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ON THE INFLUENCE OF THE WAVENUMBER ON
COMPRESSION IN A WAVELET BOUNDARY ELEMENT

METHOD FOR THE HELMHOLTZ EQUATION

STUART C. HAWKINS, KE CHEN, AND PAUL J. HARRIS

Abstract. We examine how the wavenumber influences the compression in a

wavelet boundary element method for the Helmholtz equation. We show that

for wavelets with high vanishing moments the number of nonzeros in the re-

sulting compressed matrix is approximately proportional to the square of the

wavenumber. When the wavenumber is fixed, the wavelet boundary element

method has optimal complexity with respect to the number of unknowns.

When the mesh spacing is proportional to the wavelength, the complexity of

the wavelet boundary element method is approximately proportional to the

square of the number of unknowns.
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1. Introduction

Techniques based on boundary integral equations (BIEs) are attractive for three
dimensional partial differential equations (PDEs) because they are defined on a
two dimensional surface rather than a three dimensional domain. Two dimensional
problems can typically be solved with many fewer unknowns than three dimensional
problems. BIE formulations are particularly attractive when the three dimensional
domain is infinite, for example in an exterior problem.

Traditional boundary element methods (BEMs) for solving integral equations
are very effective but have O(N2) complexity and require O(N2) storage, where N
is the number of unknowns. There is much interest in fast solution techniques for
BIEs. Prominent fast techniques include the fast multipole method (FMM) [16, 9],
equivalent sources [4, 3], spectral basis functions [1, 8], and wavelets [2, 7, 15, 17,
14, 6].

The use of wavelets for the compression of operators was pioneered by Beylkin,
Coifman and Rokhlin [2], who showed that operators of Calderon-Zygmund type
can be represented, to a specified accuracy, by a sparse matrix. Dahmen, Prössdorf
and Schneider [7] linked the accuracy to the discretisation error. Later develop-
ments by Rathsfeld [15], von Petersdorff and Schwab [17], and Lage and Schwab [14]
yielded sophisticated discretisation schemes with (a) complexity O(N loga N) for
some small integer a, and (b) asymptotic order of convergence that is not changed by
the compression. The wavelet Galerkin scheme of Dahmen, Harbrecht and Schnei-
der [6] has the optimal complexity O(N). For the Laplace problem these wavelet
schemes have been successfully demonstrated. In contrast, for the Helmholtz prob-
lem wavelet schemes have not been widely used. The oscillatory nature of the kernel
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in BIEs for the Helmholtz equation is considered an obstacle to compression using
wavelets.

Wagner and Chew [18] showed that their wavelet discretisation scheme for the
related electromagnetic scattering problem yields a compressed matrix with O(N2)
nonzeros. Thus wavelets are not useful in that context. However, in that study the
number of unknowns was tied to the wavenumber k so that the number of nodes per
wavelength remained constant. Huybrechs, Simoens and Vandewalle [13] showed
that, for the two dimensional Helmholtz problem, the wavelet Galerkin scheme has
approximate complexity O(kN). When the number of unknowns is tied to the
wavenumber this becomes O(N2) and is in agreement with [18].

Here we consider application of the wavelet Galerkin scheme in [6, 10] for the
three dimensional Helmholtz problem. We analyse the wavenumber dependence
of the compression obtained with the wavelets so that we can assess how useful
the wavelet discretisation scheme is in this context. We explicitly consider several
integral operators, including the single and double layer potentials and the hyper-
singular operator. We show that there are approximately O(k2N) nonzeros in the
compressed matrix. The exact exponent of k depends on the order of the integral
operator considered and on the vanishing moments of the wavelets.

Practitioners might increase the number of unknowns N to (a) maintain the
number of nodes per wavelength as k increases; or (b) increase the accuracy of
the solution for fixed k. We show that in case (a) the wavelet Galerkin scheme has
approximate complexity O(N2), which is in agreement with Wagner and Chew [18].
In contrast, in case (b) the wavelet Galerkin scheme has optimal complexity O(N),
which is the complexity observed for the Laplace problem [6, 10].

We write a(k, N) = O(b(k,N)) when there exist constants C,M ≥ 0 such that
a(k,N) ≤ Cb(k, N) for all N > M . We write a(k, N) . b(k,N) when there exists
constant C > 0 such that a(k,N) ≤ Cb(k, N) for all N . We write a(k, N) ∼ b(k,N)
when a(k, N) . b(k,N) and b(k,N) . a(k, N).

