
INTERNATIONAL JOURNAL OF c© 2007 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 4, Number 1, Pages 63–73

SOLUTION OF A SINGULAR INTEGRAL EQUATION
BY A SPLIT-INTERVAL METHOD

TERESA DIOGO, NEVILLE J. FORD, PEDRO M. LIMA, AND SOPHY M. THOMAS

Abstract. In this paper we give details of a new numerical method for the

solution of a singular integral equation of Volterra type that has an infinite class

of solutions. The split-interval method we have adopted utilises a simple robust

numerical method over an initial time interval (which includes the singularity)

combined with extrapolation. We describe the method and give details of its

order of convergence together with examples that show its effectiveness.

Key Words. Numerical methods, extrapolation, singular integral equation,

Volterra equation.

1. Introduction

This paper is concerned with the development of efficient numerical methods for
the solution of Volterra integral equations which have a singularity in the kernel that
leads to there being more than one solution. Therefore we are not here concerned
with equations of Abel type where, despite a singularity in the kernel there is
nevertheless a unique solution. More details of numerical methods for Abel type
equations may be found, for example, in [1], [2]. As prototype for the type of
problems we are interested in we shall investigate the equation

(1) u(t) = g(t) +
∫ t

0

sµ−1

tµ
u(s) ds

which has just the kind of properties that present real challenges to numerical
analysts.

The precise analysis of equation (1) depends critically on the value of µ. For the
case when µ < 1, it has been shown in [8] that there is an infinite set of solutions, one
of which is continuously differentiable whenever g is continuously differentiable, and
all the other solutions have infinite gradient at the origin. This infinity of solutions
arises because for µ < 1 the singularity in the integrand persists at s = 0 for all
t > 0. Of course when µ > 1 there is still a singularity in the integrand for t = 0
but this does not persist when t > 0 and it turns out that the equation then has a
unique solution.

Thus we shall concentrate on the case 0 < µ < 1. We are aided in our work
by the fact that an explicit formula for the set of solutions has been derived. The
solution formula is

(2) u(t) = ct1−µ + g(t) +
g(0)
µ− 1

+ t1−µ

∫ t

0

sµ−2(g(t)− g(0)) ds

Received by the editors January 25, 2005 and revised January 10, 2006.
2000 Mathematics Subject Classification. 65R20.
Teresa Diogo and Pedro Lima are pleased to acknowledge the support from FCT, project

POCTI/MAT/45700/2002.

63

64 T. DIOGO, N. FORD, P. LIMA, AND S. THOMAS

where g ∈ C1, and c is an arbitrary constant , which determines the particular
trajectory to be followed. When c = 0, we have the smooth solution (see [8]).

All this makes our choice of prototype equation ideal. The underlying equation
has the complicated properties we wish to investigate in our numerical schemes but
we have the luxury of an exact solution with which we can make comparisons of
our numerical approximations.

1.1. Previous numerical approaches. The derivation and theoretical back-
ground of equation (1) are given in [9] and the references cited therein. In this
context, the first use of product integration formulae (see [12]) was applied to the
related equation

(3) y(t) +
∫ t

0

p(t, s)y(s)ds = f(t)

p(t, s) :=
1√
π

1√
log(t/s)

(s

t

)µ 1
s

ds.

The product Euler and product trapezoidal methods were applied to equation (3)
for the case when µ > 1, with the restriction on the forcing function that f(t) ∈ Cm,
where m = 1 for the product Euler and m = 2 for the product trapezoidal scheme,
with convergence orders 1 and 2 respectively.

Equation (3) may be transformed into (1), where the forcing functions are related
by the formula

g(t) = −
∫ t

0

p(t, s)f(s) ds + f(t).

This process is used in [7], and Hermite-type collocation is applied to the simplified
equation, again for µ > 1, and the convergence is of order 4, but subject to the
more stringent restriction that g ∈ C5.

Extrapolation procedures were introduced in conjunction with the product Euler
scheme in [10] for the solution of (1), still with µ > 1, but now allowing the g to
have a singularity at the origin. Richardson’s extrapolation is applied to the results,
but we find that where the error expansion contains non-integer powers of h, the
extrapolation is not always effective.

