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MODELING, ANALYSIS AND DISCRETIZATION OF
STOCHASTIC LOGISTIC EQUATIONS

HENRI SCHURZ

Abstract. The well–known logistic model has been extensively investigated
in deterministic theory. There are numerous case studies where such type of
nonlinearities occur in Ecology, Biology and Environmental Sciences. Due to
the presence of environmental fluctuations and a lack of precision of measure-
ments, one has to deal with effects of randomness on such models. As a more
realistic modeling, we suggest nonlinear stochastic differential equations (SDEs)

dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)]dt + σX(t)α|K −X(t)|βdW (t)

of Itô-type to model the growth of populations or innovations X, driven by

a Wiener process W and positive real constants ρ, λ, K, µ, α, β ≥ 0. We

discuss well–posedness, regularity (boundedness) and uniqueness of their so-

lutions. However, explicit expressions for analytical solution of such random

logistic equations are rarely known. Therefore one has to resort to numerical

solution of SDEs for studying various aspects like the time–evolution of growth

patterns, exit frequencies, mean passage times and impact of fluctuating growth

parameters. We present some basic aspects of adequate numerical analysis of

these random extensions of these models such as numerical regularity and mean

square convergence. The problem of keeping reasonable boundaries for analytic

solutions under discretization plays an essential role for practically meaningful

models, in particular the preservation of intervals with reflecting or absorbing

barriers. A discretization of the continuous state space can be circumvented by

appropriate methods. Balanced implicit methods (see Schurz, IJNAM 2 (2),

p. 197-220, 2005) are used to construct strongly converging approximations

with the desired monotone properties. Numerical studies can bring out salient

features of the stochastic logistic models (e.g. almost sure monotonicity, al-

most sure uniform boundedness, delayed initial evolution or earlier points of

inflection compared to deterministic model).

Key Words. logistic growth, stochastic logistic equation, properties of so-

lutions, numerical methods, balanced implicit methods, boundedness, conver-

gence, stability, monotonicity

1. Introduction

Logistic growth phenomenon is observed in numerous models and underlying
data such as for the population of fruit flies or flour beetle in population ecology or
innovation diffusion in marketing sciences or social sciences. In the continous time
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framework it is commonly believed that the evolution of the number x = x(t) of
certain species can be approximately modeled by the per-capita-growth rate

(1)
1
x

dx

dt
= λ(K − x)− µ

where λ > 0 is some growth parameter, µ the death rate and K > 0 the underlying
carrying capacity limited by a finite number of natural resources. Model (1) with
µ = 0 is also known as Verhulst-Pearl equation, see [34], [46]. It was used by several
authors to describe the evolution of species, populations or innovations, see [12],
[35], [8], [22] or [37], and specified later by [20], [21], [26] and [47] for biological
applications with delay effects, among many others.

It is well-known that equation (1) has two equilibria solutions, namely a locally
asymptotically unstable solution x∗1 = 0 and, if µ = 0, a globally asymptotically
stable x∗2 = K. Moreover, these points represent barriers for any other solution
and, if µ = 0, the interval (0,K) is left invariant and attracting from above by the
related flow of analytical solutions. Furthermore, discrete analoga are often used
to motivate the existence and effects of chaos in related dynamical systems.

In reality of collecting and analyzing environmental data, these models need to be
specified. In particular, due to the Heisenberg’s uncertainty principle and the result-
ing lack of precise measurements, the logistic growth undergoes environmental and
parametric noise. Recall that Heisenberg’s uncertainty principle also means that
two or more quantities (here our model parameters) cannot be estimated exactly,
only with random deviations. Consequently, meaningful stochastic generalizations
of logistic equations lead to nonlinear stochastic differential equations (SDEs) of
Itô-type

(2) dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σX(t)α|K −X(t)|βdW (t)

driven by a standard Wiener process (W (t) : t ≥ 0), started at X0 ∈ ID = [0,K] ⊂
IR1, where ρ, λ,K, µ, σ are positive and α, β nonnegative real parameters. There
ρ can be understood as coefficient of transition (self-innovation), λ as coefficient
of immitation depending on the contact itensity with its environment, K as a
somewhat “optimal” environmental carrying capacity and µ as natural death rate.
However, in view of issues of practical meaningfulness, model (2) makes only sense
within deterministic algebraic constraints, either given by extra boundary condi-
tions or self-inherent properties resulting into natural barriers at 0 at least. This
fact is supported by the limited availability of natural resources as known from
the evolution of species in population ecology. In what follows we study almost
sure regularity (boundedness on ID) of both exact and numerical solutions of
(2) which has been mostly omitted in literature in the latter case. At the same
time we are aiming at the maintenance of certain convergence orders of related
standard numerical approximations towards exact solutions. In particular we shall
construct a numerical solution which exclusively possesses values in ID and is mean
square converging with order γ = 0.5 towards the exact solution. Note that usual
numerical methods as most–used Euler method fail to live a.s. on bounded do-
main ID for any choice of constant step sizes (for examples, see [38], [39]). Besides,
“higher order methods” as systematically developed by [48] can not be applied in
general, since their mathematical justification requires too much boundedness and
smoothness on drift and diffusion coefficients of SDEs, which is not given within the
general framework of model (2). The latter statement does not mean that we do
not advise to try out methods of higher order of convergence in specific situations.
It is more the expression for a current lack of knowledge on qualitative behavior of
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them such as the control on their stability or boundary behavior and an observed
lack of smoothness of subclasses preventing us from achieving higher convergence
rates.

From the fluctuation-dissipation theorem of mathematical physics, we know that
the relation between fluctuations and dissipation terms should be chosen as

random fluctuation terms ∼
√
|dissipation terms|

for physically most relevant models while considering fluctuations in the per-capita-
growth rate. This fact supports the preference of models with parameters α ≈ 1
and β ≈ 0.5. From mathematics (see the central limit theorem (CLT) in the theory
of probability), we know about the approximate role of Gaussian distributions for
modeling random fluctuations. From ecological applications, we are tempted to take
into account any form of density-dependent randomness effecting the per-capita-
growth rates, birth or death rates rather than any other forms of stochasticity.
Thus, practically meaningful models as first approximations of given data should
bear all these facts in mind. From this point of view, equation (2) contains the
following very reasonable subclasses

dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σ
√
|X(t)(K −X(t))|dW (t),

dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σX(t)
√
|K −X(t)|dW (t),

dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σX(t)(K −X(t))dW (t),
dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σX(t)dW (t),

dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σ
√

X(t)dW (t), or

dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σ
√
|K −X(t)|dW (t).

These models can be interpreted as random models where diverse parameters are
randomly perturbed in deterministic logistic equation by locally density-dependent,
conditional Gaussian distributions. We do not believe much in density-independent
perturbations due to mathematical and modeling reasons as we shall see below.
However, one might think of models with other non-integer-type nonlinearity pa-
rameters α and β too. That is how we naturally arrive at a series of randomized
logistic models of type (2).

Stochastic logistic equations have been investigated by a number of authors. For
example, see [1] as birth-death processes, [5] in social sciences, [6], [7], [11] and [15]
as population models in ecology, [25] and [30] with respect to the approximation of
certain moments, [24] in biosciences, [29] in view of computation of extinction times,
[31] on related quasistationary disctributions or [13] and [33] from stability point of
view among many others. However, none of those authors has delt with the problem
of adequate (regular and convergent) numerical approximation of stochastic logistic
equations in terms of nonlinear stochastic differential equations as presented in full
generality above.

