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FOUNDATION OF FAST NON-LINEAR
FINITE ELEMENT SOLVERS, PART II

PETER L. SHI

Abstract. The author establishes a finite element solver algorithm of optimal

speed for a class of quasi-linear equations with large stiffness variations and os-

cillations. In particular, the algorithm can successfully handle soft inclusions of

negative stiffness. Besides the convergence analysis, large number of numerical

examples are presented.
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1. Introduction

This is the first of a series of papers supplementing the long article of the author
[11] which has established a general algorithmic architecture for solving nonlinear
finite element models with linear speed. The focus here is to demonstrate a par-
ticular implementation of the methodology to handle the Galerkin formulation of
linear and nonlinear finite element models with large stiffness variation and oscilla-
tion that frequently arise from composite materials. After a briefing on the general
theory and algorithm, we center our discussion around two benchmark problems.
The first is concerned with the elasto-plastic deformation of a membrane in which
the Young’s modulo in the elastic region greatly exceeds that in the plastic region,
constituting large jumps in coefficients in unknown regions. The second case is
concerned with soft inclusions typically seen in making a composite, in which the
included soft material is distributed as mesoscale tiny blocks of much softer stiffness
in the scale of 10−2 ∼ 10−6 compared to the hard material matrix. In particular,
we demonstrate the effectiveness of the algorithm in treating soft inclusions with
negative stiffness, a challenging issue that has not been tackled in prior art. Large
amount of numerical examples are demonstrated.

In this paper, the author only presents the method in a two dimensional setting.
Its generalization to three dimensional domains requires more elaborated technical-
ities that deserve a separate discussion.

Let Ω a bounded polygonal domain in R2. In order to deal with soft inclusions,
we let Ω1 and Ω2 be sub-domains of Ω such that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.

Received by the editors March 5, 2006.
2000 Mathematics Subject Classification. 65N30, 65J15.

241



242 P. SHI

�
�
�
�

�
�
�
��

�
�
�

� �
� �

�
�

�
�
�
	
	
	





�
��

�
�







� �
� �

�
�

�
�
�
�

� �
� �
� �

�
�
� �

�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�

 
 
!
!

"
"
"
#
#
#

$
$
%
%

&'
()
*+

,-

.

.
/
/

01

2
2
3
345
67

89
:
:
;
;

<
<
=
=

>?
@A
BC
D
D
E
E

(a) (b) (c)

Figure 1. In (a) the shaded region is the unknown plastic region.
In (b) and (c), the material on Ω1 (black) is soft while the material
on Ω2 (white) is hard. The variation or oscillation in stiffness has
risen to the extent that the standard algorithms are impeded in
speed or accuracy.

We assume that Ω1 is a union of small polygons that is not necessarily connected.
Three examples of the domain are illustrated in Figure 1 that foreshadow the chal-
lenge we will face in the computation. In (a), the shaded area represents an un-
known plastic region. In (b), the domain can be used to model material defects or
random inclusions. Domain (c) is a familiar semi-periodic situation in composite
material, often seen in the homogenization theory.

In order to avoid excessive technical details, we further simplify the partial dif-
ferential operator to include only the principle part, given by

Lu = −
2∑

j=1

[
aj(x,∇u)

]
xj

where each aj is a measurable function on Ω × R2. While the dependence on the
solution itself in aj and lower order terms can also be considered, we will omit such
complications. Throughout the paper, we will make the following assumptions on
the coefficients of L.

(A0) For each x ∈ Ω, aj(x, 0, 0) = 0 for j = 1, 2.
(A1) For each k = 1, 2, there exists a constant αk ≥ 0 such that for all x ∈ Ωk

and for all ξ, η ∈ R2

2∑

j=1

[
aj(x, ξ)− aj(x, η)

]
(ξj − ηj) ≥ αk|ξ − η|2,

where | · | denotes the Euclidean norm of R2.
(A2) For each k = 1, 2, there exists a constant βk such that for all x ∈ Ωk and

for all ξ, η ∈ R2

2∑

j=1

|aj(x, ξ)− aj(x, η)| ≤ βk|ξ − η|.

The sharp jumps in the stiffness coefficients are not explicitly expressed in the
assumptions (A1)-(A2), but rather, embedded as a special case. In the event that

(1.1) α1 = δα2, β1 = δβ2

for a sufficiently small δ, such situations will occur. A typical range of δ can be
10−2 ∼ 10−6 for example.
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The oscillatory assumption on the coefficients aj is embedded in the construction
of the sub-domain Ω1, which later will be discussed with greater detail.

The speed of a solver is defined as the number of float point operations needed
to achieve the inequality

(1.2) ||uh − uc|| < ε.

Here uh denotes the nodal values of the exact solution to the finite element model,
uc denotes the computed approximation to uh, ε denotes the the prescribed error
bound, and ‖ · ‖ is the standard Euclidean norm of the nodal values. The optimal
speed referenced above is given by c| ln ε|Nd, where Nd is the total degrees of freedom
in the system, and c is a positive constant independent of Nd.

When (1.1) is present coupled with high frequency oscillations as illustrated in
(c) of Figure 1, the Galerkin method for the boundary value problem requires a
small mesh size in order to resolve the solution to a satisfactory scale, which in turn
forces a large number of unknowns in the discrete system. In this paper, the author
demonstrates that the linear speed of the solver algorithm when aided by the power
of modern computer hardware will significantly reduce the time cost associated
with the small mesh size without sacrificing the accuracy and the robustness of
the algorithm. This further allows the author to unveil new computational results
on a low end laptop which have been otherwise difficult to achieve even on high
end computing equipments. In particular, author is able to show some interesting
computational results on composite materials with inclusions of negative stiffness.

In response to the need of reducing the computational cost associated with large
stiffness variation and oscillation, multi-scale modeling has become a new fron-
tier. On the computational level, various multi-scale finite element approximations
have also been introduced [6][8][2][1]. These approaches use a grid coarser than
what is required for the fine scale resolution coupled with problem-dependent basis
functions or built-in structures at finer level. For non-linear problems, more so-
phisticated mapping is constructed to replace the basis functions [7]. The resulting
approximation error is typically given in the form

(1.3) ‖u− uh,ε‖ = O(ε + h +
√

ε/h)

and its close variants. Here u is the homogenized solution, uh,ε is the theoretical
solution of the multi-scale finite element model, ε is the typical length of the fine
scale (for example, the size of the black-white squares in Figure 1), and h is the
coarse grid size in the multi-scale model. For a recent study of the performance of
multi-scale finite element models we refer the reader to [1].

We point out that multi-scale finite element models are not complete solvers —
uh,ε remains to be solved. When ε is sufficiently small, say 10−6, while the physical
domain Ω is relatively large, the multi-scale finite element model itself may still have
millions of unknowns. It is also unclear how the large magnitude in the stiffness
variation is resolved in the in the estimate (1.3). These difficulties when further
enhanced by the nonlinearity of the equations are yet to be adequately addressed
at the computational level. In addition, if no periodic structure is present, it is
unclear if (1.3) is valid.

Numerical challenges caused by large jumps in coefficients have been addressed
independent of the homogenization theory and multi-scale modeling. The balanc-
ing domain decomposition method [10] and the references therein, also known as
BDD, reduces the original Galerkin formulation to solving a problem on the inter-
face across the sub-domains. Its feasibility depends critically on the efficiency of



244 P. SHI

the interface solver, and ultimately on the conditioning of the interface operator.
The BDD algorithm uses the Neumann-Neumann preconditioner to condition the
interface operator, which in turn requires solving a coarser grid problem to guaran-
tee that the Neumann problems on sub-domains are consistent. The bulk of success
of BDD is restricted to linear problems.

The reader must not view the algorithm and the spirit of the current paper as
a competing device against multi-scale finite element models or homogenization
theory. Instead, it is a compliment to these established mechanisms. For example,
with moderate modifications, the algorithm can also serve as a linear speed solver
for multi-scale finite element models. While this is highly desirable, it will not be
addressed in the current paper.

2. A List of Notations

Group 1: Interpolation Spaces

H1
h(Ek) . . . . . . Local interpolation space on kth element Ek

Πh . . . . . . Direct product of local interpolation spaces
Vh . . . . . . Standard interpolation space for Galerkin method

Group 2: Spaces on Sub-nodes

B . . . . . . The set of all sub-nodes
= . . . . . . The topology on B
Ek . . . . . . kth elemental construct (sub-nodes on Ek)
µ . . . . . . The standard generic counting measure
ν . . . . . . A weighted measure on B
L2(B) . . . . . . Topological finite element spaces
C[B] . . . . . . The continuous subspace of L2(B)
P . . . . . . The orthogonal projection from L2(B) onto C[B]
Cω[B] . . . . . . The weighted space of continuity
Pω . . . . . . The orthogonal projection from L2(B) onto Cω[B]
Cnst[B] . . . . . . A piece-wise constant space — the kernel space
K . . . . . . The orthogonal projection from L2(B) onto Cnst[B]
Cq[B] . . . . . . The quotient space, equal to (I −K )Cω[E ]
Pq . . . . . . The orthogonal projection from L2(B) onto Cq[B]
I . . . . . . The natural isomorphism from L2(B) onto Πh

Group 3: Spaces on Abstract Graph
E . . . . . . (Directed) abstract graph of sub-nodes
G . . . . . . (Non-directed) abstract graph of sub-nodes
[Ek] . . . . . . Local edges of Ek