In Section 2 we state the Laplace and Helmholtz problems and review the rel-
evant boundary integral operators for these problems. In Section 3 we review the
relevant details of the wavelet Galerkin scheme [6, 10]. In Section 4 we review the
compression theory for the wavelet Galerkin scheme applied to the Laplace prob-
lem. In Section 5 we state the compression theory for the wavelet Galerkin scheme
applied to the Helmholtz problem. In Section 6 we present numerical results.

2. Integral Operators and Equations

We consider here the exterior Laplace and Helmholtz problems. Both problems
can be reformulated as boundary integral equations and we list the component
boundary integral operators. The treatment for the interior problem is similar, and
the same boundary integral operators appear.

Let D ⊆ R3 be a bounded region with surface Γ and exterior D+ = R3 \ (D∪Γ).
The exterior Laplace equation is

(1) ∇2u(x) = 0, x ∈ D+ ∪ Γ.

The single and double layer potentials for the Laplace equation are

(Lu)(x) =
∫

Γ

G(x, y)u(y)dsy, (Mu)(x) =
∫

Γ

∂G

∂ny
(x, y)u(y)dsy,

where G(x, y) = 1/4π‖x − y‖ is the free space Green’s function for the Laplace
equation.



50 STUART C. HAWKINS, KE CHEN, AND PAUL J. HARRIS

Differentiating leads to the operators

(MT u)(x) =
∂

∂nx
(Lu)(x), (Nu)(x) =

∂

∂nx
(Mu)(x), x ∈ Γ.

The operators L,M,MT and N appear in several boundary integral equations for
(1).

The exterior Helmholtz equation with wavenumber k > 0 is

(2) ∇2u(x) + k2u(x) = 0, x ∈ D+ ∪ Γ.

Radiating solutions of (2) additionally satisfy the Sommerfeld radiation condition

lim
|x|→∞

|x|
(

∂u

∂x
− iku

)
= 0.

The single and double layer potentials for the Helmholtz equation are

(Lku)(x) =
∫

Γ

Gk(x, y)u(y)dsy, (Mku)(x) =
∫

Γ

∂Gk

∂ny
(x, y)u(y)dsy,

where Gk(x,y) = eik‖x−y‖/4π‖x − y‖ is the free space Green’s function for the
Helmholtz equation.

Differentiating leads to the operators

(MT
k u)(x) =

∂

∂nx
(Lku)(x), (Nku)(x) =

∂

∂nx
(Mku)(x), x ∈ Γ.

The operators Lk,Mk,MT
k and Nk appear in several boundary integral equations

for (2). We consider the general BIE

Au(x) = f(x), x ∈ Γ,

where A involves one or more of the operators above, and f is derived from the
boundary condition. Traditional boundary element methods seek an approximation
to u(x) in a space spanned by piecewise polynomial basis functions. We shall seek
an approximation to u(x) in a space spanned by wavelet basis functions.

3. The Wavelet Galerkin Scheme

In this section we review a robust wavelet Galerkin scheme of Dahmen, Harbrecht
and Schneider [6]. In Section 4 we will review the theory for the application of
this scheme to the Laplace problem. In Section 5 we will present theory for the
application of this scheme to the Helmholtz problem.

Wavelets are easily defined on a simple domain such as the unit square, which
can be used as a reference domain for computations on a general surface. In the
context of operator compression in BIEs, the key property of wavelets is that they
can transform smoothness of the kernel on the reference domain into small, or even
negligible, coefficients. For BIEs defined on a general surface it can be difficult
to smoothly map the reference domain to the surface. It is necessary to split the
domain into patches so that the mappings from the reference domain to each patch
are smooth.

We split Γ into patches with Γ = Γ1 ∪Γ2 ∪ · · · ∪ΓN and each patch Γi the image
of ¤ = [0, 1]× [0, 1] under some diffeomorphism γi. Adjoining patches are required
to match at their common boundaries, so that when Γi ∩ Γj 6= ∅ there exists an
affine mapping θij : ¤ → ¤ such that, whenever ξ ∈ Γi ∩ Γj then ξ = γi(s) and
ξ = γj(θij(s)) for some s ∈ ¤.
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Define the inner product 〈·, ·〉 by

〈f, g〉 =
∫

Γ

f(x)g(x)dsx

=
N∑

j=1

∫

¤
f(γj(u))g(γj(u))

∥∥∥∥
∂γj

∂u1
(u)× ∂γj

∂u2
(u)

∥∥∥∥ dsu.