The case where 0 < µ ≤ 1, and the implication of multiple solutions, is first
considered in [9]. The product Euler method is now shown to converge to the
single smooth solution, where the input function g(t) ∈ C1[0, t]. If µ = 1, there
is the additional constraint that g(0) = 0. For g ∈ C2[0, T] and µ < 1, the error
expansion is now shown to be of the form

eh
k = Ahµ + O(h).

If g is not sufficiently smooth, the techniques of [10] may be employed, and if
g(t) = tγ̃g(t), g ∈ C2, γ̃ ∈ R, such that µ + γ̃ < 1, the order will depend on µ + γ̃,
not µ alone. We further note that if µ = 1 or µ = 2, there is a logarithmic term in
the error expansion. The numerical results reflect this weak order of convergence,
so extrapolation is again used to improve the accuracy. The scheme used in the
paper is the E-algorithm of Brezinski (see [3] or [9]), which is a very general scheme,
applicable to any situation for which the error expansion is known.

Up to this point, attention has been focused on approximating the smooth so-
lution, and numerical methods for its trajectory which commence at the origin. In
[4], approximation of the non-smooth solutions is considered. A specific member of
the non-smooth family may be uniquely identified at a point t = α (α = kh, k ∈ Z),

SOLUTION OF A SINGULAR INTEGRAL EQUATION BY A SPLIT-INTERVAL METHOD 65

and its subsequent approximation can be by any of the classical methods (the trape-
zoidal method is used as an example). This theme is continued in [6], where the
product Euler and product trapezoidal rules are applied to a non-smooth solution
away from the origin.

1.2. The aim of this investigation. As we have seen already, it has been pos-
sible to develop low order numerical methods for solving equations of the form
(1). One can further improve the order through the use of extrapolation. However
these methods are highly expensive to use in practice because of the very small
step sizes needed for the computations and therefore we seek an alternative higher
order method. The approach we shall use is to exploit the precise properties of our
equation to enable the application of an established higher order method for the
regularised problem.

2. A split-interval scheme

A developing theme over recent years in numerical analysis is the need to use
a numerical scheme that reflects the underlying structure of an equation (or its
solution) if one is to be successful in deriving a really efficient and effective method.
Accordingly, here we present a method that reflects the underlying structure of
equation (1), namely the fact that (for µ < 1) the singularity in the integrand
persists for all values of t but arises only at the initial point s = 0. Thus it is
natural to present a method that utilises two distinct schemes, one close to s = 0
where the singularity has to be taken into consideration, and a second (higher
order) formula for the remainder of the interval (where the solution is smoother
and therefore a higher order scheme can be used with impunity).

Following the approach in [6], we rewrite (1) in the form

(4) u(t) = g(t) +
∫ α

0

sµ−1

tµ
u(s)ds +

∫ t

α

sµ−1

tµ
u(s)ds.

Once the solution has been evaluated over the initial interval [0, α], this equation
is equivalent to the equation

(5) u(t) = g̃(t) +
∫ t

α

sµ−1

tµ
u(s)ds, t > α.

Now we can see that (5) is not singular. Indeed over any finite interval t ∈ [α, T]
by standard analytical theory (see, for example, [11]) the equation has a unique
solution. Moreover, standard numerical methods for Volterra equations can be
applied to solve (5) with known order of convergence.

With this approach in mind, three decisions have to be made:
(1) we need to choose the formula that will be used over the initial sub-interval

[0, α]
(2) we need to choose the formula that will be used over the sub-interval [α, T]

where we want to solve the equation over the interval [0, T]
(3) we need to choose an appropriate value of α at which we shall change over

from one formula to the other.
Over the sub-interval [0, α] our priority needs to be the effective computation of

the integral over an initial interval including the singularity. In previous work we
have seen that there is no point looking for a high order scheme (this is absolutely
clear in the case of the approximation of solutions that are not even smooth near
t = 0). Because of the singularity in the integrand, it is quite hard to find high

66 T. DIOGO, N. FORD, P. LIMA, AND S. THOMAS

order numerical methods, so we shall use the product Euler rule as presented and
analysed in [11] and (in the context of the present equation) [10], [9] over [0, α].