[E k] . . . . . . Closure of local edges of Ek

[E ] . . . . . . The set of all local edges, disjoint union of all [Ek]
[G ] . . . . . . The set of all closures of local edges, union of all [E k]
µ . . . . . . A discrete measure on [E ]
L2[E ] . . . . . . The L2-space of functions defined on [E ]
C[E ] . . . . . . The continuous subspace of L2[E ]
Cω[E ] . . . . . . The weighted continuous subspace of L2[E ]
C0

ω[E ] . . . . . . The weighted space of zero mean
P0 . . . . . . The orthogonal projection from L2[E ] onto C0

ω[E ]
C0[E ] . . . . . . The (non-weighted) space of zero mean
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R0
ω[E ] . . . . . . An isomorphic image of C0

ω[E ] into C[E ]
E0

ω[E ] . . . . . . Orthogonal projection from C[E ] onto R0
ω[E ]

L2[G ] . . . . . . The set of functions defined on [G ], isometric to C[E ]
R0

ω[G ] . . . . . . An isomorphic image of C0
ω[E ] into L2[G ]

R0[G ] . . . . . . The (non-weighted) space of zero mean on [G ].
The language used in the paper is a direct descent from the author’s article [11]
characterized by the use of topology on sub-nodes and discrete measures. This in-
evitably invokes notations that are non-standard in the numerical literature. These
notations are not just a matter of style or formalism, without which it is almost
impossible to present the algorithm at the current level of theoretical rigor and
algorithmic clarity. Not only the spaces provide a concrete data structure for pro-
gramming — they are naturally close to C structures — but also they serve as a
framework for further generalization of the algorithm to higher dimensions.

3. The Galerkin Formulation

The shape functions used for the discussion of the algorithm in the current
paper are from the iso-parametric family as illustrated in Figure 2. Although more
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Figure 2. Examples of local degrees of freedom associated with
shape functions. (a) Linear shape functions on a triangle (b) Qua-
dratic shape functions on a triangle (c) Bi-linear shape functions
on a quadrilateral (d) Serendipity shape functions on a quadrilat-
eral.

complicated shape functions will further enhance the fine scale resolution, it will
significantly increase the technical level of the presentation. Our goal is to keep the
exposition of the main idea as simple as possible and refer the reader to [11] for
generality.

We will only consider the homogeneous Neumann boundary condition, for which
the interpolation space Vh ⊂ H1(Ω) will be constructed accordingly. Throughout
the rest of the discussion, h will denote the so-called typical element size. N will
be the total number of elements in the mesh, and Nd will be the total degrees of
freedom in the discrete system.
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The weak formulation of the boundary value problem is defined as follows. Given
fj ∈ L2(Ω), j = 1, 2, find u ∈ H1(Ω) such that for all v ∈ H1(Ω)

(3.1)
2∑

j=1

∫

Ω

aj(x,∇u)vxj
dx =

2∑

j=1

∫

Ω

fjvxj
dx.

Our task is to find uh ∈ Vh in a linear computational count such that

(3.2) a(uh, vh) =
2∑

j=1

∫

Ω

fjvhxj
dx, ∀vh ∈ Vh.

Here a(·, ·) is the quasi-linear form defined by the left hand side of (3.1). Without
loss of generality, we have eliminated the term

∫

Ω

f0vhdx

from (3.1)-(3.2). This can be achieved by a relatively easy Z-matrix technique
extensively described in [11], or by solving a discrete Laplacian.

4. Architecture of Discrete Spaces

We begin by making a general remark on the space environment in which a
finite element solver algorithm should be analyzed. Except for algebraic multi-
grid method (AMG) that deliberately separates itself from the underlying Sobolev
spaces describing the partial differential equations, most other algorithms carry out
their algorithmic design and convergence analysis between Vh and the continuous
Sobolev space setting. Here we must separate the two different notations between
the convergence of the approximation scheme and the convergence of the solver
algorithm. The latter refers to the estimation of ‖uh − uc‖ as described in (1.2) in
the Euclidean environment. Therefore it is no longer natural to analyze ‖uh − uc‖
in the Sobolev space setting. However, the generic Euclidean space lacks the data
structure to capture its relevance to finite elements. It is therefore necessary to
restore the finite element structure in a Euclidean space, and this is the primary
contents of this section, and is the foundation of the author’s algorithmic design.

4.1. The Piece-wise Interpolation Space. We denote the elements in the mesh
by Ek for k = 1, 2, . . . , N , and denote the shape functions on Ek by

(4.1) ϕk
l , l = 1, 2, . . . , m.

For the examples in Figure 2, m = 3, 6, 4, 8 respectively for the cases (a)-(d). Let

Πh =
N⊕

k=1

H1
h(Ek).

Here H1
h(Ek) is the span of the shape functions ϕk

l on the element Ek. Note that
Πh is no longer a subspace of H1(Ω). However, Vh ⊂ Πh remains valid.

4.2. The Topological Space of Degrees of Freedom. The concept of a local
degrees of freedom has been traditionally heuristic. Its topological treatment is
the foundation for the design of the current algorithm. Let m be a fixed integer
discussed in the above examples. We simply call the point set

Ek = {pk
l , l = 1, 2, . . . m}
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the local degrees of freedom on the element Ek. Each pk
l must be understood as

an abstract singleton whose content is unimportant. We call each pk
l a sub-node

and call each Ek an elemental construct. The set of all sub-nodes is denoted by B.
Thus

B =
N⋃

k=1

Ek, Ek ∩ Ej = ∅ if k 6= j.

We call a topology = on B a conforming finite element topology if it satisfies the
following. For each j = 1, 2, . . . , N

T1. ∂pEj 6= ∅
T2. If p, q ∈ Ej with p 6= q, then p ∩ q = ∅.
T3. If p, q ∈ B and p ∩ q 6= ∅, then p = q.

Here ∂pEj = Ej \ Int(Ej) denotes the so-called inner boundary1 of Ej and the over-
line symbol denotes the closure. The actual construction of = varies in concrete
applications. Within the scope of the current paper, this will be a simple event.

Theorem 4.1. For any topology on B that satisfies T3 the following properties
hold.

a. Let p ∈ B and let q ∈ p. Then p = q. They are both the smallest closed
subset of B that contains p.

b. There exists a unique set of closed subsets of the form

{pj ; pj ∈ B, j = 1, 2, . . . ,M}
such that

B =
M⋃

j=1

pj , pj ∩ pk = ∅, i 6= k.

c. Let p ∈ B and q ∈ p. Then p is the smallest open subset of B that contains
q.

Theorem 4.1 allows us to model the notion of global degrees of freedom by the
closure of a point in B. Thus we call each p a nodal construct of B. Accordingly,
B is also a disjoint union of nodal constructs.

4.3. Topological Finite Element Space. The discrete space holding all possible
programming data will be L2(B), the space of all functions defined on B equipped
with the inner product

(4.2) (u, v) =
∫

B

uv dµ.

Here µ is the standard counting measure on B. At first glance, the space L2(B) is
nothing but an Euclidean space Rn. However, a closer look reveals that the added
topological and algebraic structure in B have united the local and global degrees of
freedom, the nodal values of the interpolation and the connectivity of the mesh, all
in one elegant setting, to form an ideal computational environment. We call L2(B)
the topological finite element space.

1For the shape functions considered in the current paper, the inner boundary is empty
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4.4. Continuity and Weighted Continuity. We denote by C[B] the space of
continuous functions defined on B under the topology =. In light of Theorem 4.1,
it is easy to show the following.

Proposition 4.2. Let f ∈ L2(B). Then f ∈ C[B] if and only if f is a constant
on each nodal construct.

Let [p]j for j = 1, 2, . . . , σ denote all nodal constructs in B. Proposition 4.2
implies that a function in C[B] has a unique representation

(4.3) f =
σ∑

j=1

cjχ[p]j , cj ∈ R1.

Here χ[p]j denotes the characteristic function of [p]j . Hence the orthogonal projec-
tion from L2(B) onto C[B] is simply given by

(4.4) Pf =
σ∑

j=1

χ[p]j

µ(χ[p]j)

∫

B

χ[p]j f dµ, f ∈ L2(B).

Important to our discussion is a weighted space of continuity, denoted by Cω[B],
which is designed to compensate for the jumps in the operator coefficients while
keeping the shape functions unchanged. More precisely, we decompose B into a
disjoint union of two subsets. Let Bl, for l = 1, 2, denote the union of all elemental
constructs corresponding to elements Ek such that Ek ⊂ Ωl. We say that f ∈ Cω[B]
if

(4.5) ωf ∈ C[B], ω =
χB1√

δ
+ χB2 .

Here δ is the same quantity that appeared in (1.1). It is clear that Cω[B] is the
image of C[B] under the linear mapping defined by multiplication by ω−1. Note
that

ω−1 =
√

δχB1 + χB2 .

Proposition 4.3. Let ν be the discrete measure on B defined by dν = ω−2dµ.
Then the orthogonal projection from L2(B) onto Cω[B] is given by

Pωf = ω−1
σ∑

j=1

χ[p]j

ν(χ[p]j )

∫

B

χ[p]j ωf dν, f ∈ L2(B)(4.6)

Proof. Let f ∈ L2(B) and u = Pωf . Then u = ωu ∈ C[B] and the following
equalities hold.∫

B

|u− f |2 dµ =
∫

B

ω−2|ωu− ωf |2 dµ =
∫

B

|u− ωf |2 dν.

On the other hand,∫

B

|u− f |2 dµ = min
v∈C[B]

∫

B

ω−2|v − ωf |2 dµ = min
v∈C[B]

∫

B

|v − ωf |2 dν.

