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Abstract. General multi-dimensional autonomous dynamical systems and

their numerical discretizations are considered. Nonstandard stability-preserving

finite-difference schemes based on the θ-methods and the second-order Runge-

Kutta methods are designed and analyzed. Their elementary stability is estab-

lished theoretically and is also supported by a set of numerical examples.
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1. Introduction

The increasing study of realistic mathematical models in biology, ecology and
medicine is a reflection of their use in helping to understand the dynamic processes
involved in such areas as predator-prey and competition interactions, infectious
diseases control and multi-species marine societies. Mathematical models usually
consist of systems of differential equations that represent the rates of change of the
size of each interacting component. In most of the interactions modeled all rates
of change are assumed to be time independent, which makes the corresponding
systems autonomous.

Numerical methods that approximate continuous dynamical systems are ex-
pected to be consistent with the original differential system, to be zero-stable
and convergent. Nonstandard finite difference techniques, developed by Mickens
[12, 14], have laid the foundation for designing methods that preserve the physi-
cal properties, especially the stability properties of equilibria, of the approximated
differential system. Anguelov and Lubuma [1] have used Mickens’ techniques to
design nonstandard versions of the explicit and implicit Euler and the second order
Runge-Kutta methods, under the limiting condition that all eigenvalues of the Jaco-
bian at each equilibrium of the original differential system (for simplicity, we name
those eigenvalues “equilibria”-eigenvalues) are single and real. However, a wide
range of mathematical models do not satisfy the aforementioned limitation. Among
them are most of the non-conservative predator-prey systems such as the Lotka-
Volterra models [9, 17, 13], most models with Michaelis-Menten functional responses
[11], the ratio-dependent models [8, 5], some SI, SIS and SIR epidemiology models
[7, 15, 4] and most phytoplankton-nutrient systems [16, 6]. Therefore developing
stability-preserving numerical methods for general autonomous dynamical systems
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that have not only single and real but also multiple real and complex “equilibria”-
eigenvalues is of critical importance. Dimitrov and Kojouharov [3] have designed
a variety of such nonstandard finite-difference schemes for general two-dimensional
systems, based on the explicit Euler, the implicit Euler and the second-order Runge-
Kutta methods. Lubuma and Roux [10] have constructed nonstandard numerical
schemes, based on the θ-methods, that preserve the stability of equilibria for multi-
dimensional systems having all of their “equilibria”-eigenvalues in a subregion of
the complex plane. In this paper we extend the above nonstandard θ-methods
and also develop a new class of stability-preserving nonstandard finite-difference
schemes, based on the second-order Runge-Kutta methods, for multi-dimensional
autonomous dynamical systems with arbitrary complex “equilibria”-eigenvalues.
The proposed new elementary stable nonstandard (ESN) numerical schemes work
very well with conservative as well as with non-conservative dynamical systems.

The paper is organized as follows. In Section 2 we provide some definitions and
preliminary results. We state our main results in Section 3 and prove them in
Section 4. In the last two sections we illustrate our theoretical results by numerical
examples and outline some future research directions.

2. Definitions and Preliminaries

A general n-dimensional autonomous system has the following form:

(1)
dy

dt
= f(y); y(t0) = y0,

where y = [y1, y2, . . . , yn]T : [t0, T ) → Rn, the function f = [f1, f2, . . . , fn]T :
Rn 7→ Rn is differentiable and y0 ∈ Rn. The equilibrium points of System (1) are
defined as the solutions of f(y) = 0.

Definition 1. Let y∗ be an equilibrium of System (1), J(y∗) be the Jacobian of
System (1) at y∗ and σ(J(y∗)) denotes the spectrum of J(y∗). An equilibrium y∗

of System (1) is called linearly stable if Re(λ) < 0 for all λ ∈ σ(J(y∗)) and linearly
unstable if Re(λ) > 0 for at least one λ ∈ σ(J(y∗)).

