ĥ1(G).

By Theorem 3.2, it holds that

|F (v)| ≤ C‖f‖L2
1(G)‖v‖Ĥ1(G).



FRAMEWORK FOR LATTICE PROBLEMS 321

By Lax-Milgram Theorem, the variational problem has a unique solution u ∈
Ĥ1(G), and

‖u‖Ĥ1(G) ≤ C‖f‖L2
1(G),

which implies (3.11) and the uniqueness of the solution in E(G) up to a constant.

3.2 Lattice problems with C(κ) ≡ 0 in two dimensions

As in one dimensional L2(G) andH1(G) are not suitable spaces for the right hand
side f of the equation (3.1) and the solution of the lattice problem, respectively.

In the framework of L2
ν,σ(G) and H̃1(G) we are able to establish the existence and

uniqueness of the solution for Lattice problems.

Theorem 3.4 If f ∈ L2
1,1(G), and

∑

m∈Z2

∑

κ∈K fm,κ = 0, then for any v ∈ E(G),

|〈f, v〉G | =

∣

∣

∣

∣

∣

∑

m∈Z2

∑

κ∈K

fm,κvm,κ

∣

∣

∣

∣

∣

≤ C‖f‖L2
1,1(G)|v|H1(G) (3.12)

with constant C independent of f and v.

The theorem is parallel to Theorem 3.2 for one dimension, but the proof for
two dimensions needs properties of functions in H1(R2), which is contained in
the appendix. In order to apply these properties, we have to extend by linear
interpolation grid functions on G to whole space R2.

Let K̄m be a set of nodes which are located in Q̄m where Q̄m is the closure
of the cell Qm. Obviously, x(m,κ) ∈ K̄m for all κ ∈ K, and some nodes x(n,κ)

in neighboring cells are included as well. Let KV
m,K

I
m and KE

m be subsets of K̄m

for nodes at vertices, on edges (not including vertices) and in the interior of Qm,
respectively. Then K̄m = KE

m ∪KV
m ∪KI

m.

By Tm = {ti, i = 1, 2, . . . , T}, we denote a triangular partition of Q̄m satisfying
the following conditions:

(T.1) VT = K̄m, where VT denote a set of all vertices of the partition Tm;

(T.2) The partition is regular, i.e. ti ∩ tj for i 6= j is a vertex, or a whole edge, or
empty.

(a) Initial Partition T m

0
(b) Partition Tm

1 (c) Partition Tm
2 = Tm

Fig. 3.1 Triangular partition of cell Q̄m

The construction of such a partition can be started with an initial partition T 0
m

of Q̄m for which (T.2) holds and VT 0
m

= KV
m as shown in Fig. 3.1(a). If a node

x(n,κ) ∈ KI
m is in the interior of a triangle ti, we divide ti into three smaller triangles

by connecting x(n,κ) to three vertices of ti, as shown in Fig. 3.1(b). Repeating the
process for each node in the interiors of all simplices, we have a partition T 1

m of
Q̄m for which (T.2) holds and no node x(n,κ) ∈ K̄m is located in the interiors of
all triangles. If there are l nodes are on an (open)edge of a triangle ti and l ≤ 1,
we divide the triangle ti into l + 1 smaller triangles by connecting these l nodes
and the vertex opposite to the edge,as shown in Fig. 3.1(c). If this edge is shared
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by a pair of triangles ti and tj , we divide each of these two triangles into l + 1
smaller triangles. Applying this process to each edge of the triangles will results in
a triangular partition Tm satisfying (T.1) and (T.2).

For a periodic lattice G, the triangular partition Tm of the cell Q̄m can be peri-
odically carried out, a combination of the triangular partitions Tm for all m ∈ Z2

forms a partition T of R2 for which (T.2) holds and VT = ∪m∈Z2Km.

Based on such a partition T , we can extend a grid function u on G to a function
ũ(x) for x ∈ R2 by a linear interpolation. Let φi(x) be a linear function in ti
such that φi(x

(n,κ)) = un,κ at all vertices of ti, and let ψm(x) be a piecewise linear
function in Q̄m such that ψm(x) = φi(x) in ti, 1 ≤ i ≤ T . Then, there holds

|ψm(x)|2H1(Qm) =
∑

1≤i≤T

|φi(x)|2H1(ti)

≤ C
∑

ti⊆Q̄m

∑

x(n,κ),x(l,λ)∈ti

|un,κ − ul,λ|2
|x(n,κ) − x(l,λ)|2

≤ C
∑

ti⊆Q̄m

∑

x(n,κ),x(l,λ)∈ti

|un,κ − ul,λ|2.

(3.13)

Let ũ(x) = ψm(x) in Q̄m for all m ∈ Z2. Then, ũ(x) is continuous and piecewise
linear function in R2, and

|ũ|2H1(R2) ≤ C
∑

m∈Z2

∑

ti⊆Q̄m

∑

x(n,κ),x(l,λ)∈ti

|un,κ − ul,λ|2. (3.14)

Note that if the vertices x(n,κ) and x(l,λ) of ti in Q̄m are not connected, (C.2)
and (2.15) indicate that they are linked by the shortest chain Ln,κ,l,λ : x(n1,λ1) =

x(n,κ) → x(n2,λ2) · · · → x(ns,λs) = x(l,λ) with s uniformly bounded, where the node
x(nj ,λj) is connected to the node x(nj+1,λj+1) for 1 ≤ j ≤ s− 1. Hence, there holds

|un,κ − ul,λ| ≤ C
∑

1≤j≤s−1

|unj ,λj
− unj+1,λj+1

|

which with (3.14) implies that

|ũ|2H1(R2) ≤ C
∑

m∈Z2

∑

κ∈K

∑

(n,λ)∈Bκ

|um,κ − un+m,λ|2. (3.15)

Theorem 3.5 Let u be a grid function on the lattice G, and let ũ be the extension
of u by a linear interpolation, described as above. Then |u|H1(G)

∼= |ũ|H1(R2), and
|u|L2

ν,σ(G)
∼= |ũ|L2

ν,σ(R2), i.e. there are two positive constants C1 and C2 independent

of u and ũ such that

C1|u|H1(G) ≤ |ũ|H1(R2) < C2|u|H1(G) (3.16)

and

C1|u|L2
ν,σ(G) ≤ |ũ|L2

ν,σ(R2) < C2|u|L2
ν,σ(G) (3.17)

Proof. Since ũ(x) is a piecewise linear function interpolating the grid function u
at each node x(m,κ), and for x ∈ Q̄m,

(1 + x2)ν log2σ(1 + |x|) ∼= (1 + |m|2)ν log2σ(1 + |m|),
it holds that

‖ũ(x)‖2
L2

ν,σ(Q̄m)
∼=

∑

x(n,κ)∈K̄m

(1 + |m|2)ν log2σ(1 + |m|)|un,κ|2
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which implies (3.17).