Given a coarsest refinement level j0 and a finest refinement level J , let

Φj0 = {φj0,k}k∈Sj0
,

Ψj = {ψj,k}k∈Tj
, (j = j0, . . . , J)

denote scaling functions and biorthogonal wavelets defined on Γ, where Sj and Tj

denote index sets for scaling functions and wavelets respectively at level j. Denote
by d the degree of approximation of the wavelets and by d̃ the number of vanishing
moments of the wavelets. For convenience write Ψj0−1 = Φj0 , Tj0−1 = Sj0 and
ψj0−1,k = φj0,k.

Let Θj,k = supp ψj,k and Θ̃j,k = sing supp ψj,k. We assume diam Θj,k ∼ 2−j

for j ≥ j0. The basis used in the Galerkin scheme is ΨJ = ∪J
j=j0−1Ψj . The

number of unknowns is then NJ = |ΨJ |. We have in mind the piecewise linear
continuous biorthogonal wavelets used by Dahmen, Harbrecht and Schneider [6]
and Harbrecht [10] for the Laplace equation.

Let A be an integral operator on Γ with order 2q and kernel K, so

(Aφ)(x) =
∫

Γ

K(x, y)φ(y)dsy.

The transported kernels of A are

K̃ii′(u, v) = K(γi(u),γi′(v))
∥∥∥∥

∂γi

∂u1
(u)× ∂γi

∂u2
(u)

∥∥∥∥
∥∥∥∥

∂γi′

∂v1
(v)× ∂γi′

∂v2
(v)

∥∥∥∥ ,

for 1 ≤ i, i′ ≤ N . We use the shorthand ∂α
u in place of ∂α1

u1
∂α2

u2
and write |α| =

α1 + α2.

Definition 1. The kernel K is said to be analytically standard of order r if its
transported kernels K̃ii′ (1 ≤ i, i′ ≤ N) satisfy

(3) |∂α
u∂β

v K̃ii′(u, v)| ≤ C
1

‖γi(u)− γi′(v)‖2+r+|α|+|β|
2

for 2 + r + |α|+ |β| > 0 and some constant C.

The matrix representation AJ of A is given by

(AJ)(j,k)(j′,k′) = 〈Aψj′,k′ , ψj,k〉.
It is well known that there are some operators A whose matrix representation AJ

has many small entries that may be discarded without compromising the conver-
gence of the discretisation scheme. In Sections 4 and 5 we consider a particular
class of these operators for which the locations of the small entries can be predicted
in advance [6], so that these small entries need not be computed at all. This is
called matrix compression. In the scheme presented by Dahmen, Harbrecht and
Schneider [6] the matrix compression is split into a first compression and a second
compression.
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The first and second compression make use of the following conditions:

dist(Θj,k,Θj′,k′) > aBj,j′(4)

dist(Θj,k,Θj′,k′) . 2−min{j,j′}(5)

dist(Θ̃j,k,Θj′,k′) > a′B′
j,j′(6)

dist(Θj,k, Θ̃j′,k′) > a′B′
j,j′(7)

where

Bj,j′ = max
{

2−min{j,j′}, 2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q)

}
(8)

B′
j,j′ = max

{
2−max{j,j′}, 2

2J(d′−q)−(j+j′)d′−max{j,j′}d̃

d̃+2q

}

with d < d′ < d̃ + 2q and a, a′ are constants.
The first compression yields Aε1

J given by

(9) (Aε1
J )(j,k)(j′,k′) =

{
0, when j, j′ ≥ j0 and (4) satisfied,
(AJ)(j,k)(j′,k′) otherwise.

The second compression yields Aε
J given by

(10)

(Aε
J)(j,k)(j′,k′) =





0, when j′ > j ≥ j0 − 1 and (5), (6) satisfied,
0, when j > j′ ≥ j0 − 1 and (5), (7) satisfied,
(Aε1

J )(j,k)(j′,k′) otherwise.

The matrix AJ comprises block matrices Aj,j′ = (AJ )(j,Tj)(j′,Tj′ ). Similarly
Aε1

j,j′ = (Aε1
J )(j,Tj)(j′,Tj′ ) and Aε

j,j′ = (Aε
J)(j,Tj)(j′,Tj′ ). The first compression and

second compression respectively induce block matrices

Rj,j′ = Aj,j′ −Aε1
j,j′ ,

Sj,j′ = Aε1
j,j′ −Aε

j,j′ .