A one-step numerical scheme with a step size h, that approximates the solution
y(tk) of System (1) can be written in the form:

(2) Dh(yk) = Fh(f ; yk),

where Dh(yk) ≈ dy

dt
, Fh(f ; yk) ≈ f(y) and tk = t0 + kh.

Definition 2. Let y∗ be a fixed point of the scheme (2) and the equation of the
perturbed solution yk = y∗ + εk be linearly approximated by

(3) Dhεk = Jhεk,

where the right-hand side is the linear term in εk of the Taylor expansion of Fh(f ; y∗+
εk) around y∗. The fixed point y∗ is called stable if ‖εk‖ → 0 as k → ∞, and un-
stable otherwise, where εk is the solution of Equation (3).

Definition 3. The finite-difference method (2) is called elementary stable if, for
any value of the step size h, the linear stability of each equilibrium y∗ of System (1)
is the same as the stability of y∗ as a fixed point of the discrete method (2).

We introduce the nonstandard one-step finite-difference method based on a def-
inition given by Anguelov and Lubuma [1].
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Definition 4. The one-step method (2) is called a nonstandard finite-difference
method if at least one of the following conditions is satisfied:

• Dh(yk) =
yk+1 − yk

ϕ(h)
, where ϕ(h) = h +O(h2) is a nonnegative function;

• Fh(f ; yk) = g(yk, yk+1, h), where g(yk, yk+1, h) is a nonlocal approximation
of the right-hand side function f(y).

3. Main Results

Assume that System (1) has a finite number of equilibria and Re(λ) 6= 0, for λ ∈
Ω, where Ω =

⋃

y∗∈Γ

σ(J(y∗)) and Γ represents the set of all equilibria of System (1).

The nonstandard stability-preserving finite-difference schemes for solving multi-
dimensional autonomous dynamical systems are given in the following theorems:

Theorem 1. Let φ be a real-valued function on R that satisfies the property:

(4) φ(h) = h + O(h2) and 0 < φ(h) < 1 for all h > 0.

Let q > max
Ω

( |2θ − 1||λ|2
2|Re(λ)|

)
, where 0 ≤ θ ≤ 1, θ 6= 1

2
. Then the following nu-

merical scheme, based on the standard θ-method, represents an elementary stable
nonstandard (ESN) method:

(5)
yk+1 − yk

φ(hq)/q
= θf(yk+1) + (1− θ)f(yk).

Remark 1 In the case of θ =
1
2

the standard θ-method:

yk+1 − yk

h
=

f(yk+1) + f(yk)
2

,

is elementary stable.
The results of Theorem 1, applied to the forward and backward Euler methods

as special cases of the θ-method, are given in the following corollary:

Corollary 1. Let φ be a real-valued function on R that satisfies the property (4).

Let q > max
Ω

( |λ|2
2|Re(λ)|

)
. Then the following numerical schemes are ESN methods:

(a) the explicit Euler ENS method given by

(6)
yk+1 − yk

φ(hq)/q
= f(yk); and

(b) the implicit Euler ESN method given by

(7)
yk+1 − yk

φ(hq)/q
= f(yk+1).

The ESN version of the second-order Runge-Kutta method is given in the fol-
lowing theorem:

Theorem 2. Let φ be a real-valued function on R that satisfies the property (4).

Let q > max
Ω

( |λ|2
2|Re(λ)|

)
. Then the following numerical scheme, based on the

standard second-order Runge-Kutta method, represents an elementary stable non-
standard (ESN) method:

(8)
yk+1 − yk

φ(hq)/q
=

f(yk) + f(yk + (φ(hq)/q)f(yk))
2

.
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4. Proofs of the Main Results

In this section we prove that the designed new ESN methods, based on the stan-
dard θ-methods and the second-order Runge-Kutta methods, preserve the stability
of all equilibria of System (1).