We take a uniform grid with fixed h > 0 where T = Nh and put ti = ih, i =
0, . . . , N . Now let ui ≈ u(ti) and gi = g(ti). We define α = mh as the end point of
the primary interval for some m < N .

The discrete form of equation (1) for n = 0, . . . , m is

(6) un = gn +
n−1∑

i=0

w
(n)
i ui

where the weights w
(n)
i are given by the product integration formula

(7) w
(n)
i = t−µ

n

∫ ti+1

ti

sµ−1ds =
(tµi+1 − tµi)

µtµn

The construction of this scheme, together with results on convergence to the
smooth solution, and an error analysis, are provided in [10] and [9].

For the second sub-interval, the discretised formula is extended for tn ∈ [α, T]
through the use of a higher order scheme over the second sub-interval:

(8) un = gn +
m∑

i=0

w
(n)
i ui +

n∑

i=m

v
(n)
i ui

where the v
(n)
i are the weights of some suitable quadrature rule for the interval

[α, nh]. We shall return to the choice of weights v
(n)
i later.

As we have seen in [6], the choice of α depends on T and the method we are
planning to use over [α, T]. If α was chosen to be too small, then there would be
excessive errors in the approximation over the second sub-interval.

2.1. Convergence theory. It has been shown in [9] that the convergence order
of the product Euler method with fixed step length h > 0 when µ < 1 is O(hµ),
and it is the way in which this error is propagated into the second stage which
now concerns us. We proceed in quite a general way and assume that the error in
the value u(α) provided by the scheme in the first interval has an asymptotic error
expansion A1(h).

One can see from the formula (2) (or alternatively by the argument given in
[5]) that every member of the family of exact solutions passes through the point
(0, µg(0)

µ−1) and thereafter different solutions do not intersect. Indeed, for every γ ∈ R
and for every α ∈ R+ there exists precisely one solution that passes through (α, γ).
One can also show quite easily ([5]) that the rate of separation of two trajectories
as time t elapses is proportional to t1−µ.

In principle, a particular solution trajectory may be selected by defining the
(exact) value u(α) and this can now be used to provide insight into the error in the
approximation for the split-interval scheme in the second sub-interval.

For the second sub-interval, the analysis of error propagation in the numerical
scheme is straightforward. This is because we will be using a well-behaved numer-
ical scheme with known order on an integral equation which satisfies all the usual
analytical requirements (continuous forcing function, non-singular Lipschitz kernel
and so on) and therefore the scheme will display its known order over any finite
interval [α, T].

Now suppose that, at the end of the first sub-interval, the approximation of the
exact solution u(α) is subject to an error (induced by the scheme) E . Thus we
are going to approximate in the second sub-interval using the wrong starting value

SOLUTION OF A SINGULAR INTEGRAL EQUATION BY A SPLIT-INTERVAL METHOD 67

u(α) = U + E instead of u(α) = U and let us suppose that we are using a method
of order p.

The error in the solution induced by the second sub-interval method is O(hp) and
let us assume that for some fixed t ∈ (α, T) the error has an asymptotic expansion
A2(h).

We can now combine the errors A1 and A2 in the following way.
The error in the exact solution at time t ∈ (α, T) induced by the error E at time

α is of the form E t1−µ

α1−µ
. The additional error caused by the numerical method on

the second sub-interval is then represented by A2(h). This leads to the following
conclusion:

Theorem 2.1. Under the assumptions given, the asymptotic error expansion of the
total error at time t ∈ (α, T) is given by

(9) A1(h)
t1−µ

α1−µ
+A2(h)

We have now established the details of the way that errors propagate from the
first sub-interval to the second sub-interval. We can see, in particular, that errors
introduced in the first sub-interval do not go away and indeed the asymptotic
expansion of the errors from the first sub-interval are retained in the full asymptotic
error expansion in a very natural way. This means that one cannot construct a high
order scheme directly through the use of a low order scheme on the initial interval
since the low order terms will be preserved in the full error expansion. However,
the general approach we have taken to developing the asymptotic error formula
permits us to develop two approaches to extrapolation for the improvement of the
order of the split-interval method.

2.2. An example. The basic idea behind extrapolation methods is the use of
approximations obtained by a method with known asymptotic error expansion and
by using several different step lengths so that the lowest order terms in the error
expansion may be eliminated, thereby providing a higher order of accuracy in the
extrapolated scheme.