The second inequality of (3.16) follows from (3.15). It suffices to show the first
inequality of (3.16). Suppose that x(m,κ) and x(n+m,λ) are connected. If x(m,κ) and
x(n+m,λ) are in the cell Q̄m, it is easy to see that

|um,κ − un+m,λ| ≤ C|ψm|H1(Qm). (3.18)

We next consider two connected nodes x(m,κ) and x(n+m,λ) which are located
in different cells Q̄m and Q̄n. Let Qnj

, 1 ≤ j ≤ J be a sequence of cells with
Qn1

= Qm and QnJ
= Qn such that Qnj

is neighboring to Qnj+1
. Due to the

assumption (C.3), J is uniformly bounded. Select a common vertex x(nj ,λj) of the
cell Q̄nj

and Q̄nj+1
, 1 ≤ j ≤ J − 1. Therefore, we have

|um,κ − un+m,λ| ≤ |um,κ − un1,λ1
| + |um+n,λ − unJ ,λJ

|

+
∑

1≤j≤J−1 |unj ,λj
− unj+1,λj+1

|
(3.19)

Since x(nj ,λj) and x(nj+1,λj+1) are in the same cell Q̄nj+1
, we have for 1 ≤ j ≤ J −2

|unj ,λj
− unj+1,λj+1

| ≤ C|ψnj+1
|H1(Qnj+1

), (3.20a)

Similarly, there hold

|um,κ − un1,λ1
| ≤ C|ψm|H1(Qm), (3.20b)

and

|um+n,λ − unJ−1,λJ−1
| ≤ C|ψn|H1(Qn). (3.20c)

A combination of (3.19) and (3.20) leads to

|um,κ − un+m,λ| ≤ C
∑

1≤j≤J

|ψnj
|H1(Qnj

). (3.21)

The first inequality of (3.16) follows easily from (3.18) and (3.21). �

Lemma 3.6 For u ∈ H̃1(G) there exists a constant α such that

‖u− α‖L2
−1,−1(G) ≤ C|u|H1(G) (3.22)

Proof. Let ũ(x) be the extension described above and α =
∫

Γ
ũ(x)dx where Γ =

{

x ∈ R2 | |x| = 2
}

. By Theorem A.1 there holds

∫

S

|ũ− α|2 dx+

∫

Sc

|ũ− α|2

|x|2 log2 |x|
dx ≤ C|ũ|2H1(R2)

where S =
{

x ∈ R2 | |x| ≤ 2
}

, Sc = R2 \S. This estimation and Theorem 3.5 leads
(3.22). �

We are now able to prove Theorem 3.4.

Proof of Theorem 3.4 Let ṽ(x) be the extension of v, and α =
∫

Γ
ṽ(x)dx. Suppose

that circle centered at the origin with radius 2 is contained in a rectangle D =
{

x ∈ R2 | |xi| ≤ b, i = 1, 2
}

, then

α =

∫

Γ

ṽ(x)dx =
∑

n∈Z2

|ni|≤b

∑

κ∈K

βn,κvn,κ



324 B. GUO AND I. BABUŠKA

with the coefficients βn,κ. Since
∑

n∈Z2

∑

κ∈K fm,κ = 0, we have by Lemma 3.5
and Lemma 3.6

|〈f, v〉G | = |〈f, v − α〉G | ≤ C‖f‖L2
1,1(G)‖v − α‖L2

−1,−1(G)

≤ C‖f‖L2
1,1(G)‖ṽ − α‖L2

−1,−1(R
2) ≤ C‖f‖L2

1,1(G)|ṽ|H1(R2)

≤ C‖f‖L2
1,1(G)|v|H1(G).

�

We now define H̃1(G) with the norm

‖u‖H̃1(G) =
{

‖u‖2
L2

−1,−1(G) + |u|2H1(G)

}
1
2

and define a quotient space Ĥ1(G) by

Ĥ1(G) = H̃1(G)/P0

with P0 denoting a set of constant grid functions on G. Obviously, P0 ⊂ H̃1(G),

and for any u ∈ Ĥ1(G).

C1‖u‖Ĥ1(G) ≤ |u|H1(G) ≤ C2‖u‖Ĥ1(G)

with C1 and C2 independent of u. �

We are able to address the existence and uniqueness of the solution of the problem
(3.1) with d = 2 in the framework of the space Ĥ1(G).

Theorem 3.7 If f ∈ L2
1,1(G) and

∑

n∈Z2

∑

κ∈K fm,κ = 0, then the problem (3.1)
with d = 2 has a solution u ∈ E(G), and the

|u|H1(G) ≤ C‖f‖L2
1,1(G). (3.23)

The solution is unique in E(G) up to a constant.

Proof By the property of the bilinear form

|B(u, v)| ≤ C|u|H1(G)|v|H1(G) ≤ C‖u‖Ĥ1(G)‖v‖Ĥ1(G)

and

B(u, u) ≥ D|u|2H1(G) ≥ D‖u‖2
Ĥ1(G)

.

Due to Theorem 3.4

F (v) = |〈f, v〉G | ≤ C‖f‖L2
−1,−1(G)‖v‖Ĥ1(G).

By Lax-Milgram Theorem, there exists a unique solution u ∈ Ĥ1(G) such that

‖u‖Ĥ1(G) ≤ C‖f‖L2
−1,−1(G)

which leads to the assertion of the theorem. �

Since L2
ν(G) ⊂ L2

1,1(G) for ν > 1, we have immediately the following corollary.

Corollary 3.8 If f ∈ L2
ν(G) with ν > 1 and

∑

m∈Z2

∑

κ∈K fm,κ = 0, the result of
Theorem 3.7 holds.

3.3 Lattice problems with C(κ) ≡ 0 in three dimensions

Since constant grid functions on G in three dimensions do not belong to the spaces
L2
−1(G) and L2

−1,−1(G), we will not address lattice problems without absolute terms
by introducing the quotient spaces, which are successfully used for problems in
one and two dimensions. Instead, we shall develop a different approach for three-
dimensional lattice problems. For the approach in three dimensions we shall utilize
some properties of functions H1(R3). To this end we have to establish the extension
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of grid functions on three dimensional lattice G to whole space R3 by a linear
interpolation.

Let Q̄m be the closure of Qm, and let K̄m be a set of all nodes in Q̄m. By
KV

m,K
E
m,K

F
m and KI

m, we denote the subsets of K̄m for nodes at vertices, on the
edges (not including the vertices), on faces (not including nodes on the edges and
at vertices), and in the interior of Q̄m, respectively.

By T = {ti, 1 ≤ i ≤ T} we denote a tetrahedral partition of Q̄m satisfying the
conditions :

(T.3) VT = K̄m, where VT denotes a set of all vertices of the partition T ;

(T.4) for i 6= j, ti ∩ tj is a vertex, or an edge of ti, or a face of ti, or empty.

5
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(c) Partition of simplex (a) Initial Partition T   of cell Q (b) Partition of a simplex

Fig. 3.2 Tetrahedral partition Tm of cell Q̄m

Each ti is a simplex with faces Fij , 1 ≤ j ≤ 4. The construction of such a
partition can be started with an initial partition T 0

m of Q̄m such that (T.4) hold
and VT 0

m
= KV

m, shown in Fig. 3.2(a). For the partition T 0
m there may be some

nodes in the interior of simplices tis. If a node x(n,κ) ∈ KI
m is in the interior of ti, we

divide ti into four smaller simplices by connecting x(n,κ) to four vertices of ti, shown
in Fig. 3.2(b). Repeating the process for each node in the interiors of all simplices,
we have a partition T 1

m of Q̄m for which (T.4) holds and no node x(n,κ) ∈ K̄m is
located in the interiors of all simplices. Note that nodes x(n,κ) ∈ KI

m ∪KF
m ∪KE

m

may be located on the closure of faces of tis in the partition T 1
m. Suppose there are

several nodes are on F̄ij which is the closure of Fij . According to the triangular
partition of a cell in two dimensions, described in previous subsection, there is a
triangular partition TF̄ij

= {τl, 1 ≤ l ≤ L} of F̄ij such that (T.1) and (T.2) are
satisfied. Connecting the vertices of the partition TF̄ij

and the vertex opposite to
the face Fij , we divide this simplex ti into several smaller simplices. If Fij is shared
by a pair of simplices, the division can be done in each of them. Carrying this
division on each face of simplices ti and each simplex in the partition T 1

m, we will
obtain a desired partition Tm satisfying (T.3) and (T.4). A combination of the
partitions Tm for all m ∈ Z3 form a tetrahedral partition T of R3 for which (T.4)
holds and VT = ∪m∈Z3Km.