Proof. (Theorem 1) Let us denote h1 = ϕ(h) =
φ(hq)

q
. Since 0 < h1 <

1
q

then

(9) h1 <
2|Re(λ)|
|2θ − 1||λ|2

for all λ ∈ Ω. Let y∗ be an equilibrium of System (1) and J = J(y∗) denote
the Jacobian of System (1) at the equilibrium y∗. Equation (3) for the perturbed
solution of Scheme (5) has the form

(10)
εk+1 − εk

h1
= J(θεk+1 + (1− θ)εk).

If Λ is the Jordan form of J , then J = S−1ΛS, where S is a non-singular complex
n× n-matrix. In general, Λ has the following bidiagonal form:




λ1 α1

λ2 α2

. . . . . .
λn−1 αn−1

λn




,

where λi ∈ σ(J) and αi ∈ {0, 1}, i = 1 . . . n. After the change of variables εk = Sδk,
Equation (10) becomes

δk+1 − δk

h1
= Λ(θδk+1 + (1− θ)δk).

The above equation is equivalent to

δk+1 = (I − h1θΛ)−1(I + h1(1− θ)Λ)δk,

where I denotes the identity n× n-matrix. Since the matrix Λ is upper triangular,
then the matrix (I − h1θΛ)−1(I + h1(1 − θ)Λ) is upper triangular also and its

eigenvalues are given by µi =
1 + h1(1− θ)λi

1− h1θλi
, where λi ∈ σ(J), i = 1 . . . n. Since

‖εk‖ → 0 is equivalent to ‖δk‖ → 0, then y∗ is a stable fixed point of (5) if |µi| < 1
for all i = 1 . . . n and an unstable fixed point if |µi| > 1 for at least one i ∈ {1 . . . n}.
For λ ∈ C the following is true:∣∣∣∣

1 + h1(1− θ)λ
1− h1θλ

∣∣∣∣ < 1 ⇐⇒ |1 + h1(1− θ)λ| < |1− h1θλ|
⇐⇒ h1(1− 2θ)|λ|2 < −2Reλ.

Therefore, y∗ is a stable fixed point of Scheme (5) if the inequality

(11) h1(1− 2θ) <
−2Reλ

|λ|2
holds for all λ ∈ σ(J) and y∗ is an unstable fixed point if the opposite inequality

(12) h1(1− 2θ) >
−2Reλ

|λ|2
holds for at least one λ ∈ σ(J).

Let us consider the following two cases for the parameter θ:
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(1) θ < 1
2 . If y∗ is a stable equilibrium of System (1) and λ ∈ σ(J) then Reλ < 0

and the inequality (11) is satisfied because of Inequality (9). Therefore y∗ is
a stable fixed point of Scheme (5). If y∗ is unstable then Reλ > 0 for some
λ ∈ σ(J). Thus the inequality (12) is satisfied for that λ and therefore y∗

is an unstable fixed point of (5).
(2) θ > 1

2 . If y∗ is a stable equilibrium of System (1) and λ ∈ σ(J) then
Reλ < 0. The inequality (11) is satisfied, because the left-hand side is
negative while the right-hand side is positive. Therefore y∗ is a stable fixed
point of Scheme (5). If y∗ is unstable then Reλ > 0 for some λ ∈ σ(J).
Thus the inequality (12) is satisfied for that λ because of Inequality (9) and
therefore y∗ is an unstable fixed point of (5). ¤

Proof. (Corollary 1) The forward and backward Euler schemes are special cases
of the θ-method with θ = 0 and θ = 1, respectively. In both cases |2θ − 1| = 1 and
the proof of the corollary follows directly from the results of Theorem 1. ¤
Proof. (Theorem 2) Let us denote h1 = ϕ(h) =

φ(hq)
q

. Since 0 < h1 <
1
q

then

(13) h1 <
2|Reλ|
|λ|2

for all λ ∈ Ω. Let y∗ be an equilibrium of System (1) and J = J(y∗) denotes the
Jacobian of System (1) at the equilibrium y∗. For the method (8) the linearized
equation of the perturbed solution is given by:

