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Abstract. In this paper, a set of new alternating segment explicit-implicit

(NASEI) schemes is derived based on an one-dimensional diffusion problem.

The schemes are capable of parallel computation; third-order accurate in space;

and stable under a reasonable mesh condition. The numerical examples show

that the NASEI schemes are more accurate than either the old ASEI or the

ASCN schemes.
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1. Introduction

The goal of this paper is to study appropriate finite difference schemes suitable
for parallel computation. Two major types of schemes which are capable of parallel
computation are: the alternating schemes ([1]-[3]), and the domain decomposition
schemes ([4]-[6]). Our interest is on the alternating schemes which the NASEI
schemes belong.

Before getting into the detail construction of the NASEI schemes, we like to
briefly mention three closely related existing alternating schemes. They are: the
Alternating Group Explicit (AGE) schemes ([1]); the Alternating Segment Explicit-
Implicit (ASEI) schemes ([2]); and the Alternating Segment Crank-Nicolson (ASCN)
schemes ([3]). All these three schemes are capable of parallel computation, however,
their truncation errors are only second order or lower. Thus, we propose to derive
the NASEI schemes, a new set of alternating schemes, which are capable of parallel
computation; stable under a reasonable condition; and have truncation errors of
third order.

The NASEI schemes are derived based on the following diffusion problem with
periodic solution:

Lu ≡ ∂u

∂t
− ∂2u

∂x2
= 0, x ∈ <, t ∈ [0, T ],(1.1)

u(x, t) = u(x + H, t), x ∈ <, t ∈ [0, T ],(1.2)
u(x, 0) = u0(x), x ∈ <.(1.3)

Here, H represents the length of one period.

The outline of the paper is as following. Six basic schemes of (1.1) are introduced
in Section 2. The NASEI schemes are derived; their stability result is proved; and
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their truncation errors are obtained, all in Section 3. The numerical examples are
presented in Section 4. Finally, a short conclusion remark is given in Section 5.

2. The six basic schemes

2.1. Preliminaries. The idea of using basic schemes to derive alternating schemes
was first used by us in ([3]), where six basic schemes were introduced to derive a
set of alternating schemes for the Dispersive equation. In this paper, we generalize
this idea to the diffusion equation (1.1).

Throughout the rest of the paper, 4x and 4t are used to represent the spacial

mesh size and time increment respectively; r represents
4t

4x2
; and h represents the

pair (4x, 4t). Un
j is used to represent the approximate value of u(xj , t

n) which is
shortened to un

j . Here u(x, t) represents the exact solution. We assume that there
exists a positive integer J , such that J 4x = H.

2.2. The six basic schemes. The first two basic schemes are the following ex-
plicit and implicit schemes:
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j +
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12
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The other four are four asymmetric schemes given below, their rules are displayed
at the end of the paper.
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discretizied operators of L based on schemes (2.1)-(2.6), then their truncation errors
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at point (xj , tn), derived from the Taylor series, are given below:

L
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h un
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The above six schemes are consistent with (1.1) as long as 4t = O(4xβ), where β
is in the range of (1, 6). In reality, we tend to take β as low as possible to minimize
the computing cost. It will be rare and extremely unusual to take 4t the order of
O(4x6) or higher. Therefore, we can view these six schemes as always consistent
with (1.1).

3. The NASEI schemes

3.1. The schemes. We now derive the NASEI schemes. Assume that J =
K(l+ l′), we divide the spacial grid points x1, x2, ..., xJ into K sections at each time
level, where K, l(≥ 1), l(′≥ 5) are positive integers. Each section consists of explicit
and implicit segments. At the odd time levels, each explicit segment consists of l
points, and each implicit segment consists of l′ points. At the even time levels, each
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explicit segment consists of l′−4 points, and each implicit segment consists of l+4
points.

At the time level tn+1, Un+1
j in the explicit segments are computed according

to the explicit scheme (2.1). The Un+1
j for the implicit segments, where j = i +

1, · · · , i + k for some i and k = l′ or l + 4, are computed according to (2.3), (2.4),
(2.5) and (2.6) at points xi+1, xi+2, xi+k−1, xi+k respectively. For the rest of the
points at these implicit segments, they are computed according to the implicit
scheme (2.2). This arrangement results in the following linear system:
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where

Pk =




7 −8 1

−8 23 −16 1

1 −16 30 −16 1

. . . . . . . . . . . . . . .

1 −16 30 −16 1

1 −16 23 −8

1 −8 7




k×k.

Since the implicit and explicit segments are independent of each other, they can be
solved in parallel.

Generally speaking, the computation is arranged according to the following rule:

Explicit− Implicit− · · · − Implicit at odd time levels,

Implicit−Explicit− · · · −Explicit at even time levels.