As in two dimension, based on such a tetrahedral partition T of R3, we can
extend a grid function u defined on three dimensional lattice G to a function ũ(x)
for x ∈ R3 by a linear interpolation. Let φi(x) be a linear function in ti which
interpolates u at the vertices of ti, and let ψm(x) = φi(x) for x ∈ ti, 1 ≤ i ≤ T ,



326 B. GUO AND I. BABUŠKA

which is a piecewise linear and continuous function in Q̄m, and

|ψm|2H1(Qm) ≤ C
∑

ti⊆Q̄m

∑

x(n,κ),x(l,λ)∈ti

|un,κ − ul,λ|2
|x(n,κ) − x(l,λ)|2

≤ C
∑

ti⊆Q̄m

∑

x(n,κ),x(l,λ)∈ti

|un,κ − ul,λ|2.

Let ũ(x) = ψm(x) for x ∈ Q̄m,m ∈ Z3. Then, ũ(x) is a continuous and piecewise
linear function in R3, and

|ũ|2H1(R3) ≤ C
∑

m∈Z3

∑

ti⊆Q̄m

∑

x(n,κ),x(l,λ)∈ti

|un,κ − ul,λ|2.

Note that vertices of a simplex ti may not be connected. Arguing as in two
dimensions for (3.15), we have

|ũ|2H1(R3) ≤ C
∑

m∈Z3

∑

κ∈K

∑

(n,λ)∈Bκ

|um,κ − um+n,λ|2 ≤ C|u|2H1(G).

The arguments for the equivalence between norms of u and its extension ũ(x)
in two dimensions can be carried out in the three dimensions. Hence we have the
following theorem which is parallel to Theorem 3.5.

Theorem 3.9 Let u be a grid function on a lattice G, and let ũ be the extension
of u by a linear interpolation, described as above. Then, |u|H1(G)

∼= |ũ|H1(R3) and
|u|L2

ν,σ(G)
∼= |ũ|L2

ν,σ(R3), i.e. there are two positive constants independent of u and

ũ such that

C1|u|H1(G) ≤ |ũ|H1(R3) ≤ C2|u|H1(G) (3.24)

and

C1|u|L2
ν,σ(G) ≤ |ũ|L2

ν,σ(R3) ≤ C2|u|L2
ν,σ(G). (3.25)

Lemma 3.10 For v ∈ E(G) there exists a constant α such that

‖v − α‖L2
−1(G) ≤ C|v|H1(G) (3.26)

Proof. Let ṽ be the extension of v described above, and let

α = lim
r→∞

1

|S|

∫

S

ṽ(r, θ, φ)dS.

where S is the unit sphere centered at the origin. By Lemma A.8 the above limit
exists. Due to Theorem 3.9 and Lemma A.9, we have

‖v − α‖L2
−1(G) ≤ C

∫

R3

|ṽ − α|2
r2

dx ≤ C

∫

R3

|∇ṽ|2dx ≤ C|v|H1(G).

�

Theorem 3.11 If f ∈ L2
1(G), and

∑

n∈Z3

∑

κ∈K fm,κ = 0, then for any v ∈ E(G),

|〈f, v〉G | =

∣

∣

∣

∣

∣

∑

m∈Z3

∑

κ∈K

fm,κvn,κ

∣

∣

∣

∣

∣

≤ C‖f‖L2
1(G)|v|H1(G) (3.27)

Proof. Let ṽ be the extension of v, and let

α = lim
r→∞

1

|S|

∫

S

ṽ(r, θ, φ)dS.
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as in previous lemma. Then by Cauchy inequality and Lemma 3.5 and Lemma 3.9

|〈f, v〉G | = |〈f, v − α〉G | ≤ C‖f‖L2
1(G)‖v − α‖L2

−1(G)

≤ C‖f‖L2
1(G)‖ṽ − α‖L2

−1(R
3) ≤ C‖f‖L2

1(G)|ṽ|H1(R3)

≤ C‖f‖L2
1(G)|v|H1(G).

�

Theorem 3.12 If f ∈ L2
1(G) and

∑

m∈Z3

∑

κ∈K fm,κ = 0, then the problem (3.1)
with d = 3 has a solution u ∈ E(G), and the

|u|H1(G) ≤ C‖f‖L2
1(G). (3.28)

The solution is unique in E(G) up to a rigid body motion.

Proof. It is shown that

|B(u, v)| ≤ C|u|H1(G)|v|H1(G)

and

B(u, u) ≥ d1|u|2H1(G).

By Theorem 3.11, F (v) defines a linear functional over E(G), and

|F (v)| = |〈f, v〉G | ≤ C‖f‖L2
1(G)|v|H1(G).

If functions with zero energy are regarded as a ”zero” element in the space E(G)
, then E(G) is a Hilbert space with the energy norm which is equivalent to the
semi-norm of H1(G). By Lax-Milgram Theorem, there exists a solution u ∈ E(G)
such that

|u|H1(G) ≈ ‖u‖E(G) ≤ C‖f‖L2
1,1(G).

The solution is unique up to a grid function of rigid body motion on G. �

If
∑

m∈Z3

∑

κ∈K fm,κ = A exists but A 6= 0, we need to construct a special

solution for the lattice problem (3.1) with f having a compact support. Let f0 ∈
L2(G) such that f0

m,κ = 1 for m ∈ Z3
L = {n ∈ Z3 | |ni| < L, 1 ≤ i ≤ 3} and f0

m,κ = 0

for m 6∈ Z3
L. Consider the problem

−
∑

(n,λ)∈Bκ

E(κ,n,λ) (um+n,λ − um,κ) + C(κ)um,κ = f0
m,κ,m ∈ Z3, κ ∈ K. (3.29)

Using the arguments based on Fourier transform, e.g. see Theorem 2.15 of [13], it
can be proved that the problem (3.29) has a unique solution u0 in E(G), and

|u0|H1(G) ≤ C‖f0‖L1(G) ≤ C‖f0‖L2(G).

Let w = u− c0u
0 with c0 =

∑

m∈Z3

∑

κ∈K fm,κ
∑

m∈Z3

∑

κ∈K fm,κ
. Then w satisfies the equation

−
∑

(n,λ)∈Bκ

E(κ,n,λ) (wm+n,λ − wm,κ) + C(κ)wm,κ = (f − c0f
0)m,κ,m ∈ Z3, κ ∈ K.

Since
∑

m∈Z3

∑

κ∈K(f − f0)m,κ = 0, by Theorem 3.12, the problem (3.30) has
unique solution w ∈ E(G), and

|w|H1(G) ≤ C‖f − f0‖L2
1(G)

which implies that

|u|H1(G) ≤ C(‖f‖L2
1(G) + |A|).