Assumptions must be made on the operator A to ensure that this compression
strategy preserves the accuracy of the discretisation scheme. These assumptions
are specified in the next section.

4. Matrix Compression for the Laplace Problem

In this section we review the compression theory of Dahmen, Harbrecht and
Schneider [6] and Harbrecht [10] for the Laplace problem.

Theorem 2 (Harbrecht [10]). The kernels of the boundary integral operators L,
M, MT and N are analytically standard of the same order as their operator order.

Henceforth we denote by A a general operator with an analytically standard
kernel of order 2q. The following theorem establishes estimates for the entries of
AJ and the block perturbation matrices Rj,j′ and Sj,j′ .

Theorem 3 (Dahmen, Harbrecht and Schneider [6]). Let 2 + 2d̃ + 2q > 0. Then,
(i)

(11) |〈Aψj′,k′ , ψj,k〉| . 2−(j+j′)(d̃+1)

dist(Θj,k, Θj′,k′)2+2q+2d̃

uniformly with respect to j when j, j′ ≥ j0.
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(ii)

(12) |〈Aψj,k, ψj′,k′〉|, |〈Aψj′,k′ , ψj,k〉| . 2j2−j′(d̃+1)

dist(Θ̃j,k,Θj′,k′)2q+d̃

uniformly with respect to j provided that dist(Θ̃j,k, Θj′,k′) & 2−j′ and j′ >
j ≥ j0 − 1.

(iii)

(13) ‖Rj,j′‖2 . a−2(d̃+q) 22Jq2−2d′(J−(j+j′)/2).

(iv)

(14) ‖Sj,j′‖2 . a′−(d̃+2q) 22Jq2−2d′(J−(j+j′)/2).

Proof. The idea is to find a Taylor polynomial for K̃. Then (11) follows from (3)
and the vanishing moment properties of the wavelets. Substituting the distance
threshold (4) into (11) establishes (13). A similar argument yields (12) and (14).
See Dahmen, Harbrecht and Schneider [6] for a complete proof. ¤

The following theorem quantifies the sparsity of the compressed matrix Aε
J .

Theorem 4 (Dahmen, Harbrecht and Schneider [6]). The compressed matrix Aε
J

has O(NJ ) nonzero entries.

Proof. There are several cases to consider. We sketch the argument for the first
case. The other arguments are similar. A complete proof is given by Dahmen,
Harbrecht and Schneider [6].

Consider the first compression (9) for those blocks Aj,j′ for which

2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q) > 2−min{j,j′},

so that from (8)

Bj,j′ = 2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q) .

Then the nonzero entries in the block Aε1
j,j′ come from wavelets whose supports

satisfy

(15) dist(Θj,k, Θj′,k′) ≤ aBj,j′ .

The block has O([2j′aBj,j′ ]2) entries in each row that satisfy (15), and the block has
O([2j+j′aBj,j′ ]2) entries in total that satisfy (15). The number of all such entries
in all of the blocks has order bounded by

C1 =
J∑

j,j′=0

a2[2j+j′Bj,j′ ]2

= a2
J∑

j,j′=0

[2j+j′Bj,j′ ]2.(16)

The sum in (16) is shown in [6] to be of order NJ .
Similar arguments apply for the other cases, each having either O(a2NJ) or

O((a′)2NJ) nonzeros. ¤

Remark 5. The complexity of the wavelet Galerkin scheme can be established by
including in (16) a cost factor for each nonzero entry. When the cost factor is of
order [J − (j + j′)/2]α for some α ≥ 0 the linear complexity in NJ is preserved [6].
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5. Matrix Compression for the Helmholtz Problem

The results of the previous section establish the decay properties of AJ when A
has an analytically standard kernel. It is well known that the Helmholtz integral
operators Lk,Mk,MT

k and Nk have analytically standard kernels. However, the
results of the previous section do not quantify the influence of the wavenumber on
the decay properties of AJ when A is one of these operators. In this section we
give new decay estimates for AJ that quantify the influence of the wavenumber on
operator compression.

We now state our fundamental result, which establishes the dependency of the
partial derivatives of the kernel on the wavenumber k.

Theorem 6. The kernels of the boundary integral operators Lk,Mk,MT
k and Nk

are analytically standard of the same order as their operator order. The constant
C in (3) has a dependence on k with

C . k|α|+|β|+2q+1

where 2q is the operator order. Thus the transported kernels K̃ii′(x, y) satisfy

(17) |∂α
u∂β

v K̃ii′(u,v)| . k|α|+|β|+2q+1 1

‖γi(u)− γi′(v)‖2+2q+|α|+|β|
2

for 2 + 2q + |α|+ |β| > 0.