A flow chart of this rule is displayed at the end of the paper, where denotes the
four asymmetric schemes (2.3)-(2.6); • denotes the implicit scheme (2.2); and ©
denotes the explicit scheme (2.1).

Thus the NASEI schemes can be expressed into the following vector form:
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where Un = (Un
1 , ..., Un

J )T , G1 = diag(Ql, Pl′ , ..., Ql, Pl′) and

G2 =




30 −16 1 1 −16
−16 30 −16 1 1

1 −16 30 −16 1

. . .
. . .

. . .
. . .

. . .
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Ql′−4
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. . .

Ql′−4

1 7 −8
−16 1 −8 23




J×J.

Here Qn (n = l or l′ − 4) is a n× n zero matrix.

3.2. Stability. We first quote the following Kellogg Lemmas ([7]) in order to
prove the stability result of the NASEI schemes.

Lemma 3.1. Let C and C∗ be an operator and its conjugate transpose. If θ is a
positive constant and (C +C∗) is a non-negative definite operator, then (θ I + C)−1

exists and satisfies:
‖(θI + C)−1‖2 ≤ θ−1.

Here I represents the identity operator.

Lemma 3.2. Under the same conditions of previous lemma, the following inequality
is also true.

‖(θI − C)(θI + C)−1‖2 ≤ 1.

The stability result for the NASEI schemes is stated in the next theorem.

Theorem 3.1. The NASEI schemes are stable if r =
4t

4x2
is a bounded positive

constant.

Proof: By eliminating Un+1 from (3.1), we obtain that

Un+2 = T Un = T 2 Un−2 = · · · = Tn U0.

Here
T =

(
I +

r

12
G2

)−1 (
I − r

12
G1

) (
I +

r

12
G1

)−1 (
I − r

12
G2

)
.

Since G1 and G2 are both nonnegative definite, according to the Kellogg Lemmas
3.1 and 3.2, we have the following result for any positive constant r:
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The stability result of the NASEI schemes is therefore proved.
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3.3. Truncation errors. The actual computation involves three pairs of
schemes which are used alternately between two consecutive time levels. These
pairs are: (2.1)∨(2.2), (2.3)∨(2.5) and (2.4)∨(2.6). It is sufficient to analyze the
truncation errors for the first section of (l+ l′) points which is from point 1 to point
l + l′. The analyzes for the other sections are identical. The first section of l + l′

points includes three pairs of truncation errors.

The first pair is between the explicit scheme (2.1) and the implicit scheme (2.2),
where the explicit segment from point 1 to point l is considered first here. A Taylor
series expansion for (2.1) at point (xj , tn+1) gives the following result:

(3.1) L
(2.1)
h un

j − [Lu]n+1
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r

2
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+ O(4t2 +4t4x2 +
4x6

4t
).

By comparing this result with the error expression of the implicit scheme (2.8), we
see that the terms involving 4x2 are canceled every other time level. Hence, from

point 1 to point l , the truncation errors are O(4t2 +4t4x2 +
4x6

4t
).

We now consider the same pair for the implicit segment from point l+3 to point
l + l′− 2. A Taylor series expansion at point (xj , t

n+1) for (2.2) gives the following
result:
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The above result is compared to the truncation error of the explicit scheme (2.7) at
point (xj , tn), we see again that the terms involving 4x2 are canceled every other
time level. Thus, from point (l + 3) to point (l + l′ − 2), the truncation errors are

also O(4t2 +4t4x2 +
4x6

4t
).

The pair (2.3) and (2.5), at points l + 1 and l + l′− 1, are alternately used every
other time level. The truncation error at point (xj , tn+1) for (2.3) is:

L
(2.3)
h un

j − [Lu]n+1
j = −r

2
4x

(
∂2u

∂t ∂x

)n+1

j

+
r

3
4x2

(
∂4u

∂x4

)n+1

j

+
r

4
4x4t

(
∂3u

∂t2∂x

)n+1

j

+ O(4t2 +4t4x2 +
4x6

4t
).(3.3)

The above result is compared to the truncation error of (2.11) at point (xj , t
n), the

terms involving 4x and 4x2 are obviously canceled every other time level. So the
truncation error at point l + 1 is order O(4t4x). Similarly, we can prove that the
truncation error at point l + l′ − 1 is also order O(4t4x).