Therefore, we have a theorem dealing with the case
∑

m∈Z3

∑

κ∈K fm,κ 6= 0.
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Theorem 3.13 If f ∈ L2
1(G) and

∑

m∈Z3

∑

κ∈K fm,κ = A exists, then the problem
(3.1) with d = 3 has a solution u ∈ E(G), and the

|u|H1(G) ≤ C(‖f‖L2
1,1(G) + |A|). (3.30)

The solution is unique in E(G) up to a rigid body motion.

4. Solutions of lattice problems

In this section we shall derive a solution formula for lattice problems on a un-
scaled lattice G.

4.1 Properties of Matrix σ

The equation (2.23) gives us a system of linear equations

σ(t)û(t) = f̂(t) (4.1)

where û =
(

ûT
1 , û

T
2 . . . û

T
q

)T
, and ûκ =

(

û1
1, . . . û

s
κ

)T
, κ ∈ K. û and f̂ are vectors

with sq components, and σ is a matrix called the symbol with entries denoted by
σm,n. We can also write σ as a block matrix

σ = (σκ,λ)1≤κ,λ≤q ,

each of block σκλ is a s× s matrix:
(

(σκ,λ)ℓ,t

)

1≤ℓ,t≤s
,

then

(σκ,λ)ℓ,t = σm,n

with m = (κ− 1)q + ℓ and n = (λ− 1)q + t. It follows from (2.23) that

σκ,κ =
∑

n∈Bκκ

(

1 − e−i<n,t>
)

E(κ,n,κ) + C(κ), (4.2a)

σκ,λ = −
∑

n∈Bκλ

e−i<n,t>E(κ,n,λ). (4.2b)

Lemma 4.1 σ is a Hermitian matrix and Hermitian block matrix.

Proof. It follows from (4.2) and (2.4)- (2.5) that

σκ,λ = −
∑

n∈Bκ λ

e−i<n,t>E(κ,n,λ) = −
∑

n∈Bλ,κ

e−i<n,t>E(κ,n,λ)

= −
∑

m∈Bλ,κ

ei<m,t>E(κ,−m,λ) = −
∑

m∈Bλ,κ

ei<m,t>E(λ,m,κ) = σλ,κ.

For κ = λ, we shall write

Bκ,κ = B−
κ,κ ∪B+

κ,κ

where

B+
κκ = {n = (n1, n2 . . . nd) ∈ Bκκ | nℓ ≥ 0, 1 ≤ ℓ ≤ d}

B−
κκ = {n = (n1, n2 . . . nd) ∈ Bκκ | nℓ ≤ 0, 1 ≤ ℓ ≤ d} .

Due to the definition (2.3) of Bκ,λ, 0 6∈ Bκ,κ, which implies R+
κ,κ ∩ R−

κ,κ =6 0. By

the property (2.4), n ∈ B+
κ,κ if and only if −n ∈ B−

κ,κ. Therefore

σκ,κ = C(κ) + 4
∑

n∈B+
κ,κ

sin2 < n, t >

2
E(κ,n,κ) (4.3)
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σκ,κ is a real matrix. Thus we have shown that σ is Hermitian block matrix. Note

that C(κ) and E(κ,n,λ) are symmetric matrices, which implies the σ is a Hermitian
matrix as well.

Lemma 2.2 σκλ(−t) = σλ,κ(t)T for λ, κ ∈ K, and σ(−t) = σ(t)T .

Proof. For λ 6= κ, by the properties (2.4) and

σκ,λ(−t) = −
∑

n∈Bκ,λ

e−i<n,−t>E(κ,n,λ) = −
∑

−n∈Bλ,κ

e−i<−n,t>E(κ,n,λ)

= −
∑

m∈Bλ,κ

e−i<m,t>E(κ,−m,λ) = −
∑

m∈Bλ,κ

e−i<m,t>E(λ,m,κ)

= σλ,κ(t).

It is trivial that σκ,κ(t) = σκ,κ(−t),∀κ ∈ K. Since each block σλ,κ(t) is symmetric,
we have σ(−t) = σ(t)⊤. �

Corollary 4.3 σ
−1(−t) =

(

σ
−1(t)

)⊤
= σ

−⊤(t), and det(σ(t)) and the eigenvalues
of σ(t) are even functions in t.

Lemma 4.4 Let b̂(t) =
(

b̂κ(t)
)

κ∈K
∈ L2

(

Id,H1(KQ)
)

. If C(κ) 6≡ 0 for κ ∈ K,

there exist constants d1 and d2 independent of t and b̂(t) such that
∫

Id

〈σ(t)b̂(t), b̂(t)〉dt ≥ d1

∫

Id

|b̂(t)|2H1(KQ)dt+ d2

∫

Id

‖b̂(t)‖2
L2(KQ)dt (4.4)

Proof. Let b ∈ F−1
(

b̂(t)
)

. Then, by Lemma 2.7, b ∈ H1(G), and

∫

Id

〈σ(t)b̂(t), b̂(t)〉dt = B(b, b)

=
∑

m∈Zd

∑

κ∈KQ

∑

(n,λ)∈Bκ

〈E(κ,n,λ) (um+n,λ − um,κ) , (um+n,λ − um,κ)〉

+
∑

κ∈K

〈C(κ)um+κ, um+κ〉 ≥ d1|b|2H1(G) + d2‖b‖2
L2(G)

where d1 and d2 are given in (2.14). Note that

‖b‖2
H1(G) =

∫

Id

|b̂(t)|2H1(KQ)dt

and

‖b‖2
L2(G) =

∫

Id

‖b̂(t)‖2
L2(KQ)dt.

(4.4) follows immediately.

Lemma 4.5 If C(κ) 6≡ 0 for κ ∈ K, then σ(t) is a positive definite matrix for all
t ∈ Id.

Proof. For any b̂(t) ∈ L2
(

Id,H1(KQ)
)

, there holds by Lemma 4.4
∫

Id

〈σ(t)b̂(t), b̂(t)〉dt ≥ d1

∫

Id

|b̂(t)|2H1(KQ)dt+ d2

∫

Id

‖b̂(t)‖2
L2(KQ)dt

Which implies that for almost every t ∈ Id

〈σ(t)b̂(t), b̂(t)〉 ≥ d1|b̂(t)|2H1(KQ) + d2‖b̂(t)‖2
L2(KQ) ≥ d2‖b̂(t)‖2

L2(KQ). (4.5)

with d2 > 0. Note that σ(t) is a Hermitian matrix and analytic in t. Hence σ(t) is
positive definite for all t ∈ Id. �
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4.2 Solution Representation Theorem

Theorem 4.6 If C(κ) 6≡ 0 for κ ∈ K̂ and f̂ ∈ L2
(

Id
)

, then

u = F−1
(

σ(t)−1f̂(t)
)

(4.6a)

is a solution of the equation (2.7) in H1(G), with

um = (2π)−d

∫

Id

σ
−1f̂(t)e−i<m,t>dt (4.6b)

and

‖F−1
(

σ(t)−1f̂(t)
)

‖H1(G) ≤ C‖f̂‖L2(Id) (4.7)

where σ(t) is the matrix defined in (4.2).

Proof. Since σ(t) is positive definite for all t ∈ Id if C(κ) 6≡ 0, by Theorem 2.4 the
solution of the equation (4.1)

û = σ
−1(t)f̂(t)

solves the variational equation (2.22), and

‖û‖L2(Id,H1(KQ)) ≤ C‖f̂‖L2(Id,L2(KQ)).