The paper is organized as follows. After this introduction, Section 2 investigates
the problem of regularity of analyical solutions of (2) which is relevant to determine
the practical meaningfulness of presented random logistic models. Thereafter, we
study how one can regularize numerical approximations in order to get regularity
of strongly converging approximations of (2) in Section 3. This study is carried out
through the class of balanced implicit methods without discretizing the underlying
bounded state-space. Thereafter, Section 4 presents some simulation results. One
of them exhibits a striking difference between the evolution of distinct stochastic
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calculi, the other illustrates a surprising vanishing-chaos effect during an appro-
priate tuning of noise parameters. This paper is finished by some summarizing
remarks in Section 5 and two appendices. The first appendix (Section 6) contains
a general convergence theorem of stochastic-numerical approximations on bounded
connected subsets (manifolds) of IRd. The second appendix (Section 7) deals with a
proof of pathwise and moment monotonicity of exact solutions which was observed
by numerical experiments.

2. Regularity and nonregularity of stochastic logistic equations

At first we recall the notion of regularity of continuous time stochastic processes
as introduced in [18]. Let ID ⊂ IRd be a fixed closed domain. Note, for simplicity,
we exclusively consider deterministic domains ID ⊂ IR1 in this exposition.

Definition 2.1. A continuous time stochastic process {X(t), t ≥ 0} is called reg-
ular on ID (or invariant with respect to ID) iff

∀t ≥ 0 : IP(X(t) ∈ ID) = 1,

otherwise nonregular with respect to ID (or not invariant with respect to ID).

2.1. Nonregularity of [0,K] with additive noise. Intuitively clear, at first we
rigorously show that exact solution of SDEs (2) with additive noise (i.e. α = β = 0)
leaves the bounded domain ID = [0,K]. That is, one has to impose algebraic con-
straints on SDEs (2) which would lead to the formulation of stochastic differential-
algebraic equations (SDAEs). However, it is possible to avoid this problem with
appropriate choice of α and β as we shall see later. This is an important fact for
adequate modeling. Let us show nonregularity of intervals [0,K] under purely ad-
ditive noise at first. For this purpose, we make use of Lyapunov–type methods.
Note that in IR1 there is an alternative given by Feller’s classification of boundary
values (see [11], [16] and [17]), which can be carried out by evaluating the scale
function and speed measure of related diffusions. We follow the Lyapunov–type
analysis in order to clarify strong existence, uniqueness, boundedness and Mar-
kovian properties of (2) within an unified approach which is also very efficient in
multi–dimensional situation. A comparison study between these methods is left to
the reader. Now, let τs,x = τ s,x(ID) be the random time of first exit of stochastic
process X from domain ID, started in X(s) = x ∈ ID at initial time s ∈ [0,+∞).

Theorem 2.1. Assume that {X(t), t ≥ 0} satisfies SDE (2) with α = β = 0,
K > 0, σ2 > 0, ρ ≥ 0, λ ≥ 0, µ ≥ 0 and X(0) ∈ ID = [0,K] is independent of
σ-algebra σ(W (t), t ≥ 0).
Then {X(t), t ≥ 0} is nonregular with respect to ID. More precisely speaking,

(3) ∀x ∈ ID ∀s ≥ 0 IP(τs,x(ID) < +∞) > 0 .

Remark. ID can be replaced by any nonempty, nonrandom interval contained in
IR1, and the result of Theorem 2.1 is still true.

In all following proofs, let C1,2(AxB) with real sets A and B denote the set of all
real-valued functions f : AxB → IR1 such that f is one times continuously differ-
entiable with respect to first coordinate on A and twice continuously differentiable
with respect to second coordinate on B.

Proof. Define drift a(x) = (ρ + λx)(K − x)− µx and diffusion b(x) = σ. Introduce
the Lyapunov function V (x) = 1 + x2, x ∈ ID. Note, equation (2) is well–defined,
has unique and bounded solution up to random time τs,x(ID), due to Lipschitz
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continuity and (linear) boundedness of drift a(x) and diffusion b(x) on ID. Let L
denote

L =
∂

∂t
+ a(x)

∂

∂x
+

1
2
b2(x)

∂2

∂x2
.(4)

Verify that V ∈ C2(ID) and 1 ≤ V (x) ≤ 1 + K2 on ID. Compute

LV (x) = 2ρx(K − x) + 2λx2(K − x)− 2µx2 + σ2

which can be estimated from below by

LV (x) ≥
{ −2µ · V (x) + 2µ + σ2 if µ > 0

σ2

1+K2 V (x) if µ = 0

for x ∈ ID. Now, fix initial time s ≥ 0 and define

c :=
{ −2µ if µ > 0,

σ2

1+K2 if µ = 0
.

Introduce another Lyapunov function W ∈ C1,2([s, +∞)xID) by

W (t, x) := exp(−c(t− s))V (x)

for all t ≥ s ≥ 0, x ∈ ID. It follows that

LW (t, x) ≥
{

exp(−c(t− s))[2µ + σ2] if µ > 0
0 if µ = 0 .

After applying Dynkin’s formula (see [14] as applied in [18]) to get to

IE W (min (τs,x(ID), t), Xmin (τs,x(ID),t)) ≥{
V (x) + 1−exp(−c(t−s))

c [2µ + σ2] if µ > 0
V (x) if µ = 0

}
≥ V (x),

where the starting value X(s) = x ∈ ID is deterministic, one obtains

IE exp(−c (min (τs,x(ID), t)− s))

= IE
[
exp(−c (min (τs,x(ID), t)− s)) · V (Xmin (τs,x(ID),t))

V (Xmin (τs,x(ID),t)

]

≥ IE
[
exp(−c (min (τs,x(ID), t)− s)) · V (Xmin (τs,x(ID),t))

supy∈ID V (y)

]

= IE
[
W (min (τs,x(ID), t), Xmin (τs,x(ID),t))

supy∈ID V (y)

]
≥ V (x)

supy∈ID V (y)
=

1 + x2

1 + K2

for all t ≥ s ≥ 0. By taking limit t → +∞ in this inequality, this leads to

IE exp(−c τ s,x(ID)) ≥ exp(−c s)
(

1 + x2

1 + K2

)
> 0.

Therefore we have

IP(τs,x(ID) < +∞) = IE I{τs,x(ID)<+∞} ≥ IE
[
exp(−c τ s,x(ID))I{τs,x(ID)<+∞}

]

= IE
[
exp(−c τ s,x(ID))

(
I{τs,x(ID)<+∞} + I{τs,x(ID)=+∞}

)]

= IE [exp(−c τ s,x(ID))] > 0,

where IS denotes the indicator function of the set S. Hence, the exit time τs,x(ID)
must be finite with some positive probability. ¤
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2.2. Regularity of [0,K] with multiplicative noise. In contrast to previous
result, there is a quite general class of SDEs (2) which provides almost surely regular
stochastic processes with respect to domain ID = [0,K] with K ≥ 1.

Theorem 2.2. Let X(0) ∈ ID = [0,K] be independent of σ-algebra σ(W (t), t ≥ 0).
Then, under the conditions that α ≥ 1, β ≥ 1, K ≥ 1, ρ ≥ 0, λ ≥ 0, µ ≥ 0, the
stochastic process {X(t), t ≥ 0} governed by equation (2) is regular on ID = [0, K],
i.e. we have IP(X(t) ∈ [0,K]) = 1 for all t ≥ 0. Moreover, regularity on
ID implies boundedness, uniqueness, continuity and Markov property of the strong
solution process {X(t), t ≥ 0} of SDE (2) whenever X(0) = 0 (a.s.), X(0) = K
(a.s.) or

IE [ln(X(0)(K −X(0)))] > −∞.