Hence u is the orthogonal projection of ωf from L2(B) onto C[B], provided that
the measure on B was given by ν. In light of (4.4), it follows that

u =
σ∑

j=1

χ[p]j

ν(χ[p]j)

∫

B

χ[p]j ωf dν.

This proves (4.6). ¤
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4.5. The Natural Isomorphism. In this section we make the first link between
the topological finite element space L2(B) and the piece-wise interpolation space

Πh =
N⊕

k=1

H1
h(Ek).

This is done via the isomorphism I : L2(B) → Πh defined by

(4.7) I : f →
N∑

k=1

m−1∑

l=0

f(pk
l )ϕk

l , f ∈ L2(B).

Some basic properties of I are given in the following.

Proposition 4.4. Let χkl be the characteristic function of the lth sub-node in Ek.
Let χk be the characteristic function of Ek. The the following properties hold.

(4.8)





I χkl = ϕk
l

I χk = χEk

I (C[B]) = Vh

Proof. These properties follow directly from (4.7) and the definitions of the quan-
tities involved. ¤

Proposition 4.5. Suppose that g ∈ L2(B) is a constant on each elemental con-
struct. Then

(4.9) I (gf) = (I g)(I f), f ∈ L2(B)

In particular, I (Cω[B]) = (I ω−1)Vh.

Proof. To prove (4.9), we observe that

g =
N∑

k=1

ckχk, gf =
N∑

k=1

m∑

l=1

ckf(pk
l )χk

l , I g =
N∑

k=1

ckχEk
.

Hence

I (gf) =
N∑

k=1

{
ck

m∑

l=1

f(pk
l )ϕk

l

}
= (I g)(I f).

Note that ω−1 =
√

δχB1 + χB2 . Thus I (Cω[B]) = (I ω−1)Vh following (4.9) and
the definitions of the spaces involved. ¤

Finally, in order to handle the homogeneous pure Neumann boundary condition,
we define C0

ω[B] as the set of all functions u in Cω[B] such that

(4.10)
∫

B

ωu dµ = 0.
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4.6. The Quotient Space. In order to implement element-wise conditioning in
the general spirit described in [11], it is necessary to introduce the piece-wise con-
stant space Cnst[B], which is the span of characteristic functions of all elemen-
tal constructs. Following the argument in [11], it is easy to prove that Cω[B] ∩
Cnst[B] = span{ω}. Consequently

(4.11) C0
ω[B] ∩ Cnst[B] = {0}.

Let K be the orthogonal projection from L2(B) onto Cnst[B] and let Cq[B] denote
the quotient space

(4.12) Cq[B] = (I −K )C0
ω[B].

In light of (4.11), it follows that I −K is a one-to-one mapping from C0
ω[B] onto

Cq[B]. We will denote the orthogonal projection from L2(B) onto Cq[B] by Pq.
There is a simple but very useful relation between Cq[B] and the non-weighted

quotient space (I −K )C[B], which we summarize as follows.

Proposition 4.6. A function f ∈ Cq[B] if and only if f = ω−1g for some g ∈
(I −K )C[B].

Next we characterize the space Cq[B] in a more favorable form for computation.
For this, it is useful to construct a graph G in the topological structure

B ×=× {Ej ; j = 1, 2, . . . , N}.
The resulted abstract graph G has richer contents than the mesh-induced graph
because the so-called vertexes and edges in G are no longer just abstract singletons
— they are subsets of B. The additional structures within each vertex and edge in
G will later be used to characterize Cq[B].

As is always the case in graph theory, terminologies have become an excessive
burden. Unfortunately, the author does not have a mechanism to avoid these
“excessiveness”. After all, the finite element structure is a elaborated graph2. Given
two different elemental constructs Ei and Ej , we define

(4.13) eij = E i ∩ E j

as the interior edge between Ei and Ej provided that eij consists of at least two
nodal constructs. The rigorous definition of boundary edges are more involved
in the general setting. However, in the restricted cases considered in the current
paper, the boundary edges of G are self-explanatory (see Figure 3). We define the
degree of a nodal construct as the number of abstract edges to which it belongs. We
say that a nodal construct in B is a master nodal construct if its degree is greater
than 1. Otherwise we call it a slave nodal construct. The topology = considered
in the current paper is of two dimensional simple Lagrangian type, which has the
following simple properties.

a. Each abstract edge contains exactly two master nodal constructs.
b. Two different sub-nodes in a nodal construct belong to two different ele-

mental constructs respectively.

In light of the first property, we also deploy the more pronounced notation eijkl for
eij when the two master nodal constructs contained in eij are indexed by k and l.

2In higher dimensions, algebraic topology will be naturally involved as well
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At this point, we have introduced a graph G in a topological finite element space.
The conversion into the standard graph terminologies is given as follows.

elemental construct . . . . . . face
eijkl . . . . . . edge
master nodal construct . . . . . . vertex

Note that slave nodal constructs are not included in the graph objects for the
moment in order to simplify the graph structure. More importantly, the graph G
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(b) Original mesh of the domain(a) Abstract graph of sub−nodes

boundary edge

interior edge

Figure 3. The isommetry between the abstract graph of sub-
nodes (a) and the finite element mesh on Ω (b). In (a) each cluster
of sub-nodes is a nodal construct, also defined as a vertex in G .
Edges in G are subsets of B. The usual line segments connecting
vertexes can be eliminated.

is isometric to the finite element mesh while being free from the individual shape
of the elements. This will lead to significant advantage for the computation.

We also need a finer concept which we call terminal construct of an edge. A pair
of sub-nodes {p, q} is called a terminal construct of the edge eijkl if

p = Ei ∩Nk, q = Ej ∩Nk, or p = Ei ∩Nl, q = Ej ∩Nl.

Here Nk and Nl are the two nodal constructs contained in eijkl in accordance
of (4.13). If Nk (Nl respectively) is a master nodal construct, then we say that

iE

E j Nl
Nk

eijkl

��
�� �

�
��p

q

p*

q*

Figure 4. Master and slave terminal constructs of the abstract
edge eijkl. Each pair of blue and red circles is a master terminal
construct. Each pair of black circles is a slave terminal construct.

{p, q} ({p∗, q∗} respectively) is a master terminal construct, otherwise it is called a
slave terminal construct. Figure 4 illustrates the typical terminal constructs of an
abstract edge.
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The consistency is a local criterion we will use to characterize the space Cq[B].
Let eijkl be a given edge in G and let {p, q} and {p∗, q∗} be the pair of terminal
constructs of eijkl. We say that f ∈ L2(B) is consistent on eijkl if

(4.14) ω(p)f(p)− ω(q)f(q) = ω(p∗)f(p∗)− ω(q∗)f(q∗).

We say that f is consistent on B if it is consistent on all edges of G .

Theorem 4.7. Let f ∈ L2(B). Then f ∈ Cω[B] + Cnst[B] if and only if f is
consistent on B.

Proof. The necessity follows from a direct verification of (4.14) by using the defini-
tion of Cω[B]+Cnst[B]. To prove the sufficiency, we consider the function F = ωf .
Then (4.14) implies that

(4.15) F (p)− F (q) = F (p∗)− F (q∗).

As a direct application of Theorem 8.1 of [11] and (4.15), it follows that there
exists c ∈ Cnst[B] such that the values of c on Ei and Ej are given by ci and cj

respectively, and
F (p)− F (q) = F (p∗)− F (q∗) = ci − cj .

Rearranging the above equality we obtain

(4.16) F (p)− ci = F (q)− cj , F (p∗)− ci = F (q∗)− cj .

This states that the function F − c is a constant on each terminal construct of an
edge, which in turn implies that F − c ∈ C[B] when all edges in G are taken into
account. Hence, by writing

f = ω−1(F − c) + ω−1c

we obtain f ∈ Cω[B] + Cnst[B]. This completes the proof. ¤

The equations in (4.16) suggest a convenient solution procedure for the determi-
nation of c. We refer the reader to [11] for detail.

4.7. The Space of Zero Mean. It turns out that computing Pq can be most
effectively carried out in a space defined on edges of G when it is viewed as a
bi-directional graph. This space is denoted by L2[E ], which we describe in the
following.

Recall (4.13), in which the edge between two neighboring elemental constructs
Ek and El is defined by ekl = E k∩E l. This further induces the notion of local edges
of each Ek defined by ekl ∩ Ek, ekl 6= ∅. In order to ease the exposition, we will
assume that G is isometric to a quadrilateral mesh with bi-linear iso-parametric
shape functions3. In this case, G is bipartite in terms of faces. That is, we can
associate with each elemental construct a unique ± sign such that neighboring
elemental constructs have a different sign. We denote the four different local edges
of an elemental construct Ek by

[Ek] = {ekdn, ekrt, ekup, eklf}
in such a way that if El is a neighboring elemental construct of Ek then one and
only one of the following holds.

ekdn = elup, eklf = elrt, eldn = ekup, ellf = ekrt.

3This assumption is made only for the ease of exposition. Following the presentation is [11],
the entire theory can be carried out in terms of the topology on B without reference to the mesh.
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Here the over-line symbol denotes the topological closure. While each local edge is
a set of sub-nodes, whereby topological closure applies, it must also be regarded as
a singleton when the context is required. Parallel to the local edges, we also need
the so-called local edge closures

[E k] = {ekdn, ekrt, ekup, eklf}
to represent the edges of the graph G . This notation emphasizes the aspect that
each element in [E k] belongs to the topological closure of Ek. It is easy to see that
any element of [E k] can be uniquely written in the form

ekl = E k ∩ E l, for some l.