Let u = F−1 (û(t)). Due to Corollary 2.6 u ∈ H1(G) and solves the variational
equation (2.8), and

‖F−1
(

σ(t)−1f̂(t)
)

‖H1(G) = ‖u‖H1(G) ≤ C‖û‖L2(Id,H1(KQ))

≤ C‖f̂‖L2(Id,L2(KQ)).

According to Remark 2.2, L2
(

Id, L2(KQ)
)

= L2(Id), and the theorem is proved.
�

If C(κ) ≡ 0 for all κ ∈ K, there holds

〈σ(t)b(t), b̂(t)〉 ≥ d1|b̂(t)|2H1(KQ) ≥ 0.

Therefore, σ(t) is semi-positive definite for all t ∈ Id. It was shown in [20] that
det(σ(t)) = 0 if and only if t = 0, which implies that σ(t) is positive definite if

t 6= 0. σ
−1(t) has a pole at the origin, and û(t) is singular at t = 0 if f̂(t) ∈ L2(Id).

Hence, the integral (4.6b) may diverge due to the singularity at the origin.

On other hand, it was proved in previous section that lattice problems without
absolute term have uniqueness solutions if

∑

m∈Zd

∑

κ∈K fn,κ = 0 and f ∈ Hν(G)
with ν ≥ 1. This implies that the representation formula (4.6) can be valid for

Lattice problems with C(κ) ≡ 0 for f̂ belonging to some spaces stronger than
L2(Id).

Theorem 4.7 If f̂ ∈ Hν
per

(

Id
)

with ν > 1 for d = 2 and ν = 1 for d = 1, 3 and
vanishes at t = 0, then the representation formula (4.6) for the lattice problems
with C(κ) ≡ 0 holds, which realizes a mapping : Hν

pes

(

Id
)

→ E(G), and

‖F−1
(

σ(t)−1f̂(t)
)

‖H1(G) ≤ C‖f̂‖Hν
per(Id). (4.8)

Proof. Let f = F−1
(

f̂
)

. Then

∑

m∈Zd

∑

κ∈K

fn,κ = f̂(0) = 0,
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and f ∈ L2
ν(G) by Lemma 3.5. By Theorem 3.3, Corollary 3.8 and Theorem 3.12,

there exists a solution u ∈ E(G) of the lattice problem (3.1) with C(κ) ≡ 0,∀κ ∈ K.

Therefore û(t) = F (u) ∈ L2
(

Id, Ĥ1(KQ)
)

and

∫

Id

|û(t)|2H1(KQ) dt
∼= |u|2H1(G) ≤ C‖f‖L2

ν(G)

which implies that the integral converges and that the representation formula (4.6)
holds and realizes a mapping : Hν

per

(

Id
)

→ E(G), and

‖F−1
(

σ
−1f̂

)

‖H1(G) ≤ C‖f̂‖Hν
per(Id).

�

5. Two Lattice Problems

We will analyze two lattice problems. One is one-dimensional, and another is
two-dimensional. Although the structures of these two problems are simple, the
analysis we carry out here can be generalized to other lattice problems.

5.1. A lattice problem in one dimension

Suppose elastic rode of two different materials with half-unit length and intersection
area A are connected by hinges at nodes, see Fig. 5.1. The master cell Q = [0, 1),
containing two nodes x(κ), κ ∈ K = {1, 2}. The nodes in cells Qm for m ∈ Z are
denoted by x(m,κ), κ = 1, 2. Let M = {x(m,κ),m ∈ Z, κ = 1, 2} denote the global
mesh containing all nodes. Suppose that the rods are furnished with springs at
each node. By E1 and E2 we denote the Young’s modulus of the rode, and by 4C1

and 4C2, the Hook’s constant of the springs, respectively. A lattice G denotes such
a structure, connectivity and periodic translation.

E E E E E E1 2 1 2 1 2

X X
(1) (2)

(a) A lattice

(b) Master cell Q furnished with springs

Fig. 5.1 Elastic rods of two materials in one dimension

Equilibrium Equation

Let uj and fj denotes the displacement of the rods and external force at the nodes
xj , we have the following equilibrium equations

−A{E1(um,2 − um,1) + E2(um,1 − um−1,2)} + C1um,1 = fm,1

−A{E2(um+1,1 − um,2) + E1(um,2 − um,1)} + C2um,2 = fm,2
(5.1)

Variational Equation

The corresponding variational equation

B(u, v) = F (v).
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where u, v and f are functions defined on G, with the bilinear form

B(u, v) =
∑

m∈Z

(um,2 − um,1)AE1(vm,2 − um,1) + C1um,1vm,1

+
∑

m∈Z

(um+1,1 − um,2)AE2(vm+1,1 − vm,2) + C2um,2vm,2

(5.2a)

and the linear functional

F (v) =
∑

m∈Z

∑

j=1,2

fm,jvm,j (5.2b)

The energy space E(G) contains functions on G with finite energy E(u),

E(u) = 1
2B(u, u) = 1

2

∑

m∈Z

AE1(um,2 − um,1)
2 + C1u

2
m,1

+ 1
2

∑

m∈Z

AE2(um+1,1 − um,2)
2 + C2u

2
m,2.

The spaces H1(G) and L2(G) are furnished with the norms

‖u‖2
H1(G) = |u|2H1(G) +‖u‖2

L2(G) =
∑

m∈Z

(um,2−um,1)
2 +(um+1,1−um,2)

2 + ‖u‖2
L2(G)

and

‖u‖2
L2(G) =

∑

m∈Z

|um,1|2 + |um,2|2.

Hence, the energy norm ‖u‖E(G) = E(u)1/2 is equivalent to the norm of the space

H1(G) if C1 + C2 6= 0, and equivalent to the semi-norm of the space H1(G) if
C1 + C2 = 0.

Fourier transform

For f = f(m),m ∈ Z, we introduce the Fourier transform

F(f) = f̂(t) =
∑

n

f(m)eimt, t ∈ I = (−π, π)

which realizes an isomorphism between L2(G) and L2(I), and between L2
ν(G) and

Hν
( I), where the space L2

ν(G) is defined as a weighted space with a weighted L2-
norm

‖u‖2
L2

ν(G) =
∑

m∈Z

(1 +m2)ν(|um,1|2 + |um,2|2).

The inverse Fourier transform gives f = F−1(f̂) with

f(m) =
1

2π

∫

I

f̂(t)e−imtdt.

Applying the Fourier transform to the equations (5.1), we obtain

A(E1 + E2)û1 −A(E1 + E2e
it)û2 + C1û1 = f̂1

−A(E1 + E2e
−it)û1 +A(E1 + E2)û2 + C2û2 = f̂2

(5.3)

The corresponding matrix

σ(t) =

(

E11 −E12

−E21 E22

)

with E11 = A(E1 + E2) + C1, E22 = A(E1 + E2) + C2, E12 = A(E1 + E2e
it) and

E21 = A(E1 + E2e
−it). σ(t) is a Hermit matrix, and

det(σ) = 4A2E1E2sin
2t/2 +A(C1 + C2)(E1 + E2) + C1C2.
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Obviously, if C1 + C2 > 0, σ(t) is positive definite for t ∈ I, σ
−1(t) exists,

σ
−1(t) =

1

det(σ)

(

E02 E21

E12 E01

)

(5.4)

which leads to the solution of equation (5.3)
(

û1

û2

)

= σ
−1(t)

(

f̂1
f̂2

)

. (5.5)

Therefore, the solution of the problem (5.1) can be represented as

uκ = F−1(ûκ(t)) = F−1(
∑

1≤ℓ≤2

φκ,ℓ(t)f̂ℓ(t)), κ = 1, 2 (5.6a)

with
φ1,1(t) = 1

det(σ(t))E02, φ2,2(t) = 1
det(σ(t))E01,

φ1,2(t) = 1
det(σ(t))E21, φ2,1(t) = 1

det(σ(t))E11.
(5.6b)

If C1 = C2 = 0,σ(t) is positive definite for t ∈ I and t 6= 0, and (5.4)-(5.6) hold.