Obviously, since we have an asymptotic error expansion for our split-interval
scheme, it would be possible to employ an extrapolation method on the combined
scheme. However, as we shall see later, it may well be more efficient to use ex-
trapolation at the value α to reduce the error in the initial sub-interval before the
second (higher order) scheme takes over.

In order to show how extrapolation will work out in practice, we introduce here a
simple prototype split interval scheme. For the time being, we seek to approximate
the continuously differentiable solution. As we remarked earlier, there seems to be
little benefit in using any scheme other than the product Euler scheme over the
initial interval. Thereafter we could choose any well-behaved quadrature scheme.
We shall choose to use the classical trapezium rule since the approach is clearly
illustrated using this pair of schemes.

In the notation of the previous section, one knows that the asymptotic error
expansions are, respectively, of the forms

(10) A1(h) = a1h
µ + a2h + a3h

µ+1 + a4h
2 + . . .

and

(11) A2(h) = b2h
2 + b3h

3 + b4h
4 +

68 T. DIOGO, N. FORD, P. LIMA, AND S. THOMAS

This means that the total error of the combined scheme takes the form

(12) B(h) = c1h
µ + c2h + c3h

µ+1 + c4h
2 +

In other words, the combined scheme has the same error expansion as the low
order product Euler rule and this means that there will be little benefit in employing
the combined scheme directly to solve the equation.

On the other hand, if we are able to use extrapolation at the value α to elimi-
nate the first three terms in the expansion for A1 then this will change the error
expansion for the total error in the following way. B will now take the form

(13) B(h) = d1h
2 + d2h

2+µ + d3h
3 +

This means that we will then have an overall method of the same order as the
trapezium rule. However one needs to take note that the initial interval still has
influenced the asymptotic error expansion of the combined scheme. The form of
the error term contains non-integer powers of h and any extrapolation method to
improve further the order of the split-interval method will need to take this into
account. For example, two extrapolation stages will be needed (to eliminate the
terms in h2 and h2+µ) to improve the order from 2 to 3 instead of the classical one
stage extrapolation.

3. Extrapolation

We are planning to use a modified version of the classical Richardson extrapola-
tion. The modification to the technique arises through the presence of non-integer
powers of h in the asymptotic error expansions. This means that the calculations
are more complicated than in the classical case and that the improvement in con-
vergence order requires more extrapolation steps.

Assume that y(h) is an approximation to y using a method with stepsize h and
that the asymptotic error expansion is E(h). In other words

(14) y = y(h) + E(h).

Now the corresponding equation for steplength 2h is

(15) y = y(2h) + E(2h).

One can use the expressions for E to obtain an improved approximation for y in
the following way.

Assume that

(16) E(h) = e1h
µ + e2h + e3h

µ+1 + e4h
2 + . . .

and

(17) E(2h) = e1(2h)µ + e2(2h) + e3(2h)µ+1 + e4(2h)2 + . . .

then by multiplying (14) by 2µ and subtracting (15) we obtain an expression of the
form

(18) y = y
(h)
1 + E(h)

1 ,

where

(19) E(h)
1 = e

(1)
2 h + e

(1)
3 hµ+1 + e

(1)
4 h2 + . . .

which gives an improvement from a single extrapolation in the order of the method
from O(hµ) to O(h).

SOLUTION OF A SINGULAR INTEGRAL EQUATION BY A SPLIT-INTERVAL METHOD 69

Method Method 1 Method 2 Method 3
Native order µ µ same as at α

Work for order 1 9600 9600 6720
Work for order 2 12000 12000 6960
Work for order 3 11320 11320 11260

Table 1. Number of steps in calculation of solution at T = 10
with h = 1

640 and α = 1 for different extrapolation schemes

The same approach may be repeated successively (by calculating E(2h)
1 , E(h)

2

etc) to eliminate the higher order terms in the error and, in principle at least,
extrapolation may yield a method of arbitrarily high order. However, it is clear
that extrapolation involves extra computational cost and so one must take this
into account. In the following discussion we shall see how the computational cost
of several competing extrapolation procedures compares for the problem under
consideration.