At this point, we have implicitly introduced a an incomplete directed graph E
associated with the graph G as illustrated in Figure 5. The exceptions are the
boundary edges which remain non-directional. Let

[E ] =
N⋃

k=1

[Ek], [G ] =
N⋃

k=1

[E k]

be the set of all local edges of E and the edges of G respectively. Given e and e∗
in [E ] with e 6= e∗, we say that e ∼ e∗ if e = e∗. Hence the mapping e → e∗ (with
e ∼ e∗) is one-to-one. Moreover, (e∗)∗ = e. If e is a boundary edge, we define
e = e∗. In general, we have e = e∗ if and only if e is a boundary edge. It is useful
to classify the local edges in [Ek] via the disjoint union.

[Ek] =
j=2⋃

j=0

[Ekij ], i = 1 or 2.

For j = 1, 2 and e ∈ [Ek], we say that e ∈ [Ekij ] if e ∈ Bi and e∗ ∈ Bj with e 6= e∗.
We say that e ∈ [Eki0] if e ∈ Bi and e = e∗. Recall that B1 and B2 are unions of
elemental constructs. Hence if e ∈ [Ekij ] for some i and j, then all local edges of [Ek]
belong to [Ekim] for some m = 0, 1, 2. Notice that the graph G can be re-generated
by E via a pure topological procedure.

The space L2[E ] is the set of all functions defined on [E ] equipped with the inner
product

(f, g) =
∫

E

fg dµ, f, g ∈ L2[E ].

Here µ is a discrete measure on [E ] such that

µ(e) =

{
1
2 if e 6= e∗,

1 if e = e∗.

The particular choice of µ above will induce a useful isometry between a subspace
of L2[E ] and L2[G ], the space of functions defined on [G ], which we discuss later.

In a parallel manner, we also classify [E k] into the disjoint union

[E k] =
j=2⋃

j=0

[E kij ], i = 1 or 2.

An element is in [E kij ] if and only if it is a topological closure of an element in
[Ekij ].
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Figure 5. Illustration of local edges of the bi-directional graph E ,
the edges of the graph G , and the index theme for the classification
of edges.

As is L2[E ] is parallel to L2(B), a space Cω[E ] we shall introduce is parallel to
Cω[B]. It is the set of all functions in L2[E ] such that f ∈ Cω[E ] if and only if

(4.17) ω(e)f(e) = ω(e∗)f(e∗) whenever e ∼ e∗.

Here ω(e) (respectively ω(e∗)) stands for the value of ω on any sub-node in e
(respectively e∗). The weighted space of zero mean, denoted by C0

ω[E ], consists of
all functions in f ∈ Cω[E ] such that for each elemental construct Ek

(4.18)
∑
α

f(α) = 0, α ranges over all local edges of Ek.

When ω = 1, we simply denote Cω[E ] by C[E ], and denote C0
ω[E ] by C0[E ], and call

C0[E ] the space of (non-weighted) zero mean. A much larger space L2
0[E ] consists

of all functions in L2[E ] that satisfy (4.18).
There is a basis for the space Cω[E ] useful computing the orthogonal projection

from L2[E ] onto C0
ω[E ], which we describe in the following. For each pair {e, e∗} ⊂

[E ] with e∗ ∼ e, let

(4.19) ξee∗ =





ω−1(e)χe + ω−1(e∗)χe∗ if ω(e) 6= ω(e∗),

χe + χe∗ if ω(e) = ω(e∗), e 6= e∗,

χe if e = e∗.

It is clear that each ξee∗ satisfies (4.17). Here and in the subsequent discussion,
it is understood that ξee∗ and ξe∗e will not appear simultaneously. In case that
ω(e)) 6= ω(e∗), it is assumed automatically that e ∈ B1 and e∗ ∈ B2. From the
definition of µ, it is also clear that

(4.20) ‖ξee∗‖2 =





δ + 1
2

if ω(e) 6= ω(e∗),

1 otherwise.

Theorem 4.8. For any function f ∈ Cω[E ], there exists a unique u ∈ C[E ] such
that

(4.21) f =
∑

e∈[E ]

u(e)ξee∗ .

Conversely, any function in the form of (4.21) with u ∈ C[E ] belongs to Cω[E ].
Given (4.21) with u ∈ C[E ], then f ∈ C0

ω[E ] if and only if the following holds. For
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each k = 1, 2, . . . , N , if Ek ⊂ B1, then

(4.22)
∑

e∈[Ek10]

u(e) +
∑

e∈[Ek11]

u(e) +
∑

e∈[Ek12]

ω−1(e)u(e) = 0;

if Ek ⊂ B2, then

(4.23)
∑

e∈[Ek20]

u(e) +
∑

e∈[Ek21]

u(e) +
∑

e∈[Ek22]

u(e) = 0.

Proof. It is easy to see that f in the form of (4.21) is another expression of (4.17).
Given (4.21), (4.22)-(4.23) are exactly (4.18). This completes the proof. ¤

A useful point of view on Theorem 4.8 is that the mapping

(4.24) Φ : u → f

defines an isomorphism from C[E ] onto Cω[E ]. The space C0
ω[E ] is the image of a

subspace R0
ω[E ] ⊂ C[E ] that satisfies (4.22)-(4.23). This subspace is important in

subsequent discussions.

Corollary 4.9. Suppose that for each k = 1, 2, . . . , N , either [Ek12] = [Ek] or
[Ek12] = ∅, and suppose that f ∈ Cω[E ] is given by (4.21). Then f ∈ C0

ω[E ] if
and only if u ∈ C0[E ], the (non-weighted) space of zero mean. In other words,
C0[E ] = R0

ω[E ] in this case.

Proof. The scaling factor ω−1 in (4.22) will be canceled in the current situation.
Hence (4.22) implies that

∑

e∈[Ek]

u(e) = 0, Ek ⊂ B1.

This together with (4.23) implies that
∑

e∈[Ek]

u(e) = 0, ∀ k = 1, 2, . . . , N,

which states that the function u satisfies (4.18). ¤

We remark the above Corollary is extremely useful if each individual “soft in-
clusion” is isolated. It is also applicable to the checker-board pattern as illustrated
in Figure 1.

The rest of this section is devoted to computing the orthogonal projection from
L2[E ] onto C0

ω[E ]. The most pivotal part is computing the orthogonal projection
from C[E ] onto R0

ω[E ], which we denote by E0
ω. However, there are several smaller

steps that must be resolved first. To this end, we first recall the space L2[G ], which
is the space of all functions defined on the edges of the graph G equipped with the
inner product ∫

G

fg dµ, f, g ∈ L2[G ],

where µ is the standard counting measure on [G ]. It is easy to see that C[E ] as a
subspace of L2[E ] is isometric to L2[G ]. The isometric mapping between the two
spaces, denoted by U , is simply given by

(Uf)(e) = f(e), ∀f ∈ C[E ], ∀e ∈ [E ].
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Accordingly, the isometric image of R0
ω[E ] is a subspace of L2[G ], which we denote

by R0
ω[G ]. In particular, we denote the isometric image of C0[E ], the space of zero

mean (non-weighted), by R0[G ], also called the space of zero mean.
Before proceeding further, it is helpful to summarize various spaces that we have

directly or implicitly introduced. There are two basic environments, the sub-nodes
environment and the graph environment.

(4.25)

L2(B) ⊃ C0
ω[B] ↔ Cq[B] if ω = 1

l l ↓
L2[E ] ⊃ Cω[E ] ⊃ C0

ω[E ] ≡ C0[E ]

l l l
C[E ] ⊃ R0

ω[E ] ≡ R0[E ]

‖ ‖ ‖
L2[G ] ⊃ R0

ω[G ] ≡ R0[G ]

In the above illustration, the bi-directional arrows indicate isomorphism. The equal
signs indicate isometry. The sign ≡ means definition. Except for the relation
between Cq[B] and C0

ω[E ], which will be discussed in the next section, all have
been discussed in detail.

Theorem 4.10. Let f ∈ L2[E ] and let f0
ω = P0f , the orthogonal projection from

L2[E ] onto the space C0
ω[E ] be expressed in the form

f0
ω =

∑

e∈[E ]

u(e)ξee∗ , u ∈ R0
ω[E ].

Then u satisfies the generalized Wiener-Hopf equation

(4.26) TE0
ω
(Dω)u = E0

ωF.

Here Dω is the mapping from C[E ] onto itself such that

Dωu(e) = Dωu(e∗) = ‖ξee∗‖2u(e), ∀u ∈ C[E ], ∀e ∈ [E ].

F ∈ C[E ] is defined by

F (e) =
∫

[E ]

fξee∗ dµ, e ∈ [E ].

Proof. Let g ∈ C0
ω[E ] be expressed in the form

g =
∑

e∈[E ]

v(e′)ξe′e′∗ , v ∈ R0
ω[E ].

Then the function u satisfies the variational equality∫

[E ]

f0
ωg dµ =

∫

[E ]

fg dµ, or
∫

[E ]

[Dωu]v dµ =
∫

[E ]

Fv dµ.

which is exactly (4.26). The theorem is proved. ¤

Lemma 4.11. Suppose that V is subspace of Rn and let

ωk = (ak1, a12 . . . akn), k = 1, 2 . . .m

be given vectors in Rn. Then

(4.27) V = span{ωk; k = 1, 2 . . . m}
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if and only if V ⊥ consists of all vectors x = (x1, x2 . . . xn) that satisfies the following
linear constraints.