Remark. To avoid technical complications, define the diffusion coefficient b(x) to
be zero outside [0,K]. Of course, the condition α, β ≥ 1 eliminates some of the
SDEs as mentioned in the introduction. The case α ≥ 1 and β ≥ 0 is addressed in
subsections below. Note that the requirement α ≥ 1 is a reasonable one. This can be
seen from the fact that modeling in population models is motivated by modeling per-
capita-growth rates (modeled as in (1)). Similar argumentation applies to models
in finance (asset pricing) and marketing (innovation diffusion).

Proof. Define drift a(x) = (ρ+λx)(K−x)−µx and diffusion b(x) = σxα(K−x)β for
x ∈ [0,K]. Take sequence of open domains IDn := (exp(−n),K− exp(−n)), n ∈ IN.
Then, equation (2) is well–defined, has unique, bounded and Markovian solution
up to random time τs,x(IDn), due to Lipschitz continuity and (linear) boundedness
of drift a(x) and diffusion b(x) on IDn. Now, use Lyapunov function V ∈ C2(ID)
defined on ID = (0, K) via

V (x) = K − ln(x(K − x)) .

Note that V (x) = K − ln(x(K − x)) = x − ln(x) + K − x − ln(K − x) ≥ 2
for x ∈ ID = (0,K). Now, fix initial time s ≥ 0, introduce a new Lyapunov
function W ∈ C1,2([s,+∞)xID) by W (t, x) = exp(−c(t − s))V (x) for all (t, x) ∈
[s, +∞) x ID, where

c =
ρ + λK + σ2K2α+2β−2 + µ

2
.

Then V ∈ C2(ID) and W ∈ C1,2([s, +∞) x IDn). Define L as infinitesimal generator
as in the proof of Theorem 2.1 above (see expression (4)). Calculate

LV (x) =
(
(ρ+λx)(K−x)−µx

) [−1
x

+
1

K−x

]
+

σ2

2
x2α(K−x)2β

[
1
x2

+
1

(K−x)2

]

for x ∈ ID = (0,K). An elementary calculus-based estimate leads to LV (x) ≤
c · V (x) on ID. Consequently, we have

V (x) ≥ 2, inf
y∈ID\IDn

V (y) > 1 + n, LV (x) ≤ c · V (x) ∀x ∈ ID .

Therefore one may conclude that LW (t, x) ≤ 0, since LV (x) ≤ c · V (x). Introduce
τn := min(τs,x(IDn), t). After applying Dynkin’s formula (averaged Itô formula),
one finds that IE W (τn, Xτn) ≤ V (x) (Xs = x is deterministic!), hence

IE
[
exp(c(t− τn))V (Xτn)

]
≤ exp(c(t− s))V (x) .
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Using this fact, x ∈ IDn (n large enough), one estimates

0 ≤ IP(τs,x((0,K)) < t) ≤ IP(τs,x(IDn) < t) = IP(τn < t) = IE IIτn<t

≤ IE
[
exp(c(t− τn)) · V (Xτs,x(IDn))

infy∈ID\IDn
V (y)

· IIτn<t

]

≤ exp(c(t− s)) · V (x)
infy∈ID\IDn

V (y)
≤ exp(c(t− s)) · V (x)

1 + n

−→
n → +∞ 0 ,

for all fixed t ∈ [s,+∞), where II(.) represents the indicator function of subscribed
random set. Consequently

IP(τs,x(ID) < t) = lim
n→+∞

IP(τs,x(IDn) < t) = 0,

for x ∈ (0,K). After discussion of the trivial invariance behavior of X(t) when
X0 = 0 or X0 = K, (almost sure) regularity of X(t) on [0,K] follows immediately.
Eventually, uniqueness, continuity and Markov property is obtained by a result
from Khas’minskǐi [18] (see Theorem 4.1, p. 84). ¤
2.3. Regularity of [0,+∞) with multiplicative noise. For ecological and fi-
nancial applications, models based on SDEs (2) should possess regular solutions
with respect to domain ID = [0, +∞). Such a property can be guaranteed as fol-
lows. Modify SDE (2) to Itô SDE

(5) dX(t) = [(ρ+λX(t))(K−X(t))−µX(t)] dt+σI(X(t))X(t)α(K−X(t))βdW (t)

where I(x) denotes the indicator function of interval (0,K).

Theorem 2.3. Let X(0) ∈ ID = [0, +∞) be independent of σ-algebra σ(W (t), t ≥
0). Then, under the conditions α ≥ 1, β ≥ 0, ρ ≥ 0, λ ≥ 0, µ ≥ 0, K ≥ 1, the
stochastic process {X(t), t ≥ 0} governed by (5) is regular on ID = [0, +∞), i.e. we
have IP(X(t) ∈ [0, +∞)) = 1 for all t ≥ 0. Moreover, regularity on ID implies
boundedness, uniqueness, continuity and Markov property of the strong solution
process {X(t), t ≥ 0} of SDE (5) whenever X(0) = 0 (a.s.) or

IE [X(0)− ln(X(0))] < +∞.

Remark. For simplicity, define the diffusion coefficient b(x) = 0 outside [0,K].

Proof. Define drift a(x) = (ρ + λx)(K − x) − µx for x ∈ IR1
+ and diffusion b(x) =

σxα(K − x)β for x ∈ [0,K]. Take sequence of open nonrandom intervals IDn :=
(exp(−n), exp(n)) for n ∈ IN with n ≥ ln(K). Then, equation (5) is well–defined,
and it has a unique, bounded, continuous and Markovian solution up to random
time τs,x(IDn), due to local Lipschitz continuity and (linear) boundedness of drift
a(x) and diffusion b(x) on IDn. Now, use Lyapunov function V defined on ID =
(0, +∞) via

V (x) = x− ln(x) .

Obviously, V (x) ≥ 1 holds for all x ∈ IR1
+. Now, fix initial time s ≥ 0, introduce

a new Lyapunov function W by W (t, x) = exp(−c(t − s))V (x) for all (t, x) ∈
[s, +∞) x ID, where

c = ρ(
√

K − 1)2 + λ
(K − 1)2

4
+ µ +

σ2

2
K2α+2β−2.

Then V ∈ C2(IDn) and W ∈ C1,2([s,+∞) x IDn). Define L as infinitesimal genera-
tor as in the proof of Theorem 2.1 (see (4)) with diffusion

b(x) =
{

σxα(K − x)β if 0 ≤ x ≤ K
0 if x > K
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and drift coefficients a(x) = (ρ + λx)(K − x)− µx for x ≥ 0. Calculate

LV (x) = [(ρ + λx)(K − x)− µx]
x− 1

x
+

σ2

2
I(x)x2α(K − x)2β 1

x2

for x ∈ ID = (0,+∞), where I(x) is the indicator function of (0,K). Note that the
estimates

V (x) ≥ 1, inf
y∈ID\IDn

V (y) > n, LV (x) ≤ c · V (x) ∀x ∈ ID

hold. Therefore one may conclude that LW (t, x) ≤ 0, since LV (x) ≤ c · V (x).
Introduce τn := min(τs,x(IDn), t). After applying Dynkin’s formula (averaged Itô
formula), one finds that IE W (τn, Xτn

) ≤ V (x) (Xs = x is deterministic!), hence

IE
[
exp(c(t− τn))V (Xτn)

]
≤ exp(c(t− s))V (x) .

