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ERROR ESTIMATES UNDER MINIMAL REGULARITY FOR
SINGLE STEP FINITE ELEMENT APPROXIMATIONS OF

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

L. S. HOU AND W. ZHU

Abstract. This paper studies error estimations for a fully discrete, single step

finite element scheme for linear parabolic partial differential equations. Con-

vergence in the norm of the solution space is shown and various error estimates

in this norm are derived. In contrast to like results in the extant literature, the

error estimates are derived in a stronger norm and under minimal regularity

assumptions.
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1. Introduction

This paper is devoted to the study of error estimations for a fully-discrete, single
step finite element approximation of linear parabolic equations of the form

(1.1)
∂u

∂t
− div [A(x)∇u] = f(t,x) in (0, T )× Ω

with the boundary and initial conditions

(1.2) u = 0 on (0, T )× ∂Ω, u(0,x) = u0(x) in Ω ,

where f is a given function and A is a matrix-valued, uniformly positive definite
function. The fully discrete approximation scheme studied in this paper is a simple
modification of the standard backward Euler method and it involves a temporal
integral of the forcing term. This fully discrete scheme is well defined under minimal
regularity assumptions on the forcing term and the initial condition; in particular,
the forcing term f can be nondifferentiable in time, e.g., a temporal step function
of the form f =

∑J
i=1 fi(t)χ(ti,ti+1)(t)Θi(x) where each (ti, ti+1) is a time interval

in [0, T ] and χ(ti,ti+1) is the characteristic function for the interval (ti, ti+1) (such
a choice of f corresponds to a setting in which different force patterns are applied
on different time intervals.) The achievements of this paper include:

• fractional order error estimates in the norm of the solution space (this solu-
tion space will be made precise in Section 2.1) are derived under fractional
order, uni-directional regularity assumptions on the forcing term;

• a first order δ error estimate (again in the norm of the solution space) is
derived under standard assumptions that ensure solution regularity;

• convergence under minimal regularity.
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Compared to the convergence results and error estimates in the extant literature
for linear parabolic PDEs (see, e.g., [2, 3, 4, 5, 9, 10, 17, 19, 20]), the convergence
and error estimates in this paper are derived in a stronger norm and under weaker
regularity assumptions.

The fractional order error estimates established in this paper are new and they
allow us to prove the convergence under weaker regularity hypotheses on the forcing
term and the initial condition than those assumed in standard convergence results
in the literature. Other types of fractional order error estimates can be found in
the literature, e.g., [14]. The fractional order error estimates of [14] were measured
in the H

p,p/2
α ((0, T ) × Ω) norm (see [14] for this notation) with the forcing term

belonging to H
2p−1,p−1/2
−1 ((0, T )×Ω), whereas those of this paper are measured in

the H1,−1((0, T )× Ω) norm and requires only uni-directional regularity.
The results of this paper can be used in conjunction with the Brezzi, Rappaz,

Raviart theory (see, e.g., [6, 12]) to study fully discrete approximations of semilinear
parabolic PDEs. The set-up of the fully-discrete approximations for semilinear
PDEs is more involved and is illustrated in [13]. The fractional order error estimates
under uni-directional regularity assumptions play a crucial role in the derivation of
fully discrete error estimates for semilinear parabolic PDEs; see [13].

Another significant application of the results of this paper is to prove the con-
vergence of and error estimates for fully discrete approximations of optimal control
problems constrained by parabolic PDEs; such applications will be discussed else-
where.

The rest of the paper is organized as follows. In §2, we introduce continuous
and discrete (finite element) function spaces and define a weak formulation for
the problem (1.1)–(1.2). In §3, we define semidiscrete and fully discrete finite ele-
ment approximations to that problem. In §4, we derive estimates for the difference
between the semidiscrete and fully discrete approximate solutions and, in §5, we es-
tablish, under minimal regularity assumptions, convergence of and error estimates
for the fully discrete approximation.

2. Function spaces, finite element spaces, and weak formulations

2.1. Function spaces. We use the standard notations (see, e.g. [1]) for Sobolev
spaces W s,p(Ω) for all real s and p ≥ 1, with their norms denoted by ‖ · ‖W s,p(Ω).
When p = 2, we use the notation Hs(Ω) = W s,2(Ω) for all real s, with their norm
simply denoted by ‖ · ‖s. We let H1

0 (Ω) stand for the completion of C∞0 (Ω) with
respect to the H1(Ω) norm. Note that H0(Ω) = L2(Ω) so that the L2(Ω) norm is
denoted by ‖ · ‖0. The inner products on L2(Ω) is denoted by [·, ·], i.e.,

[u, v] =
∫

Ω

uv dx ∀u, v ∈ L2(Ω) .