(14) εk+1 =
(

I + h1J +
h2

1J
2

2

)
εk,

After the change of variables εk = Sδk, Equation (14) becomes δk+1 = (I + h1Λ +
h2
1Λ

2

2 )δk. The eigenvalues of I + h1Λ +
h2

1Λ
2

2
are given by µi = 1 + h1λi +

h2
1λ

2
i

2
,

where λi ∈ σ(J), i = 1 . . . n. For λ ∈ C the following is true:∣∣∣1 + h1λ + h2
1λ2

2

∣∣∣ < 1 ⇐⇒ (1 + h1Reλ + h2
1
2 ((Reλ)2 − (Imλ)2))2

+h2
1(Imλ)2(1 + (Reλ)h1)2 < 1

⇐⇒ 2Reλ + 2(Reλ)2h1 + Reλ|λ|2h2
1 + |λ|4

4 h3
1 < 0.

Let us denote α(t) = 2Reλ+2(Reλ)2t+Reλ|λ|2t2+
|λ|4
4

t3. Therefore, y∗ is a stable

fixed point of (8) if the inequality α(h1) < 0 is satisfied for all λ ∈ σ(J) and y∗ is
unstable if α(h1) > 0 for at least one λ ∈ σ(J). The derivative α′(t) = 2(Reλ)2 +

2Reλ|λ|2t +
3|λ|4

4
t2 =

(Reλ)2

4
β

( |λ|2
Reλ

t

)
, where β(t) = 8 + 8t + 3t2. Since β(t) is

positive for all t, the derivative α′(t) is positive for all t and α(t) is an increasing

function. Thus the inequality (13) implies that α(0) < α(h1) ≤ α

(
2|Reλ|
|λ|2

)
.

If y∗ is a stable equilibrium of System (1) and λ ∈ σ(J) then Reλ < 0 and

α(h1) ≤ α

(−2Reλ

|λ|2
)

=
2Reλ(Imλ)2

|λ|2 < 0. Therefore, y∗ is a stable fixed point of

(8). If y∗ is an unstable equilibrium of System (1), then there exists λ ∈ σ(J) with
Reλ > 0. Since α(h1) > α(0) = 2Reλ > 0, then y∗ is an unstable fixed point of
(8). ¤
Remark 2 The definition of the scheme (5) guarantees that all of the scheme’s
fixed points are equilibria of System (1) and vice versa.
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Remark 3 There exists a variety of functions φ that satisfy condition (4), e.g.,
φ(h) = 1− e−h, i.e., ϕ(h) = φ(hq)/q = (1− e−hq)/q.

5. Numerical Examples

To illustrate the efficiency of the designed new ESN methods, we first consider
the following predator-prey system with Beddington-DeAngelis functional response
[2]:

(15)

dx

dt
= x− Axy

1 + x + y
,

dy

dt
=

Exy

1 + x + y
−Dy,

where x and y represent the prey and predator population sizes, respectively, and
the values of the constants are A = 6.0, D = 5.0 and E = 7.5.

Mathematical analysis of System (15) shows that there exist two equilibria (0, 0)
and

(
AD

AE−E−AD , E
AE−E−AD

)
= (4, 1), with the equilibrium (4, 1) being globally

stable in the interior of the first quadrant [2]. The eigenvalues of J(0, 0) are given
by λ1 = 1 and λ2 = 5, and the eigenvalues of J(4, 1) are given by λ3,4 = − 1

12±i
√

119
12 .