Using this fact, x ∈ IDn (n large enough), one estimates

0 ≤ IP(τ s,x((0,K)) < t) ≤ IP(τs,x(IDn) < t) = IP(τn < t) = IE IIτn<t

≤ IE
[
exp(c(t− τn)) · V (Xτs,x(IDn))

infy∈ID\IDn
V (y)

· IIτn<t

]

≤ exp(c(t− s)) · V (x)
infy∈ID\IDn

V (y)
≤ exp(c(t− s)) · V (x)

n

−→
n → +∞ 0 ,

for all fixed t ∈ [s,+∞), where II(.) represents the indicator function of subscribed
random set. Consequently

IP(τs,x(ID) < t) = lim
n→+∞

IP(τs,x(IDn) < t) = 0,

for x ∈ ID = (0, +∞). After recognizing the trivial invariant solution of X(t) = 0
when X0 = 0, regularity of X(t) on ID = [0, +∞) follows immediately. Even-
tually, uniqueness, continuity and Markov property is obtained by a result from
Khas’minskǐi [18] (see Theorem 4.1, p. 84). ¤

Remark. As a by-product of proofs of Theorems 2.2 and 2.3, we have proved that
the solutions X(t) started in the open intervals ID = (0,K) and ID = (0, +∞) never
hit the boundaries of these intervals in a finite time t. That is, from biologically
oriented point of view, the solutions of those models under related specified type
of environmental and parametric noise are almost surely persistent - an important
qualitative property in biological context.

Eventually, consider (2) with the ecologically motivated subclass of Itô SDEs

(6) dX(t) = [(ρ + λX(t))(K −X(t))− µX(t)] dt + σ[X(t)]α|K −X(t)|βdW (t)

with α = 2.0 and β = 0 or α = 1.5 and β = 0.5 or α = 1.0 and β = 0.5. More
general, we may refer to the case 1 ≤ α + β ≤ 2 below.

Theorem 2.4. Let X(0) ∈ ID = [0, +∞) be independent of σ-algebra σ(W (t), t ≥
0). Then, under the conditions ρ ≥ 0, 2λ ≥ σ2, µ ≥ 0, K ≥ 1, α ≥ 1, 1 ≤ α+β ≤ 2,
the stochastic process {X(t), t ≥ 0} governed by (6) is regular on ID = [0, +∞), i.e.
we have IP(X(t) ∈ [0,+∞)) = 1 for all t ≥ 0. Moreover, regularity on ID implies
boundedness, uniqueness, continuity and Markov property of the strong solution
process {X(t), t ≥ 0} of SDE (6) whenever X(0) = 0 (a.s.) or

IE [X(0)− ln(X(0))] < +∞.
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Remark. The condition 2λ ≥ σ2 may be interpreted as the “small noise case”.
Interestingly, the equation 2λ = σ2 is well-known to exhibit a bifurcation point
(threshold case) for stability of linear SDEs (see [3], [39]). If 2λ ≥ σ2 then the linear
system is (mean square) stable. Some kind of stability is required in biological and
financial modeling due to limited resources. So, it seems to be reasonable to restrict
to a stable case. Moreover, to prevent our model from explosions and to control
the uniform boundedness of some moments under the case 1 ≤ α + β, we need to
require that 2λ ≤ σ2 (resulting from the specific Lyapunov function V below). This
can be easily checked also by numerical simulations. Currently, we have no hope
to tackle the case 2λ < σ2 and α + β ≥ 2 for SDE (6) (also supported by a lack of
meaningfulness in most applications).

Proof. Similar to proof before. Just note that the infinitesimal generator L satisfies

LV (x) = [(ρ + λx)(K − x)− µx]
x− 1

x
+

σ2

2
x2α−2|K − x|2β

for x ∈ ID = (0,+∞), where V (x) = x − ln(x) ≥ 1. Clearly, we recognize the
dissipative character of LV (x) with maxx∈ID LV (x) < +∞ under 2λ ≥ σ2 and
1 ≤ α + β ≤ 2. Moreover, under latter parameter conditions, one may estimate its
values by LV (x) ≤ c ≤ cV (x) with constant

c = ρ(
√

K − 1)2 + λ
(K − 1)2

4
+ µ +

σ2

2
K2α+2β−2 + g(xmax)

where g(x) = λ(K − x)(x − 1) + σ2x2α−2(x −K)2β/2 for all x ≥ K ≥ 1. In fact,
we have xmax = K/2 + λ/(2λ− σ2) for α = 1.5, β = 0.5. It remains to repeat the
same steps using W as in proof of Theorem 2.3 to complete the proof. ¤

3. Numerical regularization (almost sure invariance and monotonicity)

Numerical regularization (the preservation of invariance of certain subsets un-
der disretization while keeping convergence orders of related standard methods) is
generally aiming at the construction of convergent and appropriately bounded nu-
merical approximations for SDEs. First, we introduce the notion of regular discrete
time processes.

Definition 3.1. A random sequence (Yi)i∈IN is called regular on (or invariant
with respect to given domain) ID ⊂ IRd iff IP(Yi ∈ ID) = 1 for all i ∈ IN, otherwise
nonregular (not invariant with respect to ID).

Throughout this work we only consider such random sequences which have a
direct link to numerical solution of SDEs. That is that one interpretes random
values Yi as values of an approximation Y for exact solution X at times ti ∈ [0, T ].
For example, Balanced Implicit Methods (BIMs) (see [28], [38], [43]) provide
schemes to construct such sequences. For other numerical methods and details, e.g.
see [2], [4], [9], [10], [19], [27], [32], [39], [40], [41], [42], [45] and [48]. BIMs turn
out to be somehow efficient to guarantee both convergence towards exact solution
and some algebraic constraints on numerical solutions, i.e. to guarantee numerical
regularity. For general exposition in this respect, see [38] and [39]. The following
BIM solves the problem of numerical regularization on bounded domain ID = [0,K],
at least in the case of α ≥ 1, β ≥ 1. Take

Yn+1 =





Yn +
(
(ρ + λYn)(K − Yn)− µYn

)
∆n + σY α

n (K − Yn)β∆Wn

+
(
µ∆n + C(K)Y α−1

n (K − Yn)β−1|σ∆Wn|
)
(Yn − Yn+1),

(7)
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where C = C(K) is an appropriate positive constant and Y0 ∈ ID = [0,K] (a.s.).
Then one finds the following assertion.

Theorem 3.1. Assume that the initial value Y0 ∈ [0,K] (a.s.) is independent of
σ-algebra σ(W (t), t ≥ 0) and K > 0, ρ ≥ 0, λ ≥ 0, µ ≥ 0. The numerical solution
(Yn)n∈IN governed by (7) is regular on ID = [0,K] if additionally

+∞ > C(K) ≥ K > 0, α ≥ 1, β ≥ 1, 0 < ∆n ≤ 1
ρ + λK

(∀n ∈ IN) .

Proof. Use induction on n ∈ IN. Then, after explicit rewriting of (7), one finds

Yn+1 = Yn +

[
(ρ + λYn)∆n + σY α

n (K − Yn)β−1∆Wn

]
(K − Yn)− µYn

1 + µ∆n + C(K)Y α−1
n (K − Yn)β−1|σ∆Wn|

≤ Yn + δn · (K − Yn) ≤ K

where

δn =
(ρ + λYn)∆n + σY α

n (K − Yn)β−1∆Wn

1 + µ∆n + C(K)Y α−1
n (K − Yn)β−1|σ∆Wn|

,

since δn ≤ 1 if Yn ∈ [0,K], C(K) ≥ K and ∆n ≤ 1/(ρ + λK). Otherwise,
nonnegativity of Yn+1 follows from the identity

Yn+1 =
Yn+(ρ+λYn)(K−Yn)∆n+Y α

n (K−Yn)β−1((K−Yn)σ∆Wn+C(K)|σ∆Wn|)
1 + µ∆n + σC(K)Y α−1

n (K−Yn)β−1|∆Wn|
if C = C(K) ≥ K. Consequently, we have IP ( 0 ≤ Yn ≤ K ) = 1 for all n ∈ IN. ¤
Remark. The boundedness of these sequences turns out to be essential for both
interpretability within the framework of modeling issues and proof of rates of con-
vergence. Note, stochastic adaptation of step sizes would form an alternative to
deterministic step size selection as above. For example, for regularity, it suffices to
require ∆n < 1/[ρ+λYn−µ]+ for all n ∈ IN. However, then one has to find a trun-
cation procedure to guarantee finiteness of corresponding algorithms to reach given
terminal times T ! This is particularly important for adequate long term simulations
on computers.