The duality paring between a Banach space B and its dual will be generically
denoted by 〈·, ·〉.

For a p ∈ [1,∞], an interval (a, b) ⊂ R, and a Banach space B with norm ‖ · ‖B ,
we denote by Lp(a, b; B) the set of measurable functions v : (a, b) → B such that∫ b

a
‖v(t)‖p

B dt < ∞. The norm on Lp(a, b;B) for p ∈ [1,∞) is defined by

‖v‖Lp(a,b;B) =
( ∫ b

a

‖v(t)‖p
B dt

) 1
p ∀ v ∈ Lp(a, b; B) .
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The norm on L∞(a, b; B) is defined by

‖v‖L∞(a,b;B) = ess sup
(a,b)

‖v(t)‖B ∀ v ∈ L∞(a, b; B) .

We denote by C([a, b]; B) the set of all continuous functions v : [a, b] → B with the
norm ‖v‖C([a,b];B) = maxt∈[a,b] ‖v(t)‖B . We introduce

W(a, b) =
{

v ∈ L2(a, b; H1
0 (Ω)) : v′ = ∂tv ∈ L2(a, b;H−1(Ω))

}

where v′ = ∂tv is understood in the scalar distribution sense:
∫ b

a

〈v′(t), φ(t)w〉 dt = −
∫ b

a

〈v(t), φ′(t)w〉 dt ∀φ ∈ C∞0 (a, b), ∀w ∈ H1
0 (Ω)

with 〈·, ·〉 denoting the duality pairing between H−1(Ω) and H1
0 (Ω). The norm on

W(a, b) is defined by

‖v‖W(a,b) =
(
‖u‖2L2(a,b;H1(Ω)) + ‖∂tv‖2L2(a,b;H−1(Ω))

)1/2

∀ v ∈ W(a, b).

The space W(a, b) is the standard solution space for the linear parabolic PDE [11].
For real numbers s ≥ 0 and p ≥ 1, the space Hs(a, b; B) is defined as follows. First,

Hs(R; B) = {v ∈ L2(R;B) : |τ |sv̂ ∈ L2(R;B)}
endowed with the norm

‖v‖Hs(R;B) =
( ∫

R
‖v(t)‖2B dt +

∫

R
|τ |2s‖v̂(τ)‖2B dτ

)1/2

where v̂ is the temporal Fourier transform of v:

v̂(τ) =
∫

R
e−2iπtτv(t) dt .

Then we set
Hs(a, b; B) =

{
v = ṽ|[a,b] : ṽ ∈ Hs(R; B)

}

with the norm

‖v‖Hs(a,b;B) = inf
ṽ∈Hs(R;B)

ṽ|[a,b]=v

‖ṽ‖Hs(R;B) ∀ v ∈ Hs(a, b; B) .

A function v = v(t,x) ∈ Hs(a, b; B) for some spatial function space B is often
simply written as v(t). Further discussions of Banach-space-valued Sobolev spaces
Hs(a, b; B) may be found in [15, 18].

Throughout, C denotes a generic constant that may depend on the domain Ω
and time T ; the value of C varies with context.

2.2. Weak formulation. We introduce the bilinear form

a[u, v] =
∫

Ω

(A(x)∇u) · ∇v dx ∀u, v ∈ H1(Ω) .

Given u0 ∈ L2(Ω) and f ∈ L2(0, T ; H−1(Ω)), the weak formulation for (1.1) and
(1.2) is: seek a u ∈ W(0, T ) such that

(2.1)

{ 〈
∂tu(t), v

〉
+ a[u(t), v] =

〈
f(t), v

〉
, ∀ v ∈ H1

0 (Ω), a.e. t ∈ [0, T ] ,

u(0) = u0 in L2(Ω).
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The uniform positive definiteness of the matrix function A implies the coercivity
for the bilinear form a[·, ·]:
(2.2) a[v, v] ≥ Ca‖v‖21 ∀ v ∈ H1

0 (Ω) .

It is well known (see, e.g., [11]) that there exists a unique weak solution for (2.1).

2.3. Finite element spaces. In the sequel we assume Ω is a two-dimensional
polygon or a three dimensional polyhedron. Let Vh be a family of finite element
subspaces of H1

0 (Ω) defined over a family of regular triangulations of Ω. The pa-
rameter h denotes the largest grid size for a given triangulation. For the con-
venience of stating approximation properties we introduce, as in [8], the spaces
Φr

0(Ω) = H
min(1,r)
0 (Ω) for real r, i.e.,

Φr
0(Ω) =





H1
0 (Ω) if r ≥ 1,

Hr
0 (Ω) if 1/2 < r < 1,

Hr(Ω) if r ≤ 1/2.