(4.28)
n∑

j=1

akjxj = 0, k = 1, 2 . . . m.

Proof. Let A be the n×m matrix whose column vectors are given by (4.27). Then
y =

∑m
k=1 ξkωk if and only if y = Aξ for some ξ = (ξ1, ξ2 . . . ξm). Hence the

equivalence between (4.27) and (4.28) is the expression of the well-known formula
Im(A)⊥ = Ker(A∗). ¤

Theorem 4.12. The space R0
ω[G ]⊥, the orthogonal complement of R0

ω[G ] with
respect to L2[G ], is spanned by the basis functions

(4.29)





ξk = ±
[
χ[E k](1− χ[E k12]

) +
√

δχ[E k12]

]
if [Ek12] 6= [Ek],

ξk = ±χ[E k] if [Ek12] = [Ek],

where ± is chosen according to the alternating sign assignment. Let f ∈ C[E ] and
let F ∈ RN be defined by

(4.30) Fk =
∫

[G ]

(Uf)ξk dµ, k = 1, 2, . . . , N.

Let M be the N ×N matrix with its ij-entries equal to

(4.31)
∫

[G ]

ξiξj dµ, i, j = 1, 2, . . . N.

Let x ∈ RN be the solution of the linear system of equations

(4.32) Mx = F

Then E0
ωf , the orthogonal projection of f onto R0

ω[E ], is given by

(4.33) E0
ωf = f −

N∑

k=1

xkU−1ξk.

Proof. Recall that R0
ω[E ] is described by (4.22)-(4.23). Applying Lemma 4.11 to

(4.22)-(4.23), it follows that U−1ξk for k = 1, 2, . . . N form a basis of the space
R0

ω[E ]⊥, the orthogonal complement being taken in the master space C[E ]. Since
U is an isometry between C[E ] and L2[G ], and R0

ω[G ]⊥ is the isometric image of
R0

ω[E ]⊥, the rest of the result is self-explanatory. ¤

Corollary 4.13. Suppose that for each k = 1, 2, . . . , N , either [Ek12] = [Ek] or
[Ek12] = ∅. Then the matrix M in (4.32) is a 5-point finite difference Laplacian with
the homogeneous Dirichlet boundary condition. The finite difference grid (excluding
the boundary nodes) is graph-isometric to the graph obtained by identifying the
center of each element in the mesh as a vertex, establishing the edges by connecting
centers from neighboring elements.

Proof. Under the assumptions of the corollary, (4.29) becomes

ξk = ±χ[E k], k = 1, 2, . . . , N.

The rest of the proof is self-explanatory. ¤



258 P. SHI

�� �� ����

�	


��


����

��

�� ��
��

������ !

"# $% &'

( ( ( ( ( ( ( () ) ) ) ) ) ) )

Figure 6. The resulting finite difference grid.

Figure 6 illustrates a situation described in Corollary 4.13. The general situation
is subtle, where the matrix M has a Laplacian-like structure, but corresponding to
the index k with [Ek12] 6= [Ek] and [Ek10] = ∅ (the interface between B1 and B2),
the non-zero entries of the kth row of M can be given by

diagonal: 3 + δ, non-diagonal: − 1, −1, −1, −
√

δ

which is not diagonally dominant. On the other hand, corresponding to an imme-
diate neighbor of Ek, the non-zero row entries of M can be given by

diagonal: 4, non-diagonal: − 1, −1, −1, −
√

δ

which is strongly diagonally dominant. This new type of matrices is not direct
discretizations of a standard partial differential operator. Although the general
philosophy of algebraic multi-grid method [5][12][13][14] is likely applicable to the
situation, special treatment must be given to justify its suitability.

4.8. The Filter of Local Constants. There is an intimate connection between
the quotient space Cq[B] and the space of zero mean C0

ω[E ]. This connection can
be revealed by a transform Ψ from L2(B) into L2

0[E ] which define in the following4.
Let y ∈ L2(B). We denote by the vector [yksw, ykse, ykne, yknw] the values of

y on the elemental construct Ek and define the values of Ψy on the local edges of
Ek by the matrix multiplication

(4.34)




ekdn

ekrt

ekup

eklf




= ±




1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1







yksw

ykse

ykne

yknw




Here the ± is chosen according to the alternating sign assignment of the faces. It
is clear that the rows of the matrix in (4.34) sum to zero. This ensures that the
mapping is into L2

0[E ]. It is important to notice the pairing{
ekdn = ±(yksw − ykse)
ekup = ∓(yknw − ykne)

{
eklf = ±(yknw − yksw)
ekrf = ∓(ykne − ykse)

which show that Ψ maps Cω[B] into C0
ω[E ]. The geometrical relevance associated

with (4.34) is indicated in Figure 7. It is clear that Ψ can be written in the diagonal
form

Ψ =
N⊕

k=1

Ψk,

4A similar filter called filter of continuity is introduced in [11] following a vertex oriented
transform
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Figure 7. The local image of Ψ on an interior nodal space

where Ψk maps L2(Ek) into the functions defined on the local edges of Ek. We
simply identify Ψk as the matrix in (4.34). While Ψk is not invertible, it is useful
to introduce what we call the restricted inverse of Ψk, given by

(4.35) Ψ−1
k =

±1
4




3 2 1 0
−1 2 1 0
−1 −2 1 0
−1 −2 −3 0




and we let

Ψ−1 =
N⊕

k=1

Ψ−1
k .

Straightforward calculation shows that

(4.36) ΨkΨ−1
k =




1 0 0 0
0 1 0 0
0 0 1 0

−1 −1 −1 0




(4.37) Ψ−1
k Ψk =

1
4




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




(4.38) Ψ−∗k Ψ−1
k =

1
4




3 2 1 0
2 4 2 0
1 2 3 0
0 0 0 0




While (4.36) and (4.37) are not the identity matrix, it is important to realize they
are identity mappings on the space Cq[B] and C0

ω[E ] respectively. In fact, for any
vector y = [y1, y2, y3, y4] it follows that

(4.39)
4∑

k=1

yk = 0 ⇒ ΨkΨ−1
k y = Ψ−1

k Ψky = y.

Similar to the definition of Ψ, we define

(4.40) Ψ−1 =
N⊕

k=1

Ψ−1
k .
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Theorem 4.14. Ψ maps Cq[B] onto C0
ω[E ] in a one-to-one manner. Conversely,

its restricted inverse Ψ−1 maps C0
ω[E ] onto Cq[B].

Proof. The discussion preceding the theorem has shown that Ψ maps Cq[B] into
C0

ω[E ]. Using the matrix representation of Ψ−1
k , we have

(4.41)




yksw

ykse

ykne

yknw


 =

±1
4




3 2 1 0
−1 2 1 0
−1 −2 1 0
−1 −2 −3 0







ekdn

ekrt

ekup

eklf




Direct calculations from (4.41) give rise to

(4.42)





ykse − yksw = ±(−ekdn)
ykne − ykse = ±(−ekrt)

yknw − ykne = ±(−ekup)
yksw − yknw = ±(ekdn + ekrt + ekup) = ±(−elf ).

The definition of Cω[E ] given in (4.17) is translated via (4.42) into the the consis-
tency criterion as described in (4.14) . In light of Theorem 4.7, it follows that Ψ−1

maps C0
ω[E ] into Cω[B]+Cnst[B]. Moreover, the rows of the matrix in (4.41) sum

to zero. Therefore, Ψ−1 maps C0
ω[E ] into Cq[B].

The final property that Ψ : Cq[B] → C0
ω[E ] is one-to-one and onto is now a

consequence of (4.36)-(4.37). This completes the proof. ¤

Another surprising property of the mapping Ψ−∗Ψ−1 is given in the following.

Theorem 4.15. Let x = [x1, . . . , x4] and y = [y1, . . . , y4] satisfy

(4.43)
4∑

j=1

xj = 0,

4∑

j=1

yj = 0.

Let M be the 3× 3 matrix given by the non-zero entries of Ψ−∗Ψ−1 in (4.38). For
each fixed m = 1, 2, 3, 4, let x and y represent the three dimensional vectors obtained
from x and y by deleting their mth components respectively. Then for each k

(4.44) (Ψ−∗k Ψ−1
k x, y)4 = (Mx, y)3.

Here (·, ·)4 and (·, ·)3 represent the standard Euclidean inner product in R4 and R3

respectively.

Proof. We only prove the case when m = 1. Other cases are similar. In light of
(4.43), we have

(4.45)




y1

y2

y3


 =



−y2 − y3 − y4

y2

y3


 =



−1 −1 −1

1 0 0
0 1 0







y2

y3

y4




Similar properties hold for x. Let T denote the matrix that appeared in (4.45).
Then it is straightforward to verify that M = T ∗MT . This will establish (4.44). ¤
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4.9. Computing the Orthogonal Projection Pq. At this point, the only re-
maining issue is to compute Pqg for a given g ∈ L2(B), which we will resolve in
this section.

By definition, x = Pqg is governed by the variational equation

(4.46) x ∈ Cq[B] 3
∫

B

xy dµ =
∫

B

gy dµ, y ∈ Cq[B].

By making the substitution x = Ψ−1x and y = Ψ−1y as discussed in §3.8, it is
equivalent to solve

(4.47) x ∈ C0
ω[E ] 3

∫

[E ]

[Ψ−∗Ψ−1x]y dµ =
∫

[E ]

[Ψ−∗g]y dµ, y ∈ C0
ω[E ].