Similar work conducted for the pair (2.4)∨ (2.6) shows that the truncation errors
for points l+2 and l+l′ are order O(4t4x). Since the stability result in Theorem

3.1 requires that r =
4t

4x2
is a bounded positive constant, we can assume that

4t = r4x2. Thus, the truncation errors for the NASEI schemes are order O(4x3)
in space.
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4. Numerical examples

The numerical examples of the NASEI schemes are based on the following
model problem:

∂u

∂t
=

∂2u

∂x2
, x ∈ <, t ∈ [0, T ],(4.1)

u(x, t) = u(x + 2, t), x ∈ <, t ∈ [0, T ],(4.2)
u(x, 0) = cos(πx), x ∈ <,(4.3)

where the exact solution is u(x, t) = e−π2t cos(πx), and the period is 2.

The error bounds of the NASEI schemes are examined first. We divide the
spacial grid points into four sections; take l′ to be

J

4
+2; and l to be l′− 4. The L2

errors are defined to be eh = ‖U − u‖L2 , and are computed based on the following
two different sets of r, T , and four different 4x:

r = 1, T = 0.01; r = 5, T = 0.01; 4x =
2

100
,

2
200

,
2

400
,

2
800

.

The results are listed in Table 1 at the end of paper. It is not hard to see that the
L2 errors of the NASEI schemes are order 3 in space, which confirms our earlier
results in Section 3.

Next, we compare the accuracy of the NASEI schemes to those of the old ASEI
schemes and the ASCN schemes. The computation is based on the same two sets of
r and T ; and 4x is taken to be 0.02. The absolute errors (ae) and the percentage
errors (pe) for these three schemes are listed in Tables 2-3 and plotted at the end
of paper. Evidently, the results show that the NASEI schemes are more accurate
than either the old ASEI schemes or the ASCN schemes.

5. Conclusions

In this paper, a set of new alternating segment explicit-implicit (NASEI)
schemes is derived for an one-dimensional diffusion equation of periodic solution.
These schemes are designed to alternate between explicit and implicit segments
at any two consecutive time levels. They are capable of parallel computation,
and have truncation errors of third order in space which are higher than those of
similar schemes. The schemes are proved to be stable under reasonable condition.
Numerical examples are also presented.
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Figure 2. Diagram of the NASEI schemes for (1.1)-(1.2)
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Table 1. Convergence rates for the NASEI schemes

r = 1, T = 0.01 r = 5, T = 0.1
J eh ∗ 10000000 eh/4x3 eh ∗ 100000 eh/4x3

100 317 3.96 86.2 108

200 37.0 3.70 10.5 105

400 4.63 3.70 1.30 104

800 0.581 3.72 0.162 104

Table 2. Absolute and percentage errors(I)

4x = 2/100, r = 1, T = 0.01
x = 0.2 x = 0.6 x = 1.0 x = 1.4 x = 1.8

NASEI schemes
ae .739× 10−5 .285× 10−4 .387× 10−5 .278× 10−4 .276× 10−5

pe .101× 10−4 .102× 10−3 .427× 10−5 .994× 10−4 .376× 10−5

Old ASEI schemes
ae .134× 10−4 .398× 10−4 .322× 10−4 .542× 10−4 .251× 10−4

pe .183× 10−4 .142× 10−3 .355× 10−4 .193× 10−3 .342× 10−4

ASCN schemes
ae .141× 10−4 .310× 10−4 .172× 10−4 .139× 10−4 .277× 10−4

pe .193× 10−4 .111× 10−3 .190× 10−4 .495× 10−4 .378× 10−4

Exact solution .733 −.280 −.906 −.280 .733
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Figure 3. Absolute errors (I) 4x = 0.02, r = 1, T = 0.01
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Figure 4. Absolute errors (II) 4x = 0.02, r = 5, T = 0.1
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Figure 5. Percentage errors (I) 4x = 0.02, r = 1, T = 0.01
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Figure 6. Percentage errors (II) 4x = 0.02, r = 5, T = 0.1
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Table 3. Absolute and percentage errors(II)

4x = 2/100, r = 5, T = 0.1
x = 0.2 x = 0.6 x = 1.0 x = 1.4 x = 1.8

NASEI schemes
ae .590× 10−3 .636× 10−3 .577× 10−3 .603× 10−3 .633× 10−3

pe .196× 10−2 .552× 10−2 .155× 10−2 .524× 10−2 .210× 10−2

Old ASEI schemes
ae .106× 10−2 .123× 10−2 .972× 10−3 .115× 10−2 .112× 10−2

pe .350× 10−2 .106× 10−1 .261× 10−2 .100× 10−1 .372× 10−2

ASCN schemes
ae .120× 10−2 .103× 10−2 .112× 10−2 .186× 10−2 .863× 10−3

pe .399× 10−2 .890× 10−2 .302× 10−2 .162× 10−1 .286× 10−2

Exact solution .302 −.115 −.373 −.115 .302