First we should identify the possibilities we shall consider:
Method 1: use of the product Euler rule over the interval [0, T] with extrapo-

lation at t = T
Method 2: use of the product Euler rule over the interval [0, α] and the classical

trapezium rule over [α, T] with extrapolation at t = T
Method 3: use of the product Euler rule over the interval [0, α] and the classical

trapezium rule over [α, T] with extrapolation at t = α to raise the order (for each
step size) of the initial approximation to 2 and further extrapolation at t = T if
needed to raise (further) the order of the overall method

Table 1 shows the number of steps of calculation required to obtain the solution
at T = 10 by each of these methods. One needs to compare the amount of work
in Table 1 with the errors we report in the subsequent Tables. Supposing we want
to obtain an error of order h by Method 1 or Method 2 then we need to use two
meshes of 6400 and 3200 nodes respectively. With Method 3 we would need to use
meshes with 640 and 320 nodes over [0, 1] but then only a further 5760 nodes over
[1, 10].

Remark 1. Note that the non-integer value of µ imposes a practical constraint
on implementation of the extrapolation scheme: in practice the computer cannot
in general calculate 2µ exactly and therefore the leading term in the asymptotic
error expansion will be zero only approximately according to the machine precision.
Asymptotically, as h → 0, the non-zero coefficient of the dominant error terms will
become more significant and the order gained through extrapolation could be lost.

4. Numerical Experiments

For our numerical experiments we consider two examples.
Example 1. We take the equation:

(20) u(t) = 1 + t +
∫ t

0

sµ−1

tµ
u(s) ds

with the two values of µ = 0.4 and µ = 0.8.
We shall calculate the value of u(10) by each of our three extrapolation schemes

using α = 1 for the split interval methods. Tables 2-5 give the absolute errors in
the approximate solution (compared to the exact analytical solution) in each case.

70 T. DIOGO, N. FORD, P. LIMA, AND S. THOMAS

Product Euler; µ = 0.4; T=10; True sol.34.3333

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5

1/20 4.9018
1/40 3.7496 1.4342e− 1
1/80 2.8594 7.3154e− 2 2.8869e− 3
1/160 2.1760 3.7123e− 2 1.0915e− 3 3.9725e− 6
1/320 1.6536 1.8768e− 2 4.1290e− 4 1.1141e− 6 1.6135e− 7
1/640 1.2555 9.4621e− 3 1.5627e− 4 3.0133e− 7 3.0391e− 8 2.2097e− 10

Product Euler; µ = 0.8; T=10; True sol.18.5

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5

1/20 6.2890e− 1
1/40 3.8199e− 1 4.8814e− 2
1/80 2.2981e− 1 2.4474e− 2 1.3334e− 4
1/160 1.3721e− 1 1.2256e− 2 3.8219e− 5 1.0408e− 7
1/320 8.1416e− 2 6.1334e− 3 1.0953e− 5 3.1492e− 8 7.2956e− 9
1/640 4.8067e− 2 3.0683e− 3 3.1392e− 6 8.6550e− 9 1.0427e− 9 5.6168e− 12

Table 2. Method 1 for Example 1, with 5 levels of extrapolation
at T=10 (µ = 0.4 and µ = 0.8)

Split Interval; µ = 0.4; T=10; True sol.34.3333

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5

1/20 −5.2139
1/40 −3.9333 7.4645e− 2
1/80 −2.9616 7.9624e− 2 8.4604e− 2
1/160 −2.2309 5.6088e− 2 3.2551e− 2 7.9201e− 4
1/320 −1.6825 3.4021e− 2 1.1955e− 2 6.1135e− 4 1.0791e− 3
1/640 −1.2704 1.9175e− 2 4.3293e− 3 3.2305e− 4 2.2695e− 4 2.7749e− 5

Split Interval; µ = 0.8; T=10; True sol.18.5

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3 e

(n)
4 e

(n)
5

1/20 6.2360e− 1
1/40 3.8147e− 1 5.4747e− 2
1/80 2.3041e− 1 2.6593e− 2 1.5618e− 3
1/160 1.3782e− 1 1.2887e− 2 8.1772e− 4 5.1797e− 4
1/320 8.1830e− 2 6.2760e− 3 3.3542e− 4 1.4112e− 4 1.5504e− 5
1/640 4.8309e− 2 3.0772e− 3 1.2168e− 4 3.5574e− 5 3.9201e− 7 2.1417e− 6