Next, we transform (4.47) into the setting of L2[E ] that requires the change from
the counting measure dµ to the discrete measure dµ. This is necessary because the
orthogonal projection P0 is defined in the space L2[E ], which is defined in terms
of dµ. To this end, we let ρ(e) = 1/µ(e) so that dµ = ρdµ. We obtain

(4.48) x ∈ C0
ω[E ] 3

∫

[E ]

ρ(Ψ−∗Ψ−1x)y dµ =
∫

[E ]

(ρΨ−∗g)y dµ, y ∈ C0
ω[E ],

which is exactly the generalized Wiener-Hopf equation

(4.49) x ∈ C0
ω[E ] 3 TP0(ρΨ−∗Ψ−1)x = P0(ρΨ−∗g).

By a careful application of Theorem 4.15, we find that ρ does not change the
characteristic nature of Ψ−∗Ψ−1.

In light of (4.38)-(4.40) and the fact that C0
ω[E ] ⊂ L2

0[E ], the calculation of
the upper and the lower bounds of Ψ−∗Ψ−1 on the space C0

ω[E ] can be done by
maximizing and minimizing the functional

(4.50) J(y) = (My, y), subject to y2
1 + y2

2 + y3
3 + (y1 + y2 + y3)2 = 1,

where M is the fixed 3 × 3 matrix taken from the non-zero entries of (4.38). By
letting

w = Wy, W =




2 1 1
1 2 1
1 1 2


 ,

it is easy to see that the constraint in (4.50) becomes ‖w‖2 = 1. Direct calculation
shows that

W−1 =
1
4




3 −1 −1
−1 3 −1
−1 −1 3


 , W−∗MW−1 =

1
4




5 −1 −3
−1 5 −1
−3 −1 5


 .

Hence by calculating the eigen-values of W−∗MW−1 we obtain the following in-
equalities. For all x ∈ C0

ω[E ] with ‖x‖ = 1
∫

[E ]

[Ψ−∗Ψ−1x]x dµ ≤ 0.5,

∫

[E ]

[Ψ−∗Ψ−1x]x dµ ≥ 0.089903,

which ensure that the operator

‖I − 2TP0(Ψ
−∗Ψ−1)‖ ≤ 0.83.
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Thus, the generalized Wiener-Hopf equation (4.49) can be solved by the Banach
contraction mapping principle

xk+1 = xk − 2TP0(Ψ
−∗Ψ−1)xk + 2P0(ρΨ−∗g), k = 0, 1, . . . .

Recall that the evaluation of P0 has been discussed in Theorem 4.10, 4.12, and
Corollary 4.13.

5. Generalized Wiener-Hopf Equations

This section marks the initial departure of methodology used in the current paper
from those used in prior art. The Galerkin formulation (3.2) will be equivalently
reformulated via a generalized Wiener-Hopf equation. The contents in previous
sections will then serve as the basic data structure that allows us to solve the
generalized Wiener-Hopf equation in linear computational count.

5.1. The Basic Reformulation. Under the traditional view of the Galerkin for-
mulation (3.2), the domain of the quasi-linear form a(·, ·) is the product space
H1(Ω) ×H1(Ω), which contains Vh × Vh. Associated with the inclusion Vh ⊂ Πh

there exists a natural extension of a(·, ·) from Vh×Vh onto Πh×Πh, which is outside
of H1(Ω)×H1(Ω). This can be done by using the identity

(5.1) a(u, v) =
N∑

k=1

∫

Ek

2∑

j=1

aj(x,∇u)vxj dx.

Each term on the right hand side of (5.1) is naturally defined on Πh×Πh. Hence the
left hand side of (5.1) is accordingly extended. As usual, we also define a bounded
(non-linear in general) operator T : Πh → Πh such that

(5.2) a(u, v) = (Tu, v), ∀u, v ∈ Πh

where the right hand side of (5.2) is the inner product for L2(Ω).
Along the same line, we also extend the right hand side of (3.2) as an inner

product in Πh. First, we extend the right hand side of (3.2) as a bounded functional
acting on Πh by viewing it as

(5.3)
N∑

k=1

∫

Ek

{
f1vx1 + f2vx2

}
dx, ∀v ∈ Πh.

In turn, (5.3) can be represented in the inner product form

(5.4) (f, v) =
N∑

k=1

∫

Ek

{
f1vx1 + f2vx2

}
dx, ∀v ∈ Πh.

for some f ∈ Πh. At this point, the explicit form of f as an element in Πh is
unimportant.

The extension of a(·, ·) via (5.1)-(5.2) is nothing new from the programming point
of view, which is exactly reverse procedure of the standard assembling process of the
global stiffness operator. Unfortunately, this particular aspect was not sufficiently
exploited in the past. Much effort has been directed to resolving the global stiffness
operator after it is formed.

In light of (5.1)-(5.4), we are now in a position to rewrite the Galerkin discretiza-
tion (3.2) in a variational form of Wiener-Hopf equations.

(5.5) u ∈ Vh 3 (Tu, v) = (f, v), ∀v ∈ Vh.
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The difference between (5.5) and the Galerkin formulation (3.2) are more philosoph-
ical than technical. In (5.5), the space Vh is viewed as a subspace of Πh instead of
H1(Ω). The operator T acts on the space Πh even though the solution u is still to
be found in the original Vh.

Let Ph be the orthogonal projection from Πh onto Vh. Then we can write (5.5)
as a generalized Wiener-Hopf equation

(5.6) u ∈ Im(Ph) 3 PhT
∣∣
Im(Ph)

u = Phf.

Neither of (5.5) nor (5.6) can be used as a final solution platform because so far
we have done nothing about the conditioning of the system. It is not difficult to
show that the condition of the system deteriorates as the dimension of Vh becomes
large in exactly the same rate as the original Galerkin formulation (3.2).

For now, we turn our attention to the numerical evaluation of the operator T .
Let the local quasi-linear form åk(·, ·) be defined by

(5.7) åk(u, v) =
2∑

j=1

∫

Ek

aj(x,∇u)vxj dx ∀u, v ∈ Πh.

Let Ak map L2(Ek) = {fχEk
; f ∈ L2(B)} into itself, and map L2(Ej) to {0} for

j 6= k, defined by the following. Given f ∈ L2(Ek), let u =
∑m

l=1 f(pk
l )ϕk

l . Then
g = Akf if and only if g ∈ L2(Ek), and

(5.8) g(pk
l ) =

2∑

j=1

∫

Ek

aj(x,∇u)[ϕk
l ]xj dx, l = 1, 2, . . . ,m

By definition, for all x, ξ ∈ L2(Ek) with u = J (x) and v = J (ξ) we have

åk(u, v) =
2∑

j=1

∫

Ek

aj(z,∇u)vxj dz

=
2∑

j=1

m∑

l=1

ξ(pk
l )

∫

Ek

aj(z,∇u)[ϕk
l ]xj dz

=
∫

Ek

ξAkx dµ.(5.9)

This is the relation between the local quasi-linear form åk(·, ·) and the local stiffness
operator Ak.

We are now in a position to rewrite the Galerkin formulation (3.2) in the space
L2(B).

Theorem 5.1. Suppose that f ∈ L2(B) is defined by the following. For each
j = 1, 2, . . . ,m and k = 1, 2 . . . N ,

(5.10) f(pk
l ) =

∫

Ek

{
f1ϕ

k
jx1

+ f2ϕ
k
jx2

}
dx.

Here pk
l is the lth nodal construct in Ek and ϕk

j is the lth shape function on Ek. Let

(5.11) A =
N⊕

k=1

Ak.
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Then x ∈ C[B] be the solution to the generalized Wiener-Hopf equation

(5.12) x ∈ C[B] 3
∫

B

yAx dµ =
∫

B

fy dµ, ∀y ∈ C[B].

Then u = J x is the solution to the Galerkin formulation (3.2).

We remark that the Wiener-Hopf operator TP (A) = PA
∣∣
Im(P )

have separated
the differential operator from the mesh connectivity. The block diagonal structure
of A is a reflection of the local property of the differential operator. The mesh
connectivity is integrated into the projection operator P . We are no longer con-
cerned with the traditional assembling process at the solver’s level. Such process
is embedded in the computation of P , which separates from the operator action of
A. However, the operator TP (A) is still ill-conditioned.

5.2. The Outer Conditioning by Scaling. In the context considered in the
current paper, there are two different sources responsible for the ill-conditioned
state of (5.12). The first originates from (1.1), the large variation in coefficients.
The second comes from the traditional difficulty associated with the Laplacian.
The purpose of the outer conditioning is for eliminating the large variations in the
coefficients.

Theorem 5.2. Let Aω the operator mapping L2(B) into L2(B) be defined by

Aωx = ωA(ωx), x ∈ L2(B).

Then y is the solution of the generalized Wiener-Hopf equation

(5.13) y ∈ Cω[B] 3 TPω (Aω)y = Pω(ωf)

if and only if x = ωy ∈ C[B] is a solution of (5.12). Moreover, for each k =
1, 2, . . . , N and for all x, y ∈ L2(B),

∫

Ek

|Aωx−Aωy|2 dµ ≤ β2
2

∫

Ek

|∇J x−∇J y|2 dz(5.14)
∫

Ek

(Aωx−Aωy)(x− y) dµ ≥ α2
2

∫

Ek

|∇J x−∇J y|2 dz.(5.15)

Proof. We rewrite the generalized Winer-Hopf equation (5.12) in the form
∫

B

(ω−1y)(ωAω)(ω−1x) dµ =
∫

B

(ωf)(ω−1y) dµ, ∀y ∈ C[B].