According to Theorem 4.6, if f̂ ∈ H1(I) and f̂(0) = 0, then û ∈ L2(I,H1(KQ))
and u ∈ E(G).

5.2 A lattice problem in two dimensions

Suppose elastic rods with intersection area A and unit length are connected by
hinges at nodes xk,j = (k, j) ∈ Z2, periodically, as shown Fig. 2.1. The master cell

Q = [0, 1)2, in which there is only one node x(1), and the index set K = {1}. The
mash M = ∪m=(k,j)∈Z2x(m,1) = ∪(k,j)∈Z2xk,j = ∪(k,j)∈Z2(k, j). We will use xk,j

to denote the nodes in stead of x(m,1). Suppose that the rods are furnished with
springs at each node. By E and C = diag(C,C), we denote the Young’s modulus
of the rods, and the Hook’s constant of the springs, respectively. A lattice G in two
dimensions denotes such a structure, connectivity and periodicity.

Equilibrium Equation

Let uk,j = (u
(1)
k,j , u

(2)
k,j) and fk,j = (f

(1)
k,j , f

(2)
k,j ) be the displacement vector and

external force vector at the node xk,j = (k, j). We have the following equilibrium
equation

AE(−∆1u
(1)
k,j + ∆1u

(1)
k−1,j) + 1

2AE
∑

ℓ=1,2

(−∆12u
(ℓ)
k,j + ∆12u

(ℓ)
k−1,j−1)

+C u
(1)
k,j = f

(1)
k,j ,

AE(−∆2u
(2)
k,j + ∆2u

(2)
k,j−1) + 1

2AE
∑

ℓ=1,2

(−∆12u
(ℓ)
k,j + ∆12u

(ℓ)
k−1,j−1)

+C u
(2)
k,j = f

(2)
k,j

(5.7)

where

∆1u
(ℓ)
k,j = u

(ℓ)
k+1,j − u

(ℓ)
k,j , ∆2u

(ℓ)
k,j = u

(ℓ)
k,j+1 − u

(ℓ)
k,j , ∆12u

(ℓ)
k,j = (u

(ℓ)
k+1,j+1 − u

(ℓ)
k,j)/

√
2.

Variational Equation

The corresponding variational equation is

B(u, v) = F (v) (5.8)

where the linear functional F and the bilinear form B are defined as

F (v) =
∑

(k,j)∈Z2

fT
k,jvk,j
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and

B(u, v) =
∑

(k,j)∈Z2

(∆1uk,j)
T E∆1vk,j + (∆2uk,j)

T E∆2vk,j

+ 1
2 (∆12uk,j)

T E∗∆12uk,j + CuT
k,jvk,j

where E = AEI and E∗ = AEbbT , I is an identity 2× 2 matrix, and b is a vector
= (cosπ

4 , sin
π
4 )T .

Fourier Transform

We introduce the Fourier transform for functions f = {fk,j , (k, j) ∈ Z2}

F(f) = f̂(t) =
∑

(k,j)∈Z2

fk,je
i(kt1+jt2), t = (t1, t2) ∈ (−π, π)2

which leads to an equation in matrix form

σ(t)û(t) = f̂(t) (5.9)

where

σ(t) =

(

σ11 σ12

σ21 σ22

)

with
σ11 = AE(4sin2 t1

2 +
√

2sin2 (t1+t2)
2 ) + C

σ12 = σ21 = −
√

2AEsin2 (t1+t2)
2

σ22 = AE(4sin2 t2
2 +

√
2sin2 (t1+t2)

2 ) + C

σ(t) is a real and symmetric matrix, and

det(σ) = A2E2(16sin2 t1
2 sin

2 t2
2 + 4

√
2sin2 (t1+t2)

2 (sin2 t1
2 + sin2 t2

2 ))

+2AEC(2sin2 t1
2 + 2sin2 t2

2 +
√

2sin2 (t1+t2)
2 ) + C2.

If C > 0, the matrix σ
−1(z) is analytic in a strip Σδ = {z : |Imz| ≤ δ} with

δ > 0, and σ(t) is positive definite for t ∈ (−π, π)2, and

σ
−1(t) =

1

det(σ)

(

σ22 −σ21

−σ12 σ11

)

. (5.10)

Representation Formula

If C > 0, then σ(t) is positive definite, then we a solution of the equation (5.9)

(û(1)(t), û(2)(t))T = σ
−1(t)(f̂ (1)(t), f̂ (2)(t))T . (5.11)

Then solution of the equation (5.7) can be represented as

(u(1), u(2))T = F−1(σ−1(t)(f̂ (1)(t), f̂ (2)(t))T )

= F−1
(

∑

1≤ℓ≤2

φ1,ℓ(t)f̂
(ℓ)(t),

∑

1≤ℓ≤2

φ2,ℓ(t)f̂
(ℓ)(t)

)T

. (5.12a)

with
φ1,1(t) = 1

det(σ) (AE(4sin2 t2
2 +

√
2sin2 (t1+t2)

2 ) + C),

φ1,2(t) = φ2,1(t) = 1
det(σ)

√
2AEsin2 (t1+t2)

2 ,

φ2,2(t) = 1
det(σ) (AE(4sin2 t1

2 +
√

2sin2 (t1+t2)
2 ) + C).

(5.12b)

If C = 0,σ(t) is positive definite for t ∈ I2 and t 6= 0, and (5.10)-(5.12) hold.

σ(t)−1 has a pole of order of 2 at t = 0. If f̂(t) has a zero of order 1 at t = 0,
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the solution presented in (5.12) is valid, which confirms Theorem 4.7, i.e. û ∈
L2(I,H1(KQ)) and u ∈ E(G) if f̂ ∈ Hν(I2) with ν > 1 and f̂(0) = 0.

Appendix

In this appendix we investigate the properties of functions with finite semi-norm
of H1(Rd), d = 2, 3, which are essential to prove the existence and uniqueness of
solutions for lattice problems without absolute terms. Let

H(Rd) =
{

u | u ∈ H1
local(R

d), |u|H1(Rd) <∞
}

and let

H0(R
d) =

{

u ∈ H(Rd) |
∫

Γ

uds = 0

}

where Γ = {x ∈ Rd | |x| = 2} is the surface of the ball S = {x ∈ Rd | |x| ≤ 2}.
A.1 Two dimensional case

Let H̃1
(

R2
)

be a closure of C∞ functions with the norm

‖u‖2
H̃1(R2)

=

∫

S

|u|2dx+

∫

Sc

|u|2
r2 log2 r

dx+

∫

R2

|∇u|2dx (A.2)

where (r, θ) are the polar coordinates, the disc S = {x ∈ R2|r = |x| ≤ 2} and
Sc = R2 \ S. By L2

ν,σ

(

R2
)

we denote a weighted space with the norm

‖u‖2
L2

ν,o(R2) =

∫

S

|u|2dx+

∫

Sc

|u|2r2ν log2σ rdx. (A.3)

Then we have

‖u‖2
H̃1(R2)

= ‖u‖2
L2

−1,−1(R
2) + |u|2H1(Rd).