Numerical approximations of the solution of System (15) with initial values x(0) =
4.5 and y(0) = 0.5 and step-sizes h = 0.45 and h = 1.18 using the θ-methods and
the second-order Runge-Kutta methods, respectively, (see Fig.1 (a)-(d)) support
the results of Theorem 1 and Theorem 2. The ESN methods, using a denominator
function ϕ(h) = φ(hq)/q = (1 − e−hq)/q with q = 5.1 > q∗, where q∗ = 5 is the
threshold value, preserve the equilibrium (4, 1), while approximations obtained by
the standard methods diverge. The nonstandard θ-method is a stability-preserving
method despite of the existence of complex “equilibrium”-eigenvalues, which lie
outside of the complex region considered by Lubuma and Roux [10]. We also
examine the ESN method using different values of q below the the threshold value
q∗ = 5. The experiments show that the second-order Runge-Kutta ESN method is
still elementary stable even for q = 1 (see Fig.3(a),(b)). For q = 0.8 the method
is no longer elementary stable, however it still preserves the correct stability of the
equilibria for a wide range of step-sizes, e.g. h = 2.5 (Fig.3(c)), compared to the
standard second-order Runge-Kutta method which diverges for h = 1.18 (Fig.1(c)).

In the second example, we consider the following vaccination model with multiple
endemic states [7]:

(16)

dS

dt
= µN − βSI/N − (µ + φ)S + cI + δV,

dI

dt
= βSI/N − (µ + c)I,

dV

dt
= φS − (µ + δ)V,

where the constants β = 0.7, c = 0.1, µ = 0.8, δ = 0.8 and φ = 0.8. In the above
model the total (constant) population size N = 100 is divided into three classes
- susceptibles (S), infectives (I) and vaccinated (V ) and it is assumed that the
vaccine is completely effective in preventing infection.

Mathematical analysis of System (16) shows that the disease free equilibrium
(S∗, I∗, V ∗) =

(
(µ+δ)N
µ+δ+φ , 0, φN

µ+δ+φ

)
= ( 200

3 , 0, 100
3 ) is globally asymptotically stable
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Figure 1. Numerical approximations of the solution of Equation (15).

[7]. The eigenvalues of J(S∗, I∗, V ∗) are given by λ1 = −0.8, λ2 = −2.4 and
λ3 = − 13

30 . Numerical approximations of the solution of System (16) with initial
values S(0) = 75, I(0) = 25 and V (0) = 0 for step-sizes h = 1.68 and h = 0.86
using the θ-methods and the second-order Runge-Kutta methods, respectively, (see
Fig.2 (a)-(f)) support the results of Theorem 1 and Theorem 2. The ESN methods,
using a denominator function ϕ(h) = φ(hq)/q = (1 − e−hq)/q with q = 1.3 > q∗,
where q∗ = 1.2 is the threshold value, preserve the stability of the equilibrium
(S∗, I∗, V ∗), while approximations obtained by the standard methods diverge.

In the last sets of simulations (Fig.3(d)-(f)) we investigate the behavior of the new
ESN numerical methods when applied to dynamical systems with nonhyperbolic
equilibria. Since the threshold value for the parameter q can not be defined as in
Theorems 1 and 2, the parameter q is selected in the following way:

(17) q > max
Ω0

( |λ|2
2|Re(λ)|

)
,

where Ω0 =
⋃

y∗∈Γ0

σ(J(y∗)) and Γ0 is the set of all nonhyperbolic equilibria of the

dynamical system. First, we analyze the vaccination model (16) with β = 1.35,
c = 0.1, µ = 0.8, δ = 0.8 and φ = 0.8. The mathematical analysis shows that the
system undergoes the transcritical bifurcation for the above set of parameter values
and therefore the existing disease-free equilibrium (S∗, I∗, V ∗) is still asymptotically
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(c) h = 1.68, S(0) = 75, I(0) = 25, V (0) = 0
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Figure 2. Numerical approximations of the solution of Equation (16).