The sequence Y = (Yn)n∈IN following (7) is also regular on ID under the con-
ditions of Theorem 2.4, except for the condition α ≥ 1 is replaced by α ∈ [0, 1).
However, the weights c(x) = |σ|C(K)xα−1(K − x)β−1 are unbounded in this case.
One even obtains regularity and boundedness of numerical increments here, but we
may suspect to loose convergence speed with such methods. So the open question
arises how to maintain standard convergence rates and almost sure regularity of
numerical methods when α ∈ [0, 1). Who knows the right answer? (At least, the
case 0.5 ≤ α < 1 would be physically relevant.)

Mean square convergence of numerical sequences is examined along any sequence
(η = η∆([0, T ]))∆>0 of nonrandom partitions of fixed, finite time–intervals [0, T ]
when maximum step size ∆ = max ∆i = max {|ti+1 − ti| : ti, ti+1 ∈ η} tends to
zero. The criterion of mean square convergence is given by

(8) ∀T > 0 ∃K(T ) ∀∆ < δ ∀η = η∆([0, T ]) sup
ti∈η

IE |X(ti)− Yi|2 ≤ K(T )∆2γ

where γ is said to be the (least) order (rate) of mean square convergence of
numerical sequence Y = (Yi)i∈IN.

Theorem 3.2. The numerical approximation (Yn)n∈IN governed by (7) is mean
square converging with order γ = 0.5 towards the exact solution of (2), at least
when α, β ≥ 1 and Y0 = X(0) ∈ ID = [0,K] (a.s.).
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Proof. Take any η∆([0, T ]) with ∆ ≤ δ = min {1, 1/(ρ + λK)}. Note that drift and
diffusion coefficient of SDE (2) are uniformly bounded and Lipschitz continuous
on ID = [0,K]. Thus, in view of Theorem 2.2 establishing the a.s. invariance
property on ID = [0, K], classical requirements for existence and uniqueness of
strong solutions of SDEs are satisfied, cf. [3], [11] and [17]. Let Xt,x(t + h) denote
the solution of SDE (2) at time t+h where 0 ≤ h ≤ ∆, started in X(t) = Xt,x(t) = x
at any time t ∈ [0, T − h], for any x ∈ ID. In a similar notation, let Yt,x(t + h)
be the integral representation of one–step approximation belonging to scheme (7),
started in Yt,x(t) = x at any time t ∈ [0, T − h]. Note that

Xt,x(t + h) = x +
∫ t+h

t

[
(ρ + λXt,x(s))(K −Xt,x(s))− µXt,x(s)

]
ds

+ σ

∫ t+h

t

[Xt,x(s)]α[K −Xt,x(s)]βdW (s),

Yt,x(t + h) = x +

[
(ρ + λx)(K − x)− µx

]
h + σxα(K − x)β(W (t + h)−W (t))

1 + µh + C(K)xα−1(K − x)β−1|σ(W (t + h)−W (t))| .

Obviously, both numerical approximation (7) and exact solution (2) leave domain ID
invariant, thanks to previously seen theorems. Furthermore, both have uniformly
bounded second moments on any finite time–interval. Note that one can prove
mean square Hölder-continuity of all solutions of (2) with exponent 0.5, i.e.

IE |Xt,x(s)− x|2 ≤ C0 |s− t|
for all 0 ≤ t ≤ s ≤ T with |s−t| ≤ 1, where C0 = C0(T ) is a real constant satisfying

0 ≤ C0 ≤ 4
(
ρ2K2 + λ2 K4

16
+ µ2K2 + σ2K2(α+β)

)

Now, using this fact and almost sure invariance on ID = [0,K], verify that

|IE (Xt,x(t + h)− Yt,x(t + h))| ≤ C1 hp1 ,(9)

IE |Xt,x(t + h)− Yt,x(t + h)|2 ≤ C2 h2p2(10)

for all x ∈ [0,K] and h ≤ 1, where p1 ≥ 1.5 = p2 + 0.5 > p2 = 1.0 as local rates,
C1 ≥ 0 and C2 ≥ 0 are real constants. For example, we arrive at

C1 ≤ 2
3

√
C0

(
µ+|ρ−λK|+2λK

)
+µ

(
(ρ+µ)K+λ

K2

4

)
+C(K)Kα+β−1|σ|(ρ+λK+µ).

A similar estimate can be found for C2. Consequently, we may apply a general-
ization (see Theorem 6.1 in appendix, and more general Theorem 3.1 in [42] with
V (x) = 1 + x2 and ID = [0,K]) of Milstein’s general mean square convergence the-
orem (i.e. Theorem 1 in [27]) to the case of SDEs on bounded manifolds in order
to verify p = 0.5 as global rate (order) of mean square convergence of (7) towards
exact solution of (2). Consequently, this completes the proof of Theorem 3.2. ¤

Now, consider the balanced implicit methods (BIMs)

Yn+1 =





Yn +
(
(ρ + λYn)(K−Yn)− µYn

)
∆n + σI(Yn)Y α

n (K−Yn)β∆Wn

+
(
µ + (ρ/K + λ)[Yn −K]+

)
∆n(Yn − Yn+1)

+
(
I(Yn)Y α−1

n (K−Yn)β |σ∆Wn|
)
(Yn − Yn+1)

(11)

where I(Yn) is the indicator function of the interval (0,K) and [a]+ denotes the
nonnegative part of inscribed expression a. In passing, we note that more simple
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deterministic weights such as c0(x) = µ would also suffice to guarantee nonnega-
tivity for related BIMs. However, this choice implies random step size restrictions
such as ∆n ≤ 1/[ρ+λYn−µ]+ which are hard to handle in the verification process
of convergence rates. We are able to circumvent this problem of random step sizes
by the following theorem.

Theorem 3.3. Assume that the initial value Y0 ∈ [0, +∞) (a.s.) is independent
of σ-algebra σ(W (t), t ≥ 0) and K > 0, ρ ≥ 0, λ ≥ 0, µ ≥ 0. Then the numerical
solution (Yn)n∈IN governed by (11) is regular on ID = [0, +∞) for all step sizes if
additionally α ≥ 1 and β ≥ 0.

Proof. Use induction on n ∈ IN. Suppose that Yn ≥ 0 (a.s.). Then, after explicit
rewriting of (11), one finds that nonnegativity of Yn+1 follows from the identity
Yn+1 =

Yn+((ρ+λYn)(K−Yn)+(ρ/K+λ)Yn[Yn−K]+)∆n+I(Yn)Y α
n (K−Yn)β(σ∆Wn+|σ∆Wn|)

1 + (µ + (ρ/K + λ)[Yn −K]+)∆n + I(Yn)Y α−1
n (K−Yn)β |σ∆Wn|

if µ, ρ, λ, β ≥ 0 and α ≥ 1. Consequently, we have IP ( Yn ≥ 0 ) = 1 for all n ∈ IN,
provided that Y0 ≥ 0 (a.s.). ¤

Theorem 3.4. Theorem 3.3 remains valid under the substitution of expressions
I(Yn)(K − Yn)β by terms |K − Yn|β in methods (11).

Remark. The proof of this modification is carried out as for Theorem 3.3, hence
the details can be omitted here.