We introduce the spaces

HΓ(Sc) =

{

u |
∫

Sc

|∇u|2dx < α, u |Γ= 0

}

with Γ = ∂S, and we define a quotient space

Ĥ1(R2) = H̃1(R2)/P0 (A.4a)

with the norm

‖u‖Ĥ1(R2) = inf
α∈P0

‖u− α‖H1(R2) (A.4b)

where P0 is the set of all real numbers. Since P0 ⊂ H̃1(R2), the quotient space is
well defined.

Theorem A.1 If u ∈ H0

(

R2
)

, then
∫

S

|u|2dx+

∫

Sc

|u|2
r2 log2 r

dx ≤ C

∫

R2

|∇u|2dx (A.5)

with constant C independent of u.

To prove this theorem we need several lemmas.

Lemma A.2 Let u(t) be a function on (0,∞) satisfying u(2) = 0 and
∫ ∞

2

∣

∣

∣

∣

du

dt

∣

∣

∣

∣

2

tdt <∞.
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Then
∫ ∞

2

|u|2
t log2 t

dt ≤ C

∫ ∞

2

∣

∣

∣

∣

du

dt

∣

∣

∣

∣

2

vdt (A.6)

Proof. Due to Theorem 1.14 of [18]
∫ ∞

2

|u|2wdt ≤ CL

∫ ∞

2

∣

∣

∣

∣

du

dt

∣

∣

∣

∣

2

vdt

where w =
1

t log2 t
, v = t and CL = sup2≤t≤∞ FL(t), with

FL(t) =

(∫ ∞

t

wdt

)
1
2
(∫ t

2

v−1dt

)

1
2

=

√

log t− log 2

log t
≤ 1 for 2 ≤ t ≤ ∞.

Then (A.6) follows immediately. �

Lemma A.3 If u ∈ HΓ (Sc), then
∫

Sc

|u|2
r2 log2 r

dx ≤ C

∫

Sc

|∇u|2dx (A.7)

Proof. Note that u(r, θ) |r=2= 0, which implies by Lemma A.2 that
∫ ∞

2

|u|2 1

r log2 r
dr ≤ C

∫ ∞

2

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

2

rdr

with constant C independent of θ. Integrating with respect to θ from 0 to 2π we
have (A.6). �

Lemma A.4 Let u ∈ H1(S). Then the following norm

|||u|||H1(S) =
{

|u|2H1(S) + |
∫

Γ

uds|2
}

1
2

(A.8)

is equivalent to the norm, ‖u‖H1(S).

Proof. Obviously |||u|||H1(S) is a norm to H1(S). Note that
∣

∣

∣

∫

Γ

uds
∣

∣

∣

2

≤ C

∫

Γ

|u|2ds ≤ C‖u‖
H

1
2 (Γ)

≤ C‖u‖H1(S)

which implies
|||u|||H1(S) ≤ C1‖u‖H1(S).

We need to show that
‖u‖H1(S) ≤ C2|||u|||H1(S).

If it is false, there exists a sequence uj ∈ H1(S), j = 1, 2, . . . such that ‖uj‖H1(S) =
1, and

|||uj |||2H1(S) = |uj |2H2(S) +
∣

∣

∣

∫

Γ

uds
∣

∣

∣

2

→ 0 as j → ∞

Since H1(S) ⊂⊂ L2(S), there exists a subsequence denoted by uj again, which is
a Cauchy sequence in L2(S). Since |uj |H2(S) → 0 as j → ∞, {uj}∞j=1 is a Cauchy

sequence in H1(S) as well. Hence limj→∞ uj = u0 in H1(S). This implies that
Dαu0 = limj→∞Dαuj = 0 for |α| = 1. Therefore u0 is a constant in S. Note that

∣

∣

∣

∫

Γ

(uj − u0) ds
∣

∣

∣

2

≤ C

∫

Γ

(uj − u0)
2
ds ≤ C‖uj − u0‖2

H1(S) → 0 as j → ∞,
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which leads to
∫

Γ

u0ds = lim
j→∞

∫

ujds = 0.

Hence u0 ≡ 0 in S. It contradicts the fact that ‖u0‖H1(S) = limj→∞ ‖uj‖H1(S) =
1. Thus the lemma is proved. �

Lemma A.5 If u ∈ H0

(

R2
)

, u has the Fourier series on Γ:

u(2, θ) =
∞
∑

k=1

ak cos kθ + bk sin kθ

and
∞
∑

k=1

(

a2
k + b2k

)

k ≤ C|u|2H1(S) ≤ C|u|2H1(R2)

Proof. Since
∫

Γ
uds = 0, u(2, θ) has the Fourier expansion

u(2, θ) =

∞
∑

k=1

(ak cos kθ + bk sin kθ) .

Then by the trace theorem and by Lemma A.4 we have
∞
∑

k=1

(

a2
k + b2k

)

k ≤ C‖u‖2
H1/2(Γ) ≤ C‖u‖2

H1(S) ≤ C‖|u‖|2H1(S) = C|u|2H1(S).

�

We are now able to prove Theorem A.1.

Proof of Theorem A.1. For u ∈ H0

(

R2
)

we can find a harmonic function

u1 such that (u− u1) |Γ = 0 and
∫

Sc |∇u1|2 dx < ∞. Let u2 = u − u1. Then
u2 ∈ H0 (Sc), and by Lemma A.3

∫

Sc

|u2|2
1

r2 log2 r
dx ≤ C

∫

Sc

|∇u2|2 dx (A.9)

Since u1(2, θ) = u(2, θ), u1 has a Fourier series on Γ

u1(2, θ) =

∞
∑

k=1

(ak cos kθ + bk sin kθ)

with a0 = 0. Because u1 is harmonic in Sc,

u1(r, θ) =

∞
∑

k=1

(ak cos kθ + bk sin kθ)

(

2

r

)k

and by Lemma A.5
∫

Sc

|u1|2
1

r2 log2 r
rdrdθ ≤ C

∑∞
k=1

(

a2
k + b2k

)

4k

∫ ∞

2

rdr

r2k+2 log2 r

≤ C
∑∞

k=1

(

a2
k + b2k

)

k ≤ C|u|2H1(S)

(A.10)

Note that u2 |Γ= 0 and ∆u1 = 0 in Sc, which implies that
∫

Sc

∇u1∇u2dx =

∫

Γ

u2
∂u1

∂n
ds−

∫

Sc

u2∆u1dx = 0.

Hence

|u|2H1(Sc) = |u1|2H1(Sc) + |u2|2H1(Sc),
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which together with (A.9)-(A.10) leads to

‖u‖2
L2

−1,−1(S
c)

≤ C
(

‖u1‖2
L2

−1,1(S
c)

+ ‖u2‖2
L2

−1,1(S
c)

)

≤ C
(

|u1|2H1(S) + |u2|2H1(Sc)

)

≤ C|u|2H1(R2).