Proof. The kernel of the operator Lk,Mk,MT
k or Nk can be written

(18) K(x,y) = k2q+1 eik‖x−y‖

‖x− y‖2+2q
f(‖x− y‖, k)g(x, y)

where g(x, y) is analytic, and f(r, k) is analytic as a function of r = ‖x − y‖ and
depends on k only through terms k−δ for δ < 2q + 1.

An induction argument using the product rule, the chain rule and the analyticity
of γi and γi′ then gives

|∂α
u∂β

v K̃ii′(u, v)| . C(k)
1

‖γi(u)− γi′(v)‖2+2q+|α|+|β|
2

.

Here C(k) is independent of u and v.
Note that (excepting terms in f) k appears in ∂α

u∂β
vK(u, v) only through the

factors

k2q+1 ∂j

∂rj
eikr = k2q+1(ik)jeikr, j = 1, . . . , |α|+ |β|.

The highest order term in k is k|α|+|β|+2q+1. It follows that C(k) . k|α|+|β|+2q+1.
¤

Theorem 7. Let 2 + 2d̃ + 2q > 0. Then,
(i)

(19) |〈Aψj′,k′ , ψj,k〉| . k2d̃+2q+1 2−(j+j′)(d̃+1)

dist(Θj,k,Θj′,k′)2+2q+2d̃

uniformly with respect to j when j, j′ ≥ j0.
(ii)

(20) |〈Aψj,k, ψj′,k′〉|, |〈Aψj′,k′ , ψj,k〉| . kd̃+2q+1 2j2−j′(d̃+1)

dist(Θ̃j,k, Θj′,k′)2q+d̃
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uniformly with respect to j provided that dist(Θ̃j,k, Θj′,k′) & 2−j′ and j′ >
j ≥ j0 − 1.

(iii)

(21) ‖Rj,j′‖2 . a−2(d̃+q)k2d̃+2q+122Jq2−2d′(J−(j+j′)/2).

(iv)

(22) ‖Sj,j′‖2 . a′−(d̃+2q)kd̃+2q+122Jq2−2d′(J−(j+j′)/2).

Proof. The proof follows the proof of Theorem 3 (see Dahmen, Harbrecht and
Schneider [6]) on substitution of (17) for (3). The dependency of the partial deriva-
tives of the kernel on k is carried into the matrix estimates (19) and (20), and into
the perturbation bounds (21) and (22). ¤

Discarding entries in the matrix according to the compression strategy (9) and
(10) leads to a finger sparsity pattern in Aε

J . The parameters a and a′ control the
width of the fingers.

We would like bounds for ‖Rj,j′‖2 and ‖Sj,j′‖2 that are independent of k, as is the
case for the Laplace problem. Then the error introduced into Aε

J by the thresholding
would be independent of the wavenumber. We may choose the parameters a and
a′ to cancel out the k terms in (21) and (22). In this way we make the width of the
fingers a function of the wavenumber. We write a = a(k) and a′ = a′(k).

Theorem 8. Let

a(k) = b k1+1/(2d̃+2q),

a′(k) = b′ k1+1/(d̃+2q)(23)

for some constants b and b′. Then

(24) ‖Rj,j′‖2 . b−2(d̃+q)22Jq2−2d′(J−(j+j′)/2),

(25) ‖Sj,j′‖2 . b′−(d̃+2q)22Jq2−2d′(J−(j+j′)/2).

Proof. Let a(k) = b k1+1/(2d̃+2q). Note 1 + 1/(2d̃ + 2q) = (2d̃ + 2q + 1)/(2d̃ + 2q).
Then

‖Rj,j′‖2 . a(k)−2(d̃+q)k2d̃+2q+122Jq2−2d′(J−(j+j′)/2)

. b−2(d̃+q)k−2(d̃+q)(2d̃+2q+1)/(2d̃+2q)k2d̃+2q+122Jq2−2d′(J−(j+j′)/2)

. b−2(d̃+q)k−(2d̃+2q+1)k2d̃+2q+122Jq2−2d′(J−(j+j′)/2)

. b−2(d̃+q)22Jq2−2d′(J−(j+j′)/2).

The proof for ‖Sj,j′‖2 is similar. ¤
The following theorem is the analogue of Theorem 4 for the Helmholtz problem.