4. Some simulation results for stochastic logistic equations

Here we carry out some simulation studies related to stochastic logistic equations.

4.1. Stochastic innovation diffusion in marketing. Consider models of adop-
tion of products with parameters which are close to those in the deterministic model
due to Mahajan and Wind [22]. There, for example for a data set belonging to
a sale of room air conditioners, one has estimated parameters as ρ = 0.0094,
λ = 0.3748/K, µ = 0, based on the maximum adoption K = 1.87 · 107.
Throughout our simulations we will use the same coefficients ρ of self-innovation
and λ of immitation, but we slightly reduce the carrying capacity to K = 18700,
just for computational simplification. The initial number of adoption of room air
conditioners is supposed to be x0 = 50. Let us perturb these models by random
noise terms as in SDE (2) with α = β = 1.0. This is a natural idea due to always
present statistical and measurement errors.

For the given parameter configuration, in Figures 1 and 2 the temporal evolutions
of dynamics of SDE (2) are plotted. Figure 1 displays a collection of trajectories
for the model (2) with additive noise (i.e. α = β = 0) stopped at 90 % level of
saturation constant K = 18700. Figure 1 is generated by forward Euler method
with equidistant step sizes, whereas Figure 2 by BIMs (7) with C(K) = K and
equidistant step sizes ∆ = 10−4. Figure 2 shows the mean evolution of adoption
and its confidence intervals using Stratonovich and Itô interpretation compared
with that of deterministic adoption. We observe a significant difference between
different calculis and to deterministic adoption process. Thus, nonlinear SDEs on
bounded manifolds. can be very sensitive to the choice of stochastic calculi. In
general, one notices a faster initial adoption under stochasticity compared to that
of deterministic model while X0 < K/2. Besides, one can prove that “stochastic
equilibration” (i.e. the process in which steady states are asymptotically reached)
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within Itô interpretation takes place below deterministic equilibrium x∗ = K. Note,
this is converse to that of Stratonovich interpretation, due to the positive difference
of drift functions for initial values smaller than threshold value αK/(α+β) which is
equal to K/2 in above simulation studies. For more details on proof of pathwise and
moment monotonicity, see Theorem 7.1 in appendix B. In passing, stochasticity also
leads to earlier time T ∗ of inflection (= time–point where derivative of adoption
takes its maximum), i.e. earlier peak sales (in mean sense), which represent an
important assertion on the effect of environmental noise on the adoption of products
for the choice of marketing policies and strategies. Similar results can be observed
for models of populations under the presence of different types of environmental
noise in ecological modeling.

Figure 1. Stopped trajectories for additive noise with large intensity σ = 1000.

Figure 2. Mean adoption, confidence intervals and times T ∗ of inflection with
exponent α = β = 1.0 and σ = 0.02.

4.2. How to remove chaos by parametric random noise. From dynamical
system theory, we know about the appearence of chaos during discretization of logis-
tic equations. Interestingly, one can remove the presence of chaotic oscillations with
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appropriate methods, the proper choice of step sizes or under the appropriate mod-
eling of present noise terms. To illustrate the latter fact, consider Itô-interpreted
stochastic logistic equations (6) to model the noisy per-capita-growth rate by

dX(t) = λX(t)(K −X(t))dt + σX(t)
√
|K −X(t)|dW (t)

started at X0 = 50, where λ = 0.25, σ = 0.1, K = 1000, α = 1, β = 0.5. Notice
that the quantity 2λ− σ2 = 0.49 > 0, hence Theorem 2.4 provides the existence of
unique, continuous, Markovian solutions which are well-defined on ID = [0, +∞) for
nonrandom initial values. Now, these models are discretized by the forward Euler
method and BIMs

Yn+1 =

{
Yn + λYn(K − Yn)∆n + σYn

√
|K − Yn|∆Wn

+
(
(λKI[0,K](Yn) + λ[Yn −K]+)∆n +

√
|K −Xn||σ∆Wn|

)
(Yn − Yn+1)

where I[0,K](x) denotes the indicator function of subscribed interval [0,K]. Note
that Theorems 3.3 and 3.4 confirm the regularity of BIMs with respect to the
domain [0, +∞). This fact can be concluded also from its equivalent representation

Yn+1 = Yn + Yn

(
λ(K − Yn)∆n + σ

√
|K − Yn|∆Wn

1 + (λKI[0,K](Yn) + λ[Yn −K]+)∆n +
√
|K −Xn||σ∆Wn|

)
.

Therefore, Yn > 0 and Yn+1 < 2Yn for all n ∈ IN, provided that Y0 > 0 (a.s.).
Moreover, we have 0 and K as trivial steady states (equilibria) and, if additionally
Y0 is independent of all increments ∆Wn then

IE [Yn+1] ≤ IE [Yn](1 + λK∆n) ≤ IE [Y0] exp(λKtn+1)

as a very crude estimate of its uniformly bounded first moments. One can even
prove mean square convergence of these BIMs with rate 0.5 by using the axiomatic
approach along the control functions V (x) = xp as presented in [42]. This can be
easily checked while assuming vanishing noise terms outside of intervals [0,K].

Some simulation results for constant step sizes ∆ are depicted in Figure 3 and
Figure 4. We have used standard C-program runs on a LINUX operating system
in order to implement the numerical algorithm of forward Euler and suggested
BIMs. The random numbers ∆Wn ∈ N (0, ∆) are generated by the well-known
Polar-Marsaglia method and the generated output in pairs of independent random
numbers is used subsequently. The linearly interpolated trajectories of deterministic
and 4 realizations of random paths using different sets of pairwise independent
random pseudo-numbers ∆Wn are plotted in Figures 3 and 4. Figure 3 uses the
same equidistant step size ∆ = 0.01 for all paths and Figure 4 is produced with the
same equidistant ∆ = 0.001.

Clearly, we see that Figure 3 exhibits the chaotic structure of deterministic paths
with sufficiently large step sizes while using forward Euler methods. In contrast
to this, the random model using the suggested BIMs with sufficiently tuned noise
intensities shows a clear lock-in behavior into the equilibrium K = 1000 (also called
steady state) as it should happen with large step sizes too, and hence the spurious
chaotic character can not be seen in the random paths such as those of appropriately
chosen BIMs. This type of stabilizing effect seems to be new to the so far known
literature. If noise intensity σ is very small then the chaotic regime would dominate
as in the deterministic mode. If noise intensity is too large then “sudden explosions”
may occur. So the tuning of proper noise intensity range is essential to observe this
effect. Of course, due to the nonlinearity of logistic equations, this observation
depends on the choice of step sizes and initial values as well as the interplay with
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Figure 3. Asymptotic locking into the steady state K = 1000 of logistic equations
perturbed by parametric noise compared to deterministic chaotic oscillations

around K = 1000 with equidistant step size ∆ = 0.01.
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Figure 4. Asymptotic locking into the steady state K = 1000 of deterministic
logistic equation compared to stochastic logistic equations with delayed locking

behavior using equidistant step size ∆ = 0.001.

other parameters in a very complicated fashion. Figure 4 shows what typically
happens for very small step sizes ∆ (i.e. step sizes ∆ < 1/(λK)). In this case,
the lock-in into the equilibrium K = 1000 is clearly recognized, as we expect from
the consistency of our discrete and continuous models both in deterministic and
random settings. Moreover, we observe a delayed locking into the steady state
K = 1000 in the presence of parametric white noise in Figure 4. We also obtain
some empirical evidence that pathwise persistence of random logistic models with
our specific form of parametric white noise perturbations is observed there for all
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integration times tn ≥ 0, despite of possible short periods of occasional stay in the
neighborhood of its trivial solution 0.