(A.11)

We next shall show that

‖u‖L2(S) ≤ C|u|H1(S) (A.12)

Let v1 be harmonic in S and v1|Γ = u|Γ, and let v2 = u − v1. Since v2|Γ = 0, by
Lemma A.4

‖v2‖L2(S) ≤ ‖v2‖H1(S) ≤ C |v2|H1(S) . (A.13)

Since v1 is harmonic and
∫

Γ
v1ds =

∫

Γ
uds = 0

v1(r, θ) =

∞
∑

k=1

(ak cos kθ + bk sin kθ)
(r

2

)k

where
∑∞

k=1 ak cos kθ+bk sin kθ is the Fourier series of v1(2, θ) = u(2, θ). By Lemma
A.5

‖v1‖2
L2(S) ≤ C

∞
∑

k=1

(

a2
k + b2k

)

k ≤ C|u|2H1(S). (A.14)

Since v1 is harmonic and v2 vanishes on Γ, we have, by the argument above for u1

and u2, that

|v|2H1(S) = |v1|2H1(S) + |v2|2H1(S)

which together with (A.13)-(A.14) leads to (A.12) immediately. A combination of
(A.11) and (A.12) yields (A.5). �

Corollary A.6 The norm ‖u‖Ĥ1(R2) is equivalent to |u|H1(R2), and the spaces

Ĥ1(R2) and H(R2) are equivalent.

Remark A.1. The weight function w(x) = 1 in S, and w(x) = r−2 log−2 r in
Sc. Sc excludes the origin and unit circle. We may select others weight, e.g.,

w(x) =
(

1 + r2
)−1

log−2(2+ r) for all x ∈ R2. It is essential for the selection of the
weight that

|w| = O
(

|x|−2 log−2 |x|
)

for large |x|.
Also S can be selected to any bounded domain with Lipschitz boundary, and it is
not necessary to be the disk centered at the origin and with radius 2.

A.2 Three dimensional case

We introduce

ũ(r) =
1

|S|

∫

S

u(r, θ, φ)dS =
1

|S|

∫ 2π

0

∫ π

0

u(r, θ, φ)sinθ dθ dφ (A.15)

where S denotes the unit sphere, and (r, θ, φ) are the spherical coordinates.

Lemma A.7 If u ∈ H(R3), then lim
r→∞

ũ(r) = A exists.

Proof. For r ≥ 1,

ũ(r) =
1

|S|

∫

S

∫ r

1

∂u(t, θ, φ)

∂t
dtdS + v(1)
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Let rj , j = 1, 2, . . . be an arbitrary sequence with lim
j→∞

rj = ∞. For rj > ri we have

|ũ(rj) − ũ(ri)| =
1

|S|

∫

S

∫ rj

ri

∂u(t, θ, φ)

∂t
dtdS

≤ C

(∫

S

∫ rj

ri

|∂u(t, θ, φ)

∂t
|2t2dtdS

)1/2(∫ rj

ri

t−2dt

)1/2

≤ C

(

1

ri
− 1

rj

)1/2

|u|H1(R3)

This implies that {ũ(rj)}∞j=1 is a Cauchy sequence and that ũ(rj) converges to the
same limit A for all sequence {rj}∞j=1 with lim

j→∞
rj = ∞. Therefore, lim

r→∞
ũ(r) exists,

and lim
r→∞

ũ(r) = A. �

Lemma A.8 Let ũ(r) be given in (A.17) and A = lim
r→∞

ũ(r). Then

∫ ∞

0

|ũ(r) −A|2dr ≤ C

∫ ∞

0

|ũ′(r)|2r2dr ≤ C|u|H1(R3). (A.16)

Proof Let w(r) = ũ(r) − A. Then lim
r→∞

w(r) = 0. By Hardy inequality 330 [11],

we have
∫ ∞

0

|w(r)|2dr ≤ C

∫ ∞

0

|w′(r)|2r2dr

which is the first inequality of (A.18). The second one follows from
∫ ∞

0

|ũ′(r)|2r2dr ≤
∫ ∞

0

∫

S

|∂u(r, θ, φ)

∂r
|r2drdS.

�

Theorem A.9 If |u|H1(R3) <∞, then there exist a constant α such that
∫

R3

|u− α|2
r2

dx ≤ C

∫

R3

|∇u|2dx.

Proof. Let α = A = lim
r→∞

ũ(r). Then

∫

R3

|u− α|2
r2

dx ≤ C

(∫

R3

|ũ(r) − α|2
r2

|dx+

∫

R3

|u− ũ(r)|2
r2

|dx
)

(A.17)

For the first term on the right hand side of (A.17), we have by Lemma A.11
∫

R3

|ũ(r) − α|2
r2

dx ≤
∫

S

∫ ∞

0

|ũ(r) − α|2drdS ≤ C|u|2H1(R3). (A.18)

For the second term we write

u(r, θ, φ) − ũ(r) =
1

|S|

∫

S

(u(r, θ, φ) − u(r, θ′, φ′)) sinθ′ dθ′ dφ′

and

u(r, θ, φ) − u(r, θ′, φ′) = u(r, θ, φ) − u(r, θ′, φ) + u(r, θ′, φ) − u(r, θ′, φ′).

Note that

|u(r, θ, φ) − u(r, θ′, φ)|2 = |
∫ θ

θ′

∂u(r, τ, φ)

∂τ
dτ |2 ≤ C

∫ π

0

|∂u(r, θ, φ)

∂θ
|2dθ
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which implies
∫

S

|u(r, θ, φ) − u(r, θ′, φ)|2dS ≤
∫

S

|∂u(r, θ, φ)

∂θ
|2dS

and
∫

R3

|u(r, θ, φ) − u(r, θ′, φ)|2
r2

dx ≤ C

∫

R3

|∇u|2dx. (A.19)

Similarly, it can be shown that
∫

R3

|u(r, θ′, φ) − u(r, θ′, φ′)|2
r2

dx ≤ C

∫

R3

|∇u|2dx. (A.22)

A combination of (A.17)-(A.20) leads to (A.16). �

Theorem A.10 If f ∈ L2
1(R

3), and
∫

R3 fdx = limR→∞

∫

DR
fdx = 0, then for any

v ∈ H(R3),

|
∫

R3

fvdx| ≤ C‖f‖L2
1(R

3)|v|2H1(R3). (A.21)

Hereafter DR denote a ball centered at the origin with radius R, and

‖f‖2
L2

1(R
3) =

∫

R3

(1 + r2)|f |2dx.

Proof. Since
∫

R3 fdx = 0, we have
∫

R3

fvdx =

∫

R3

f(v −A)dx

with A = limr→∞
1

|S|
∫

S
v(r, θ, φ)dS. By Lemma A.8,

∣

∣

∣

∫

R3

fvdx
∣

∣

∣
≤ C

{

∫

R3

|f |2(1 + r2)dx
}1/2{

∫

R3

|v|2
(1 + r2)

dx
}1/2

≤ C‖f‖L2
1(R

3)|v|H1(R3).

�
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[2] I. Babuška and R.C Morgan, Composite with a periodic structure : mathematical analysis

and numerical treatment, Comp. Math. Appl. 11(1985), 995-1005.
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[15] A.M. Matache, I. Babuška, C. Schwab, Generalized p-FEM in homogenization, Research

Report, No. 99-01, Seminar fur Angewandte Mathematik, ETHZ, 1999.
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