stable. We compare the approximations of the system by the second-order Runge-
Kutta method and second-order Runge-Kutta ESN method for a step-size h = 0.86
using ϕ(h) = φ(hq)/q = (1− e−hq)/q with q = 1.3 > q∗, where q∗ = 1.2 as defined
by (17). The simulations show that the ESN method preserves the stability of the
nonhyperbolic equilibria (S∗, I∗, V ∗), while the solution of the standard method
diverges (Fig.3(e),(f)). Second, we analyze the Beddington-DeAngelis system (15)
with A = 7.5, D = 5.0 and E = 7.5. All trajectories of the system for this
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set of parameter values are periodic and the interior equilibrium is stable, but
not asymptotically stable. We compare the approximations of the system by the
second-order Runge-Kutta method and second-order Runge-Kutta ESN method for
a step-size h = 1.18 using ϕ(h) = φ(hq)/q = (1 − e−hq)/q with q = 3 > q∗, where
q∗ = 2.5 as defined by (17). The solution obtained by the standard numerical
method blows up after several time-steps, while the solution of the ESN numerical
method expresses the periodic behavior of the exact solution. However, the ESN
method does not preserve the exact periodic orbit and presents the trajectory as
moving away from the equilibrium (Fig.3(d)).

6. Discussion and Conclusions

Stability-preserving finite-difference schemes, based on the standard θ- and the
second-order Runge-Kutta methods, were developed and analyzed. The nonstan-
dard (ESN) numerical methods represent generalizations of results obtained earlier
by Anguelov and Lubuma [1] and Lubuma and Roux [10] which makes them appli-
cable to solving arbitrary multi-dimensional autonomous dynamical systems.

The new ESN numerical methods guarantee that the stability of a given equilib-
rium E∗ of the dynamical system is the same as the stability of E∗ as a fixed point
of the numerical method for an arbitrary step-size h, when the dynamical system
has only hyperbolic equilibria and the denominator parameter q is selected above
the threshold value, as defined in Theorems 1 and 2.

We have also investigated how well the ESN numerical methods work when the
denominator parameter q is selected below the threshold value q∗. We examined the
predator-prey system with Beddington-DeAngelis functional response (15) using
the second-order Runge-Kutta ESN method for a variety of different values of q
below the threshold value. The experiments showed that the nonstandard method
preserves the correct stability of the equilibria for a much wider range of step-sizes h
when compared to the corresponding standard second-order Runge-Kutta method.
These results are not surprising, given the limiting condition for q in Theorems
1 and 2 is only a sufficient, but not a necessary condition. Therefore, a choice
of q below the threshold q∗ can produce an elementary stable nonstandard (ESN)
method or a nonstandard method with stability properties much better than the
corresponding standard method.

In addition, we have also investigated the behavior of the ESN numerical methods
when applied to dynamical systems with nonhyperbolic equilibria. First, we com-
pared the numerical approximations of the vaccination system (16) by the second-
order Runge-Kutta method and its ESN version for a set of parameter values when
the system undergoes a transcritical bifurcation and therefore the existing disease-
free equilibrium is still asymptotically stable. The simulations showed that the
nonstandard method preserves the stability of the nonhyperbolic equilibria, while
the solution obtained by the standard method diverges. Therefore, in this case the
existence of a nonhyperbolic equilibrium did not affect the stability-preserving prop-
erty of the ESN numerical method. Second, we analyzed the Beddington-DeAngelis
system (15) for a set of parameter values when all trajectories of the system are
periodic and the interior equilibrium is stable, but not asymptotically stable. We
compared again the numerical approximations of the system by the second-order
Runge-Kutta method and its ESN version. The solution obtained by the standard
numerical method blew up after several steps, while the ESN numerical method
expressed the periodic behavior of the exact solution but failed to preserve the
stability of the interior equilibrium.
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Figure 3. Numerical approximations of the solution of Equation
(15) (top and middle) and Equation (16) (bottom).

Future research directions include the construction of nonstandard numerical
schemes that preserve not only the stability but also most of the other essential
qualitative properties of the exact solutions of dynamical systems.
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