Hence, the equivalence between (5.13) and (5.12) is obvious under the relation
x = ωy. To prove (5.14)-(5.15), we let x, y ∈ L2(B) together with u = J x and
v = J y. In light of the definition of the local stiffness operator Ak, the values of
Aωx and Aωy at the sub-node pk

l are given by

ω

2∑

j=1

∫

Ek

aj(z, (J ω)∇u)[ϕk
l ]xj dz and ω

2∑

j=1

∫

Ek

a`(z, (J ω)∇v)[ϕk
l ]xj dz
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respectively. We proceed in two different cases. First we assume that Ek ⊂ B1. In
this case, the assumption A2 implies that

‖Aωx−Aωy‖ ≤ β1√
δ

(∫

Ek

∣∣∣∣
∇u−∇v√

δ

∣∣∣∣
2

dz

)1/2

= β2

(∫

Ek

|∇u−∇v|2 dz

)1/2

.(5.16)

Obviously, the inequality (5.16) also holds when Ek ⊂ B2 where ω = 1. This proves
(5.14). The proof of (5.15) is identical. ¤

The scaled operator Aω no longer suffer large stiffness variations which is re-
flected by (5.14)-(5.15).

5.3. The Inner Conditioning by Quotient. The concept of conditioning is im-
plemented under a different philosophy in the author’s approach — we will consider
the generalized Wiener-Hopf equation (5.13) in the quotient space Cq[B].

The discussion from §5.6 ensures that the operator I −K when restricted onto
Cq[B] is invertible. We denote its inverse by (I −K )−1

c . In the actual imple-
mentation, (I −K )−1

c can be replaced by a simple operation associated with the
recovery operator discussed in [11].

Theorem 5.3. Let y be the solution of the generalized Wiener-Hopf equation

(5.17) y ∈ Cq[B] 3 TPq (Aω)y = Pq(ωf).

Then y = (I −K )−1
c y is a solution of (5.13). Conversely, if y ∈ C0

ω[E ] is a
solution to (5.13), then y = (I − K )y is a solution to (5.17). Moreover, the
operator TPq (Aω) is Lipschitz continuous and strongly monotone on Cq[B]. More
precisely, for all x, y ∈ Cq[B],

∫

B

|TPq (Aω)x− TPq (Aω)y|2 dµ ≤ cl0β
2
2

∫

B

|x− y|2 dµ,(5.18)
∫

B

(TPq (Aω)x− TPq (Aω)y)(x− y) dµ ≥ cm0α
2
2

∫

B

|x− y|2 dµ.(5.19)

Here α2 and β2 are the constants appeared in the assumptions A1-A2 of §1; cl0 and
cm0 are constants depending only on the regularity of the mesh.

Proof. Following the definition of Aω and f , it is easy to see that the following
identities hold. For all x, y ∈ L2(B),

∫

B

(Aωx)y dµ =
∫

B

[Aω(I −K )x](I −K )y dµ,

∫

B

ωfy dµ =
∫

B

(ωf)(I −K )y dµ.

Therefore the equivalence between (5.13) and (5.17) becomes trivial. The estimates
(5.18)-(5.19) directly follow from (5.14)-(5.15). This completes the proof. ¤
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6. Summary of the Main Algorithm

According to Theorems 5.1 - 5.3, we will solve the generalized Wiener-Hopf
equation (5.17) in the quotient space Cq[B]. In theory, the algorithm can be sum-
marized as 2 nested iterations, the outer iteration and the inner iteration. The
outer iteration is given by the Banach contraction mapping principle

(6.1) yk+1 = yk − λTPq (Aω)yk + λPq(ωf), k = 0, 1, . . . .

where λ = cm0α2/cl0β2. By Theorem 5.3, the contraction constant is bounded by√
1− λ, which is independent of δ and Nd. Thus the cost of performing iterations

in (6.1) is linear provided that of evaluating Pq is linear.
The outer iteration must be followed by a post-processing step since it is operated

in the quotient space Cq[B]. Suppose the iteration stops for k = s. Then by
Theorem 5.3 again, y = (I −K )−1

c ys yields the desired approximation to (5.13).
The exact procedure for selecting s can be done by the usual method of checking
residuals. The evaluation of (I −K )−1

c ys has been discussed with great detail in
[11].

The inner iteration is for the evaluation of Pq that appears in the outer iteration
(6.1). This has been discussed in §3.9, where the task of computing Pq is converted
to computing P0 by the local filter of constants discussed in §3.8 that connects the
problem with a weighted space of zero mean defined on an abstract graph. The
core step of computing Pq rests on the effective evaluation of the operator E0

ω,
which is equivalent to solving a linear system similar to the 5-point finite difference
Laplacian. Such perspectives have been discussed in 4.12 Corollary 4.13, and the
end of §3.7. Thus, the cost of evaluating Pq is also linear if we choose to handle
E0

ω by a linear speed solver such as multigrid.
In the actual programming, there is no need to follow the nested iterations

stemming from (6.1). Instead, the nested iterations can be equivalently cllapsed
into a single layer of iterations by solving the generalized Wiener-Hopf equation

(6.2) ξ ∈ R0
ω[E ] 3 TE0

ω
(ρΦ∗Ψ−∗AωΨ−1Φξ) = E0

ω(ρΦ∗Ψ−∗ωf)

followed by the post-processing procedure x = ωΨ−1Φξ. In the special case as
described by Corollary 4.9, careful calculation reduces (6.2) even further to

(6.3) ξ ∈ R0
ω[E ] 3 TE0

ω
(ρΨ−∗AΨ−1ξ) = E0

ω(ρΨ−∗f), ω ≡ 1,

in which the large jumps in coefficients are completely cured without scaling.

7. Benchmark Test 1: Elasto-plastic Membrane

By using the algorithm described in the current paper, a variety of new bench-
marks can be established in terms of computational performance. The first bench-
mark is concerned with the quasi-linear elliptic equation

(7.1) −
2∑

j=1

[
aj(uxj )

]
xj

= f

on the unit square Ω = (0, 1)2 by prescribing the homogeneous Neumann boundary
condition. The right hand side load f is assumed to satisfy the compatibility
condition

(7.2)
∫

Ω

fdx = 0.
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While the equation models the vertical deflection of an idealized elasto-plastic mem-
brane under a balanced load, its mechanical origin here is of less relevance. The
coefficient aj(·) as a function of uxj is defined by

(7.3) a1(ε) = a2(ε) =





ε if |ε| ≤ 5
0.1(ε− 5) + 5 if ε > 5
0.1(ε + 5)− 5 if ε < −5

At issue here is the computational performance of the algorithm in handling the
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Figure 8. Piece-wise linear stress-strain relation, resulting a
monotone, non-differentiable operator in the Sobolev space.

large variation of the Young’s modulo on the elastic region and plastic region re-
spectively, represented by the slopes of the black and red linear segments in Figure
8. The interface of the regions is a free-boundary which is not given a priori. In the
traditional engineering approach, such problems are often treated by the method of
incremental loading [?] in order to separate the regions during the solution process.
The above problem also presents several difficult aspects for solver algorithms in
modern times such Newton-Krylov method and FAS. In particular,

a. Since a1(·) and a1(·) are not differentiable, it would be difficult to analyze
the convergence of a Newton-Krylov type scheme in this case.

b. The solution to the boundary value problem has little regularity beyond
W 1,p(Ω) for some p > 2. In this regard, any solver algorithm whose conver-
gence is based on the regularity of solution is likely to loose its theoretical
footing.

c. The homogeneous Neumann boundary condition also adds a moderate sin-
gularity to the problem that has not been carefully addressed in the tradi-
tional methodology.

In the following numerical examples, the right hand force f is always given by

(7.4) f = 4π2 cos(2πx1) + 4π2 cos(2πx2).
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Both Figure 9 and Figure 10 are computed by using 65,536 bi-linear quadratic
elements. Besides demonstrating the speed of the solver algorithm, our goal is
also to accurately reveal the net effect of the plastic deformation. To this end, we
first compare the solution to the Poisson equation with the solution to the elasto-
plasticity model in Figure 9. Notice that

(7.5) −∆u = f, where u = cos(2πx1) + cos(2πx2).

The presence of the plasticity in the model not only changed the characteristic
detail of the deformation such as the shape of contour lines, but also doubled the
magnitude of the deformation. This perfectly fits into the physics beyond the
model: as the stress becomes greater than the yield value, the material becomes
much softer which leads to larger deformation.

Figure 10 (top) is a plot of the elasto-plastic deformation minus that of the elastic
deformation (the solution to the Poisson equation) in order to further reveal their
differences. Here the non-smoothness of the elasto-plastic deformation becomes
evident.

Figure 10 (bottom) shows the distribution of the elastic region (blue) and the
plastic region (red). We observe that the location of the plastic region does not
necessarily occur where the magnitude of the force is large, but rather, it occurs
where gradient of the force is large. This can be explained heuristicly by the Poisson
equation

−∆uxj = fxj in the elastic region
where fxj must be relatively small so that uxj does not go beyond the yield point.
To a large extent, the elaso-plasticity model is a free boundary problem for the
identification of the elastic-plastic interface. Once determined accurately, the model
reduces to a linear problem with discontinuous coefficients. By comparing the top
and the bottom in Figure 10, it also clearly shows that the non-smoothness of the
solution occurs exactly on the interface.