Table 3. Method 2 for Example 1, with 5 levels of extrapolation
at T=10 (µ = 0.4) and µ = 0.8)

SOLUTION OF A SINGULAR INTEGRAL EQUATION BY A SPLIT-INTERVAL METHOD 71

Split Interval; µ = 0.4; T=1; True sol.2.8333

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3

1/20 1.1393
1/40 8.9377e− 1 1.2527e− 1
1/80 6.9341e− 1 6.6295e− 2 7.3172e− 3
1/160 5.3386e− 1 3.4531e− 2 2.7673e− 3 8.7321e− 6
1/320 4.0890e− 1 1.7788e− 2 1.0453e− 3 5.3380e− 6
1/640 3.1209e− 1 9.0916e− 3 3.9489e− 4 1.9241e− 6
1/1280 2.3764e− 1 4.6204e− 3 1.4927e− 4 5.9140e− 7
1/2560 1.8066e− 1 2.3384e− 3 5.6458e− 5 1.6857e− 7

Split Interval; µ = 0.8; T=1; True sol.-1.75

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3

1/20 2.9565e− 1
1/40 1.8988e− 1 4.7153e− 2
1/80 1.1927e− 1 2.3996e− 2 8.3773e− 4
1/160 7.3661e− 2 1.2119e− 2 2.4180e− 4 1.7218e− 6
1/320 4.4901e− 2 6.0941e− 3 6.9497e− 5 8.0114e− 8
1/640 2.7090e− 2 3.0570e− 3 1.9936e− 5 3.0098e− 8

Table 4. Method 3 for Example 1, showing 3 levels of extrapola-
tion at T=1

Split Interval; µ = 0.4; T=10; True sol.34.3333

h e
(n)
0 = en e

(n)
1 e

(n)
2

1/160 2.4840e− 5
1/320 1.8764e− 5 1.6746e− 5
1/640 7.0404e− 6 3.1295e− 6 5.3649e− 8
1/1280 2.2010e− 6 5.8593e− 7 8.6286e− 9
1/2560 6.3276e− 7 1.1000e− 8 1.2495e− 9

Split Interval; µ = 0.8; T=10; True sol.18.5

h e
(n)
0 = en e

(n)
1 e

(n)
2

1/160 6.4075e− 7
1/320 1.0486e− 7 7.3774e− 8
1/640 1.8278e− 8 1.0581e− 8 1.3911e− 11

Table 5. Method 3 for Example 1, showing 2 further levels of
extrapolation at T=10

The tables illustrate the success of the extrapolation for the split-interval scheme.
In Table 5, the right hand column provides evidence in support of the O(h3) that
we would expect to achieve with the extrapolation scheme we have followed. Thus
the extrapolation scheme with three levels of extrapolation at t = α and a further
two levels of extrapolation at t = T is efficient in terms of gaining convergence
of order 3 at least computational cost. We have not considered in detail in this
paper the conditions required for extrapolation to be applied successfully. However

72 T. DIOGO, N. FORD, P. LIMA, AND S. THOMAS

Split Interval; µ = 0.4; T=1; True sol.3.5153

h e
(n)
0 = en e

(n)
1 e

(n)
2 e

(n)
3

1/20 1.1402
1/40 8.9424e− 1 1.2450e− 1
1/80 6.9365e− 1 6.5846e− 2 7.1910e− 3
1/160 5.3399e− 1 3.4285e− 2 2.7240e− 3 1.3643e− 6
1/320 4.0897e− 1 1.7658e− 2 1.0312e− 3 1.6019e− 6
1/640 3.1212e− 1 9.0243e− 3 3.9049e− 4 4.3763e− 7
1/1280 2.3766e− 1 4.5861e− 3 1.4793e− 4 6.4933e− 8
1/2560 1.8067e− 1 2.3211e− 3 5.6057e− 5 5.5540e− 9

Table 6. Split interval for Example 2, scheme showing 3 levels of
extrapolation at T=1

Split Interval; µ = 0.4; T=10; True sol.8.3266

h e
(n)
0 = en e

(n)
1 e

(n)
2

1/160 5.0578e− 7
1/320 4.8929e− 6 6.6925e− 6
1/640 1.3712e− 6 1.9726e− 7 1.3210e− 6
1/1280 1.6574e− 7 2.3607e− 7 3.3737e− 7
1/2560 4.5302e− 8 1.1565e− 7 8.7499e− 8

Table 7. Split interval scheme for Example 2, showing 2 further
levels of extrapolation at T=10

we know from other contexts that the usual requirement is that the solution be
sufficiently differentiable for the calculation of the asymptotic error expansion for
the method to be possible.