5. Summary and Remarks

For adequate modeling of diffusion of innovation in Marketing Sciences, for
interest rates in Mathematical Finance, for population dynamics in Ecology,
etc., one has to consider the problem of regular stochastic processes, both in
continuous and discrete time. In general it leads to the mathematical treatment
of stochastic differential algebraic equations (SDAEs). Classification of boundary
conditions (e.g. involving an analysis with scale function and speed measure of
diffusion processes, see [11], [16] and [17]) and stochastic Lyapunov–type methods
are the appropriate tools to study and explain the behavior of stochastic dynamics
with inherent algebraic constraints. For adequate numerical treatment, the class
of Balanced Implicit Methods (BIMs) seems to be quite promising in order to
guarantee both boundedness, stability and convergence with acceptable rates of
convergence while avoiding the problem of appropriate discretization of the under-
lying continuous state space, removing the appearence of deterministic chaos and
suppressing nondesirable effects of spurious numerical solutions.

In this paper we omitted to discuss the case 2λ < σ2 for SDE (6) under the
remaining conditions of Theorem 2.4. The real problem is to show uniform bound-
edness of some moments by appropriate Lyapunov-type functions (or functionals).
This delicate problem and its motivation is left to the research in the future.

More detailed studies concerning (stochastic) diffusion of innovation or popula-
tion growth can easily bring out further interesting issues, e.g. effects of pulsing
policies on species (i.e. pulsing parameters ρ, λ, µ, K or σ). Some mathematical
clarification of well–posedness, regularity and adequate numerical solutions remains
open for future research of stochastic logistic-type equations (e.g. when both α and
β ∈ (0, 1)). Besides, a laborious comparison study with real data is necessary
for practical evaluation of the herein suggested models. Another interesting task
would be to get more clarification on the problem Stochastic versus Deter-
ministic Modeling. Also, a generalization to multi–dimensional models, to more
complex domains ID ⊂ IRd and to stochastically changing boundary conditions is
left to future. Summarizing results, it is definitively worth to consider effects of
uncertainty in models of marketing, social and ecological sciences, not
only for replication of the very erratic behavior of nature, also to get new insights.

6. Appendix A: A general theorem on mean square convergence

Under classical requirements on linear growth boundedness and smoothness of
drift and diffusion coefficients of SDEs, there is a general theorem of Milstein [27]
which admits to verify global rates (orders) of mean square convergence. This
statement is given when both discrete and continuous time stochastic processes
are living on the whole IRd, i.e. without any algebraic constraints. In a straight
forward way one can generalize this theorem to the following one in case of algebraic
restrictions under further presumption that one–step mappings of both numerical
method and underlying continuous time dynamics leave one and the same bounded
manifold ID invariant for any choice of sufficiently small integration step sizes. Also,
it is an immediate consequence of the axiomatic approach to qualitative analysis of
numerical approximation of stochastic processes as presented in Schurz [42].

For its general formulation, let ID be any closed subdomain of IRd. Fix a finite
terminal time T > 0. Let Xt,x(t+h) and Yt,x(t+h) be the integral representations
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of exact and numerical solution as above, resp. Without loss of generality, ‖ · ‖
denotes the Euclidean vector norm.

Theorem 6.1. Assume that IE ‖X(0)‖2 < +∞ and there are real, positive con-
stants C1 = C1(T ), C2 = C2(T ), p1 ≥ p2 + 0.5, p2 ≥ 0.5 such that for all x ∈ ID,
for all h with 0 ≤ h ≤ δ ≤ 1, for all t ∈ [0, T − h], we have

(12) IP(Xt,x(t + h) ∈ ID) = IP(Yt,x(t + h) ∈ ID) = 1 ,

(13) ‖IE (Xt,x(t + h)− Yt,x(t + h))‖ ≤ C1 hp1 and

(14) IE ‖Xt,x(t + h)− Yt,x(t + h)‖2 ≤ C2 h2p2

Furthermore, assume that numerical solution has uniformly bounded second mo-
ments for sufficiently small step sizes, and X0 = Y0 ∈ ID.

Then the numerical solution Y ∆ belonging to one–step approximation Yt,x(t+h)
is mean square converging with global order p = p2− 0.5 towards the exact solution
of Itô-type SDE

dX(t) = a(t,X(t)) dt +
m∑

j=1

bj(t,X(t))dW j
t

under linear–polynomial growth and Lipschitz continuity of its drift a(t, x) and dif-
fusion functions bj(t, x) on the domain ID, where (W j

t )j=1,2,...,m are m mutually in-
dependent Wiener processes (also independent of random variable X(0) = X0 ∈ ID).

Proof. (Sketch of main steps). Choose time–discretization η = η∆([0, T ]) with
∆ sufficiently small. Now, use invariance of both exact and numerical solution
with respect to one and the same closed, bounded manifold ID. Then, under this
invariance property, the remaining part is analogously done as in [27], [42] and [41],
by telescoping of the mean square error and local comparison of numerical one–step
integral representations with truncated and stopped Itô–Taylor expansion which
originates in nonstopped integral form from Wagner and Platen [48]. Therefore one
finds a positive real constant C3 such that

(15) ∀t ∈ η∆([0, T ]) IE ‖X0,x(t)− Y0,x(t)‖2 ≤ C3 ∆2p

for all X0,x = Y0,x = x ∈ ID, and ∆ sufficiently small, where p = 0.5 is global rate
(order) of mean square convergence. Note that C1, C2 and C3 are only positive real
constants which may depend on finite terminal time T , but not on intermediate
time t, not on ∆ or h. ¤

Remark. We have to acknowledge that the most challenging problem to ver-
ify global mean square convergence on closed subdomains of IRd seems to be the
almost sure invariance property of both numerical method and continuous time
solution with respect to one and the same related invariant subdomain. Of course,
in the example of logistic equations above it was not so difficult to find this invari-
ant manifold. In Theorem 6.1 it suffices to require local Lipschitz continuity if a
uniformly bounded functional V controlling the solutions is provided, cf. [42].

7. Appendix B: Monotonicity of solutions of stochastic logistic equations

Momentwise and pathwise monotonicity of solutions of stochastic logistic equa-
tions with respect to the modeling of different stochastic calculi can be proven. In-
terestingly, this initial-value depending observation depends on the pathwise cross-
ing of critical threshold value αK/(α + β) > 0. More precisely speaking, consider
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θ-calculus-interpreted SDE

(16) dX(t) = [(ρ+λX(t))(K−X(t))−µX(t)] dt+σX(t)α(K−X(t))β (∗)
θ

dW (t)

driven by a given standard Wiener process W (t), started in X0 ∈ ID = [0,K] ⊂ IR1,
where θ ∈ [0, 1] is the calculus parameter such that θ = 0 represents Itô-type and
θ = 0.5 Stratonovich-based calculus. For details on stochastic θ-calculus, see [44]
(there α is used instead of θ as calculus parameter). Let τ(t) = min(τ, t) where τ
is the first hitting time of threshold value αK/(α + β).

Theorem 7.1. Assume that 0 ≤ X
(θ1)
0 ≤ X

(θ2)
0 ≤ K (a.s.), ρ, λ, µ ≥ 0, K ≥ 1,

0 ≤ θ1 ≤ θ2, α, β ≥ 1, and X
(θi)
0 are independent of σ-algebra σ(W (t), t ≥ 0).