Theorem 9. Let α be chosen so that kα = max{k2+2/(2d̃+2q), k2+2/(d̃+2q)}. Then
the compressed matrix Aε

J has O(kαNJ) nonzero entries.

Proof. Let a(k) and a′(k) be given by (23). The proof follows the proof of Theo-
rem 4.

Replacing a by a(k) in (16) gives

C1 = a(k)2
J∑

j,j′=0

[2j+j′Bj,j′ ]2
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operator order 2q a(k) a′(k) nonzeros
Lk -1 k4/3 k2 O(k4NJ)
Mk 0 k5/4 k3/2 O(k3NJ)
MT

k 0 k5/4 k3/2 O(k3NJ)
Nk 1 k6/5 k4/3 O(k8/3NJ)

Table 1. Dependency of the parameters a(k), a′(k) and the num-
ber of nonzeros in the compressed matrix Aε

J on the wavenumber
k for operators discretised using wavelets with d̃ = 2 vanishing
moments.

which, by the same argument as Theorem 4, is of order a(k)2NJ .
Similar arguments apply for other cases, each having either O(a(k)2NJ ) or

O(a′(k)2NJ) nonzeros. Thus there are O(max{a(k)2, a′(k)2}NJ) = O(kαNJ ) nonze-
ros in Aε

J . ¤

Table 1 summarises the precise influence of the wavenumber k on the parameters
a(k) and a′(k), and on the number of nonzeros in the compressed matrix Aε

J , for
the operators Lk,Mk,MT

k and Nk when they are discretised using wavelets with
d̃ = 2 vanishing moments.

Remarks 10. (i) For a given operator (with q fixed), the complexity of the
wavelet Galerkin scheme tends to O(k2NJ ) as the number of vanishing
moments d̃ of the wavelets increases.

(ii) N1/2 ∼ k when the number of nodes per wavelength is fixed. In this case
O(k2NJ) complexity becomes O(N2

J ) complexity.
(iii) When the wavenumber k is fixed the wavelet Galerkin scheme has com-

plexity O(NJ).

In summary, the scheme has optimal compression when the wavenumber is fixed.
When the number of nodes per wavelength is fixed the scheme is less useful.

6. Numerical Results

In this section we demonstrate numerically the compression obtained for the
operator Mk, while solving the Surface Helmholtz Equation

(26) (−1
2
I +Mk)u(x) = Lk

∂u

∂nx
(x), x ∈ Γ,

for the Helmholtz problem exterior to the unit sphere with a Neumann boundary
condition. Exact Neumann and Dirichlet data for the test problem are generated
from a point source in the interior of the sphere.

The Surface Helmholtz Equation (26) does not have a unique solution when k
is an eigenvalue of the interior Dirichlet problem. An alternative to the Surface
Helmholtz Equation is the Burton and Miller formulation [5],

(−1
2
I +Mk + αNk)u(x) = (α

1
2
I + αMT

k + Lk)
∂u

∂nx
(x), x ∈ Γ,

which has a unique solution for all k, provided the coupling parameter α(k) has
positive imaginary part. In our experiments we use the Surface Helmholtz Equation
(26) instead of the Burton and Miller formulation so that the compression of Mk

can be isolated and observed. We assume that k is not an eigenvalue of the interior
Dirichlet problem.
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In this exploratory work we compute AJ by applying a certain discrete wavelet
transform to a dense matrix obtained from a single scale Galerkin scheme [12, 11].
This is mathematically equivalent to the Galerkin scheme in Section 3. To obtain
AJ in this way requires O(N2

J) operations and storage. The storage requirement
restricts the maximum number of unknowns (and wavenumber). However, the
scheme in Section 3 requires only O(NJ) operations and storage. In future work
we will present results obtained with the scheme in Section 3 for large numbers of
unknowns and large wavenumber. To simplify the experiments presented we adopt
two a-posteriori compression strategies.

The first a-posteriori compression strategy applies thresholding with the thresh-
old parameter chosen independently of the wavenumber. This mimics the compres-
sion strategy in Section 3, which is independent of the magnitude of the entries in
AJ . Define the thresholded matrix Aη

J by

(Aη
J)(j,k)(j′,k′) =

{
(AJ)(j,k)(j′,k′) when |(AJ)(j,k)(j′,k′)| > η × 1538/NJ ,
0 otherwise,

with η fixed as k varies. The scaling factor 1538 is included only to simplify the
presentation.