With this in mind, we consider a second example.
Example 2. We take the equation

(21) u(t) = t +
t2.5

100
+

∫ t

0

sµ−1

tµ
u(s) ds

with µ = 0.4.
Here the solution is C2 but not C3 and this imposes a constraint on the order im-

provement through extrapolation. We present (in Tables 6 and 7) the corresponding
tables to Tables 4 and 5 for Example 2. Note how the order of convergence obtained
this time seems to be O(h2).

SOLUTION OF A SINGULAR INTEGRAL EQUATION BY A SPLIT-INTERVAL METHOD 73

5. Conclusions and further work

As we have seen, Method 2 provides little, if any, advantage over Method 1.
There is no saving in computational effort and the errors are not made smaller. This
is as expected since, despite using the trapezium rule over the second sub-interval,
Method 2 is of the same order as Method 1. However, Method 3 is considerably more
efficient than Methods 1 or 2 when used without extrapolation at T . One sees a
loss of efficiency when further extrapolation at T is needed. For the development of
higher order methods we would propose an alternative strategy: use a different split-
interval scheme with more extrapolation steps at α and a higher order numerical
method on [α, T]. We shall return to a discusssion of this in a sequel.

Acknowledgements

The authors are pleased to acknowledge the helpful comments of the referees.

References

[1] H. Brunner. Collocation Methods for Volterra Integral and Related Functional Differential
Equations, Cambridge University Press, 2004.

[2] H. Brunner and P. J. van der Houwen. The Numerical Solution of Volterra Equations, North
Holland, 1986.

[3] C. Brezinski and M. Redivo-Zaglia. Extrapolation Methods: Theory and Practice. North-
Holland, Amsterdam, 1991.

[4] T. Diogo, J.T. Edwards, N.J. Ford and S.M. Thomas. Numerical analysis of a singular integral
equation, Appl. Math. Comp. 167 2005. p.372–382.

[5] T. Diogo, J.M. Ford, N.J. Ford and P. Lima. Non-integrable resolvent kernels and qualita-
tive behaviour for exact and approximate solutions to some convolution integral equations,
submitted for publication.

[6] T. Diogo, N. J. Ford, P. Lima and S. Valtchev. Numerical methods for a Volterra integral
equation with non-smooth solutions, to appear in J. Comp. Appl. Math.

[7] T. Diogo, S. McKee and T. Tang. A Hermite-type collocation method for the solution of
an integral equation with certain weakly singular kernel, IMA J. Numer. Anal. 11 1991.
p.595–605.

[8] W. Han. Existence, uniqueness and smoothness results for second-kind Volterra equations
with weakly singular kernels, J. Int. Eq. Appl. 6 1994. p.365–384.

[9] P. Lima and T. Diogo. Numerical solution of a nonuniquely solvable Volterra integral equation
using extrapolation methods, J. Comp. Appl. Math. 140 2002. p.537–557.

[10] P. Lima and T. Diogo. An extrapolation method for a Volterra integral equation with weakly
singular kernel, Appl. Numer. Math. 24 1997. p.131–148.

[11] P. Linz. Analytical and Numerical Methods for Volterra Equations, SIAM. Philadephia. 1985.
[12] T. Tang, S. McKee and T. Diogo, Product integration methods for an integral equation with

a logarithmic singular kernel, Appl. Numer. Math. 9 1992. p.259–266.

Department of Mathematics, Instituto Superior Técnico, Lisbon, Portugal

Department of Mathematics, University of Chester, Chester, CH1 4BJ, UK

Department of Mathematics, Instituto Superior Técnico, Lisbon, Portugal

Department of Mathematics, University of Chester, Chester, CH1 4BJ, UK