Then, if

IE [V (X(θi)
0 )] < +∞ (i = 1, 2)

with V (x) = K − ln(x(K − x)) for x ∈ ID = (0,K), there are unique, continuous,
Markovian strong solutions of (16). Moreover, for all t ≥ 0, we have

0 ≤ IE [X(θ1)
τ(t) ] ≤ IE [X(θ2)

τ(t) ] ≤
αK

α + β
, IP

(
0 ≤ X

(θ1)
τ(t) ≤ X

(θ2)
τ(t) ≤

αK

α + β

)
= 1

for 0 < X0 < αK/(α + β) (a.s.), and

αK

α + β
≤ IE [X(θ2)

τ(t) ] ≤ IE [X(θ1)
τ(t) ] ≤ K, IP

( αK

α + β
≤ X

(θ2)
τ(t) ≤ X

(θ1)
τ(t) ≤ K

)
= 1

for K > X0 > αK/(α + β) (a.s.), whereas 0 and K are the trivial equilibrium
solutions (steady states).

Proof. The trivial steady state behavior of solutions X(t) = X0 for X0 = 0 or
X0 = K is obvious, hence this case can be exlcuded from further discussion. At
first, note that V (x) = K − ln(x(K − x)) = x − ln(x) + K − x − ln(K − x) ≥ 2
for x ∈ ID = (0,K) (as seen in proof of Theorem 2.2). Second, we may transform
θ-calculus-integrated SDE (16) into the equivalent Itô-type interpreted SDE

(17) dX(t)=





[
(ρ + λX(t))(K −X(t))− µX(t)

]
dt

+
[
θ σ2

2 X(t)2α−1(K −X(t))2β−1(α(K −X(t))− βX(t))
]
dt

+σX(t)α(K −X(t))βdW (t)

in order to use the standard theory of Itô diffusion processes. It is clear that
local unique, continuous, Markovian solutions exist up to the stopping time at the
boundary of any open interval I ⊂ (0,K). Next, we show that

LV (x) =





−(ρ + λx)K−x
x + ρ + λx + µ− µ x

K−x

θ σ2

2 x2α−1(K − x)2β−1(−αK−x
x + β + α− β x

K−x )
+σ2

2 x2α(K − x)2β( 1
x2 + 1

(K−x)2 )




≤ cV (x)

where we may take c = (ρ+λK)/2+σ2K2α+2β−2(θ(α+β)+1)/4. Now, existence
of global solutions with regularity on [0,K] follows as in the proof of Theorem 2.2.
Monotonicity of first moments is concluded form pathwise monotonicity directly.
Pathwise monotonicity follows from Proposition 2.18 of Karatzas and Shreve [17] (p.
293) applied to the [0,K]-regular diffusion process (17) by noting that the difference
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of the drift coefficients aθ(x) of θ2-interpreted SDE and that of θ1-interpreted SDE
is positive on (0, αK/(α + β)) and negative on (αK/(α + β),K), namely we have

aθ2(x)−aθ1(x) = (θ2−θ1)
σ2

2
x2α−1(K−x)2β−1(α(K−x)+βx)

{
> 0 if x < αK

α+β

< 0 if x > αK
α+β

for x ∈ (0,K) since θ2 ≥ θ1. This completes the proof of Theorem 7.1. ¤
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[18] R.Z. Khas’minskǐi, Stochastic Stability of Differential equations, Sijthoff & Noordhoff, Alphen

aan den Rijn, 1980.
[19] P.E. Kloeden, E. Platen, and H. Schurz, Numerical Solution of SDEs Through Computer

Experiments, Third corrected printing, Springer-Verlag, New York, 2003.
[20] A.J. Lotka, Elements of Mathematical Biology (Unabridged republication of the first edition

published under the title: Elements of Physical Biology, William and Wilkins, Baltimore,
1925), Dover Publications, Inc., New York, 1956.

[21] A.J. Lotka, Analytical Theory of Biological Populations (Transl. from the French and with
an introduction by David P. Smith and Hélène Rossert), Plenum Press, New York, 1998.

[22] V. Mahajan and Y. Wind (eds.), Innovation Diffusion Models of New Product Acceptance,
Ballinger Pub. Co., Cambridge, Massachusetts, 1986.

[23] C. Marchetti, The automobile in a system context, Technological Forecasting and Social
Change 23 (1983), 3-23.

[24] R. Marcus: A stochastic logistic diffusion equation, Math. Biosci. 62 (1982), 281-294.



MODELING AND DISCRETIZATION OF STOCHASTIC LOGISTIC EQUATIONS 197

[25] J.H. Matis and T.R. Kiffe, On approximating the moments of the equilibrium distribution of
a stochastic logistic model, Biometrics 52 (1996), 980-991.

[26] R.M. May, Stability and Complexity in Model Ecosystems (2nd Reprinting), Princeton Land-
marks in Biology, Princeton University Press, Princeton, 2001 (original: 1973).

[27] G.N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic
Publishers, Dordrecht, 1995.

[28] G.N. Milstein, E. Platen, and H. Schurz, Balanced implicit methods for stiff stochastic sys-
tems, SIAM J. Numer. Anal. 35 (1998), 1010–1019.

[29] R.H. Norden, On the distribution of the time to extinction in the stochastic logistic population
model, Adv. Appl. Probab. 14 (1982), 687-708.

[30] R.H. Norden, On the numerical evaluation of the moments of the distribution of states at
time t in the stochastic logistic process, J. Stat. Comput. Simulation 20 (1984), 1-20.

[31] O. Ovaskainen, The quasistationary distribution of the stochastic logistic model, J. Appl.
Probab. 38 (2001), 898-907.

[32] E. Pardoux and D. Talay, Discretization and simulation of stochastic differential equations,
Acta Appl. Math. 3 (1985), 23-47.

[33] S. Pasquali, The stochastic logistic equation: stationary solutions and their stability, Rend.
Sem. Mat. Univ. Padova 106 (2001), 165–183.

[34] R. Pearl: The biology of death V, Sci. Month. 13 (1921), 193–213.
[35] R. Pearl, L.J. Reed and J.F. Kish, Empirical study of US-population growth until 1940, 1940.
[36] Prajneshu, Time-dependent solution of the logistic model for population growth in random

environment, J. Appl. Probab. 17 (1980), 1083–1086.
[37] E.M. Rogers, Diffusion of Innovations, The Free Press, New York, 1983.
[38] H. Schurz, Numerical regularization for SDEs: Construction of nonnegative solutions, Dynam.

Systems Appl. 5 (1996), 323-352.
[39] H. Schurz, Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for

SDEs and Applications, Logos-Verlag, Berlin, 1997.
[40] H. Schurz, Numerical analysis of SDEs without tears, In Handbook of Stochastic Analysis

(Ed. D. Kannan and V. Lakshmikantham), p. 237-359, Marcel Dekker, Basel, 2002.
[41] H. Schurz, General theorems for numerical approximation of stochastic processes on the

Hilbert Space H2([0,T ],µ,IRd), Electr. Trans. Numer. Anal. 16 (2003), 50-69.
[42] H. Schurz, An axiomatic approach to numerical approximations of stochastic processes, Int.

J. Numer. Anal. Model., Vol 3, No 4 (2006) 459-480.
[43] H. Schurz, Convergence and stability of balanced implicit methods for SDEs with variable

step sizes, Int. J. Numer. Anal. Model. 2 (2005), no. 2, 197-220.
[44] H. Schurz, Stochastic α-calculus, a fundamental theorem and Burkholder-Davis-Gundy-type

estimates, Dynam. Systems Appl., Dynam. Systems Appl., Vol 15, No 2 (2006) 241-268.
[45] D. Talay, Simulation of stochastic differential systems, In Probabilistic Methods in Applied

Physics, Springer Lecture Notes in Physics 451 (Ed. P. Krée and W. Wedig), p. 54-96,
Springer-Verlag, Berlin, 1995

[46] P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspon-
dances Math. et Physiques 10 (1838), 113-121.
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