In the first experiment we fix NJ = 1538 and consider the operator Mk with
k = 1, 2, . . . , 10. The ratio of wavelength to maximum mesh spacing ranges from
approximately 50 to approximately 5. The range of k is constrained because the
oscillatory nature of the problem cannot be accurately represented when this ratio
is small.

Table 2 lists sparsity nnz(Aη
J)/NJ for a range of threshold parameters η. The

matrix is dense when nnz(Aη
J )/NJ = 1538. For small η the matrix becomes almost

dense and nnz(Aη
J)/NJ → 1538 as k increases.

Table 3 lists the l2 norm of the error in the solution of the compressed matrix
system for the model problem. There is a peak in the error for k = 7. We ascribe
this to k = 7 being close to an eigenvalue of the interior Dirichlet problem. When
k is an eigenvalue of the interior Dirichlet problem the Surface Helmholtz Equation
does not have a unique solution.

The sparsity and error for η = 10−6 are plotted against k in Figure 1. The
error remains approximately constant against k. We expect from Table 1 that
nnz(Aη

J )/NJ ∼ (k5/4)2 = k5/2 because for this small test problem a(k) will domi-
nate. Figure 1 shows that this exponent is approached but is not attained for the
low values of k demonstrated.

In the second experiment we consider again the operator Mk and vary NJ with
the wavenumber so that the wavelength is ten times the maximum element width.

Table 4 lists sparsity nnz(Aη
J)/NJ for a range of threshold parameters η. Table 5

lists the l2 norm of the error in the solution of the compressed matrix system for
the model problem.

The sparsity and error for η = 10−6 are plotted against k in Figure 2. The
error decreases with k due to the increasing number of unknowns. As before, we
expect from Table 1 that nnz(Aη

J)/NJ ∼ (k5/4)2 = k5/2 because for this small test
problem a(k) will dominate. Figure 2 shows that this exponent is approached but
is not attained for the low values of k demonstrated.

The second a-posteriori compression strategy is widely used [2, 18, 13]. The
threshold parameter η is given by η = µ×‖FJ‖∞/1538 where FJ denotes the matrix
from the single scale Galerkin scheme. It follows from (18) that ‖FJ‖∞ ∼ k2q+1.
This allows the number of nonzeros in Aη

J to increase more slowly with k than with
the first a-posteriori compression strategy, at the cost of increasing error.
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k η = 10−8 η = 10−7 η = 10−6

1 337.24 199.65 123.00
2 451.98 222.07 128.20
3 638.64 274.30 137.03
4 815.07 361.64 151.90
5 971.36 474.09 179.77
6 1101.12 580.37 218.91
7 1199.10 690.71 260.94
8 1281.16 810.03 312.53
9 1347.01 915.12 368.55
10 1397.07 1003.59 427.28

Table 2. Compressed matrix sparsity nnz(Aη
J)/NJ for the oper-

ator Mk. The number of unknowns NJ is fixed at 1538.

k η = 0 η = 10−8 η = 10−7 η = 10−6

1 4.52×10−4 1.42×10−3 1.21×10−2 5.74×10−2

2 7.14×10−4 8.27×10−4 1.38×10−2 6.14×10−2

3 1.82×10−3 1.83×10−3 9.40×10−3 4.81×10−2

4 1.66×10−3 1.69×10−3 5.95×10−3 5.58×10−2

5 2.26×10−3 2.26×10−3 6.44×10−3 6.94×10−2

6 3.48×10−3 3.48×10−3 6.15×10−3 6.95×10−2

7 3.49×10−2 3.49×10−2 3.52×10−2 9.20×10−2

8 4.59×10−3 4.59×10−3 7.16×10−3 7.28×10−2

9 7.34×10−3 7.34×10−3 9.20×10−3 7.88×10−2

10 5.39×10−3 5.39×10−3 8.27×10−3 7.29×10−2

Table 3. Error in solution of compressed system for the operator
Mk. The number of unknowns NJ is fixed at 1538.

k NJ η = 10−8 η = 10−7 η = 10−6

2.86 386 306.54 185.36 78.11
5.62 1538 1054.36 538.88 202.82
11.24 6146 3789.31 1973.11 683.30

Table 4. Compressed matrix sparsity nnz(Aη
J)/NJ for the oper-

ator Mk. The number of unknowns varies so that the wavelength
is ten times the maximum element width.