Figure 11 summarizes the linear speed of the algorithm. Five recordings are
made with the number of elements ranging from 65,536 to 4,194,304. All of them
are executed in the author’s laptop with a single Intel Celeron processor, whose
CPU speed is 2.80GHz; cache size is 128 KB; memory size is 512 MB. At each
(outer) iteration step, the maximum norm of the residual is checked. The iteration
stops when the residual becomes less than 10−4. Notice that with over 4 millions
of elements, the clock time is less than 8 minutes on the low end laptop. It would
be extremely interesting to see if an upper end computer can solve the same elasto-
plastic model with a less clock time by using other algorithms in prior art.
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Figure 9. The exact solution to the Laplacian (top) and the com-
puted solution to the elasto-plastic model (bottom)

.
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.
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8. Benchmark Test 2: Soft Inclusions

The second benchmark is concerned with a typical scenario in material sciences:
soft inclusions — tiny soft material blocks are mixed into the originally harder ma-
terial matrix in order to increase the product’s flexibility. In the idealized situation,
the new material can be modeled by the linear problem

(8.1) −
2∑

j=1

[
aδ(x)uxj

]
xj

= f in Ω,

where aδ(x) is rapidly alternating between 1 and δ with 1 À δ. Again, only
homogeneous Neumann boundary condition is considered. On the finite element
level, there are additional issues involved. The most prominent one is how we
model the locations of the soft inclusions. Here we take a simplified approach by
assuming that aδ(·) is semi-periodic on the mesh. More precisely, we assume that
the mesh and the values of aδ(·) is described in Figure 12 (see also Figure 1). At
issue here is the computational speed of the algorithm with respect to the mesh-
size h and its robustness with regard to the smallness of δ. In particular, we reveal
that, through the computational evidence, for a fixed mesh size the finite element
solution converges exponentially as δ → 0+. Such phenomena has neither been
proved theoretically nor observed computationally in the past. Also of interest is
the performance of the algorithm as h → 0+ while δ is fixed. This is to numerically
simulate the homogenization procedure without using homogenized equation5.

Finally, we present some computational result for soft inclusions with negative
stiffness (δ < 0). This is a new frontier for computational material sciences. Finite
element solver algorithms in the past have not effectively covered this matter.

5If 1 À δ, the so-called cell problem itself has large jumps in coefficients which is as difficult
to solve as problem (8.1)
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Figure 12. The finite element model of semi-periodic soft inclu-
sions. The coefficient aδ(·) takes the form aδ,h(·), which is 1 on
elements in the hard region (white) and is δ is on elements in the
soft region (black).

In the following discussion, we let uδ,h denote the finite element solution to
problem (8.1) and let uh denote the finite element solution to the Poisson equation
respectively. Figure 13 illustrates uδ,h − u as δ = 0.1, 0.01. The plot of uδ,h − u
with a much smaller value δ = 10−4 is illustrated in Figure 14 (top). Here the
number of elements, and hence the number of soft blocks are fixed. Our goal is to
answer the following basic questions.

(1) By blending the soft inclusions “evenly” as illustrated in Figure 12, how
softer will the new material become as δ → 0+?

(2) How much will soft inclusions affect the solution globally beyond the con-
centric square (0.25, 0.75)× (0.25, 0.75)?

The answer to question (1) is given in Figure 14 (bottom), where the maximum
value of |uδ,h − u| is plotted against 1/δ in log-scale, which clearly shows that
uδ,h − u, and hence uδ,h itself, converges exponentially as δ → 0+. In fact, at
δ = 0, the computed result is identical with the result when δ = 10−6 under the
single precision float point operations. In the current situation, it happens that
max |uδ,h − u| occurs at the center of the domain (0.5, 0.5), so the similar limit
behavior can also be observed from Figure 13 to Figure 14 (top).

We point out that Figure 13 and Figure 14 are computed using 65,536 number of
elements. The clock time is virtually independent of the values of δ which slightly
varies around 27 seconds.

Figure 15 shows the effect of soft inclusions of negative stiffness with δ = −0.3.
It is computed by using about 16,384 elements with mesh size h = 0.0078125. It
has been experimentally shown that a composite material made from inclusions of
negative stiffness can be stabilized if such inclusions are bounded by a material
matrix of positive stiffness [9].
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Figure 13. The computed finite element solution of equation
(8.1) minus the solution to the Laplacian. Top: δ = 0.1. Bot-
tom: δ = 0.01

.
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Figure 14. (Top: the computed solution minus the solution to
the Laplacian at the stiffness ratio 1/δ = 104. Bottom: the rapid
converging behavior of the net change as the stiffness ratio increase
from 1 to 106 (in log-log scale)

In the current computational scenario, the soft inclusions are not bounded by,
but rather, alternatingly connected with the material of positive stiffness, and such
setting is apparently difficult to be arranged for experimentation. We must carefully
observe Figure 15 (bottom) in order to understand Figure 15 (top). Intuitively,
one would imagine that inclusions of negative stiffness would make the composite
material stiffer as described in [9]. However, the computed result in Figure 15
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Figure 15. (Top: the computed solution minus the solution to
the Laplacian with soft inclusions of negative stiffness δ = −0.45.
Bottom: local element-wise plot of the top to show non-smoothness

(top) seems to suggest the opposite — a much less stiff composite with much larger
deformation. First of all, this is not in contradiction to the findings in [9] since the
arrangement of the inclusions in our setting is different. Secondly, the notion of
stiffness for the new composite remains to be rigorously defined, and for this, it is
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worth separate articles for detailed discussion. Figure 15 (bottom) shows a highly
non-smooth local behavior of the deformation. It forms a stair-like configuration in
contrast to smooth variations in Figure 13 where only inclusions of positive stiffness
are present. While it is not surprising that on elements of negative stiffness the
local deformation is opposite to the direction of the applied force, what is truly
surprising is that such opposition induces a sharp descend highly non-proportional
to the applied force on the adjacent elements of positive stiffness.

We now comment on the convergence of the algorithm when δ is negative. For
the example considered in this section, it is not difficult to show that the algorithm
is a contractive iteration if δ > −0.2111325, and the number 0.2111325 is the
smallest eigenvalue of the local stiffness matrix of the Laplacian on the unit square
when bi-linear shape functions are used. Thus δ = −0.3 in Figure 15 is out of
the theoretical range of convergence for the algorithm. Through large number of
numerical experiments, the following conjecture seems to be valid. In the context
of the example considered in this section, for each −1 < δ ≤ −0.2111325, there
exists a mesh size hδ such that the algorithm converges for all mesh-size h ≤ hδ. In
this case the iteration is no longer contractive. The convergence rate deteriorates
as the residual becomes small. This is illustrated in Figure 16 with δ = −0.3 and
h = 0.0078125. The following table records the last 6 iterations before it is forced
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Figure 16. The convergence is rapid when the residual is large,
and deteriorates as the residual becomes small.

to stop. It is not difficult to see that for such small residuals, the convergence
rate is similar to what we suffered from the classical iterations such as Jacobi or
Gauss-Seidel.

Iteration Residual
95 0.000348985
96 0.000341028
97 0.000333190
98 0.000325590
99 0.000318184
100 0.000310913
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In contract, as we take δ = 0.2 and h = 0.0078125, which is unconditionally in the
theoretical range of convergence with fixed rate, the computational performance is
significantly better. This time it only takes 37 iterations to obtain an much smaller
residual at 9.28119× 10−5. Figure 17 records the last 7 iterations that shows each
of these 7 iterations reduces the residual about 8.59%, which amounts to say that
the contraction constant is about 0.914.

Figure 18 shows the local behavior of uδ,h−uh with δ = −0.2. As we compare it
with Figure 15 (bottom) which corresponds to δ = −0.3, the smoothness is signif-
icantly improved, and the oscillation is not as severe. However, it is important to
notice they share the same characteristic: the included blocks of negative stiffness
serve as local dampers to deform in opposition to the applied force while inducing
much larger deformation along the direction of applied force on the adjacent mate-
rial matrix of positive stiffness. Whether this is a realistic (rather than numerical
only) phenomena remains to be seen by actual experiments.
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Figure 17. Fixed convergence rate when δ = −0.2

We further comment that for δ = −0.1, it takes 20 iterations to achieve a residual
at 9.78783 × 10−5. With each iteration, the the residual reduces about 17.42% vs
8.59% for the case when δ = −0.2. In addition, the convergence rate improves as
the mesh size h becomes smaller. For example, with δ = −0.1 and h = 0.00390625
the residual reduces by about 20.89% each iteration vs 17.42% for the case when
h = 0.0078125.

In concluding our numerical experiments, we summarize the performance of the
algorithm as a tool for numerical homogenization. The following table is generated
with a fixed δ = 0.001.

# of elements time (seconds) min{uδ,h}
4,096 3.09 -5.422

16,384 11.09 -5.348
65,536 27.55 -5.313

262,144 62.12 -5.296
1,048,576 244.73 -5.287
4,194,304 998.25 -5.283
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Figure 18. Local behavior of uδ,h − uh with δ = −0.2, demon-
strating much more smoothness than the case for δ = −3.0

The second column shows the linear speed of the algorithm. The third column
suggests that the overall stiffness of the composite increases as the frequency of
the oscillatory coefficient aδ,h increases. This is to say that a finer mix of the soft
material increases the stiffness. However, the result must not be interpreted as a
general phenomena since we have modeled each soft block by a single element, and
within each element the only permissible deformations are those dictated by the
shape functions on the vertexes. Whether it is more appropriate to model each soft
block by higher order elements depends on the fine scale nature of the block, and
is a matter of separate discussion.
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