As before, in the first experiment we fix NJ = 1538 and consider the operator
Mk with k = 1, 2, . . . , 10. Table 6 lists sparsity nnz(Aη

J)/NJ for a range of threshold
parameters µ. The matrix is dense when nnz(Aη

J)/NJ = 1538. Table 7 lists the l2
norm of the error in the solution of the compressed matrix system, for the model
problem. As before there is a peak in the error for k = 7.

The sparsity and error for µ = 10−2 are plotted against k in Figure 3. The
error increases with k. We expect from Table 1 that nnz(Aη

J)/NJ ∼ (k5/4)2 = k5/2.
The observed exponent is much smaller. This is because the threshold parameter
increases with k.
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k NJ η = 0 η = 10−8 η = 10−7 η = 10−6

2.86 386 4.26×10−3 4.26×10−3 1.12×10−2 1.18×10−1

5.62 1538 3.79×10−3 3.79×10−3 6.36×10−3 6.96×10−2

11.24 6146 1.73×10−3 1.74×10−3 6.50×10−3 3.09×10−2

Table 5. Error in solution of compressed system for the operator
Mk. The number of unknowns varies so that the wavelength is ten
times the maximum element width.

k ‖FJ‖∞ µ = 10−3 µ = 10−2 µ = 10−1

1 1.9×10−2 316.31 191.69 115.17
2 2.6×10−2 383.47 198.23 106.05
3 3.3×10−2 487.79 218.16 100.20
4 4.0×10−2 606.62 249.69 100.50
5 4.7×10−2 712.72 294.07 104.52
6 5.4×10−2 821.31 354.35 110.56
7 6.1×10−2 926.95 415.03 118.82
8 6.7×10−2 1008.91 471.25 128.24
9 7.3×10−2 1081.86 522.96 139.13
10 7.9×10−2 1144.29 580.14 149.64

Table 6. Compressed matrix sparsity nnz(Aη
J)/NJ for the oper-

ator Mk with η = µ ‖FJ‖∞/1538. The number of unknowns NJ

is fixed at 1538.

k µ = 0 µ = 10−3 µ = 10−2 µ = 10−1

1 4.52×10−4 1.68×10−3 1.24×10−2 5.71×10−2

2 7.14×10−4 1.43×10−3 1.98×10−2 1.03×10−1

3 1.82×10−3 2.04×10−3 1.90×10−2 1.10×10−1

4 1.66×10−3 1.74×10−3 2.18×10−2 2.03×10−1

5 2.26×10−3 2.45×10−3 2.15×10−2 1.10×10−1

6 3.48×10−3 3.55×10−3 2.38×10−2 1.25×10−1

7 3.49×10−2 3.49×10−2 4.43×10−2 1.79×10−1

8 4.59×10−3 4.65×10−3 3.53×10−2 1.98×10−1

9 7.34×10−3 7.43×10−3 4.12×10−2 3.66×10−1

10 5.39×10−3 5.62×10−3 4.39×10−2 5.73×10−1

Table 7. Error in solution of compressed system for the operator
Mk with η = µ ‖FJ‖∞/1538. The number of unknowns NJ is
fixed at 1538.

7. Conclusions

We have applied the wavelet Galerkin scheme [6, 10] to the Helmholtz problem
and examined the precise dependence of the compression on the wavenumber k. For
wavelets with high vanishing moments the scheme produces a compressed matrix
with approximately O(k2NJ) nonzeros. The factor k2 appears through the width
of the fingers in the sparsity pattern of the compressed matrix, which get wider as
k increases.
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Figure 1. (a) nnz(Aη
J)/NJ and (b) error norm plotted against

wavenumber k for the operator Mk with η = 10−6. The number
of unknowns NJ is fixed at 1538.
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Figure 2. (a) nnz(Aη
J)/NJ and (b) error norm plotted against

wavenumber k for the operator Mk with η = 10−6. The number of
unknowns varies so that the wavelength is ten times the maximum
element width.
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Figure 3. (a) nnz(Aη
J)/NJ and (b) error norm plotted against

wavenumber k for the operator Mk with η = 10−2 ‖FJ‖∞/1538.
The number of unknowns NJ is fixed at 1538.

When the number of nodes per wavelength is preserved the compressed ma-
trix has approximately O(N2

J) nonzeros because on a two dimensional surface the
number of unknowns must then satisfy N

1/2
J ∼ k.

When the wavenumber is fixed the compressed matrix has O(NJ ) nonzeros be-
cause the number of unknowns is then independent of k. Although the number
of nonzeros depends on k, the complexity is of the same order for the Helmholtz
problem as for the Laplace problem.
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