We assume that the finite element function space Vh satisfies the following approx-
imation properties:

(i) For every v ∈ Φs
0(Ω),

(2.1) inf
vh∈Vh

‖v − vh‖s → 0 as h → 0 s = −1, 0, 1 ;

(ii) there exists a constant C > 0 such that for every v ∈ Hr+1(Ω) ∩ Φr+1
0 (Ω)

and every r ∈ [s− 1, k],

(2.2) inf
vh∈Vh

‖v − vh‖s ≤ Chr+1−s‖v‖r+1, s = −1, 0, 1 ,

where k ≥ 1 is a positive integer that is usually determined by the order of the
piecewise polynomials used to define Vh.

We also assume that finite element triangulations are uniformly regular so that
the following inverse inequality hold:

(2.3) ‖vh‖1 ≤ Ch−1‖vh‖0 ∀ vh ∈ Vh .

For detailed discussions of the properties (2.1)–(2.3) and constructions of the finite
element spaces with these properties, see, e.g., [7].

We denote by Ph the L2(Ω) projection from L2(Ω) onto Vh, namely, for each
v ∈ L2(Ω),

(2.4) (Phv − v, wh) = 0 ∀ wh ∈ Vh.

As a consequence of (2.3) we have

(2.5) ‖Phv‖r ≤ C‖v‖r ∀ v ∈ Hr(Ω) ∩ Φr
0(Ω), r ∈ [0, 1] ;

see [19] or [8].

3. Semidiscrete and fully discrete approximations of linear parabolic
equations

We consider the linear parabolic problem (1.1)–(1.2), or more precisely, the cor-
responding weak formulation (2.1). We use the notations u, uh, and uδh to respec-
tively denote the exact, semi-discrete approximate, and fully discrete approximate
solutions.
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3.1. Semidiscrete finite element approximations. Let Vh be a family of finite
element subspaces of H1

0 (Ω) introduced in §2.3. The semidiscrete finite element
approximation of (2.1) is defined as follows: seek a uh ∈ H1(0, T ; Vh) such that

(3.1)

{ 〈
∂tuh(t), vh

〉
+ a[uh(t), vh] =

〈
f(t), vh

〉 ∀ vh ∈ Vh, a.e. t ∈ [0, T ] ,

uh(0) = Phu0 ,

where Ph is the L2(Ω)-projection operator onto Vh defined in (2.4), i.e., [uh(0), vh] =
[u0, vh] for all vh ∈ Vh.

We quote the following results of [8] concerning semidiscrete error estimates for
linear parabolic problems:

Theorem 3.1. Assume that f ∈ L2(0, T ; H−1(Ω)) and u0 ∈ L2(Ω). Let u ∈
W(0, T ) be the solution of (2.1) and uh ∈ H1(0, T ; Vh) be the solution of (3.1).
Then

(3.2) ‖u− uh‖W(0,T ) → 0 as h → 0.

If, in addition, u ∈ L2(0, T ; Hr+1(Ω))∩H1(0, T ; Hr−1(Ω)) for some r ∈ [0, k], then

(3.3) ‖u− uh‖W(0,T ) ≤ Chr
(
‖u‖L2(0,T ;Hr+1(Ω)) + ‖∂tu‖L2(0,T ;Hr−1(Ω))

)
.

3.2. Fully discrete finite element approximations. We partition [0, T ] into
0 = t0 < t1 < t2 < · · · < tN = T with a uniform time steping δ. For f ∈
L2(0, T ;H−1(Ω)), we define fm by

(3.4) fm =
1
δ

∫ tm

tm−1

f(t) dt, 1 ≤ m ≤ N .

The fully discrete approximate solution uδh is constructed as follows. We first
solve for Um

h ∈ Vh, m = 0, 1, 2, · · · , N , from

(3.5)

U0
h = Phu0 ,

〈Um
h − Um−1

h

δ
, vh

〉
+ a[Um

h , vh] = 〈fm, vh〉 ∀ vh ∈ Vh, 1 ≤ m ≤ N ;

we then define uδh ∈ H1([0, T ];Vh) by

(3.6) uδh(t)
∣∣
[tm−1,tm]

= Um−1
h +

( t− tm−1

δ

)
(Um

h − Um−1
h ), 1 ≤ m ≤ N.

Note that fm (and hence the scheme) is well defined even when f has only the
minimal regularity L2(0, T ; H−1(Ω)). The following two lemmas summarize some
useful properties for {fm}.
Lemma 3.2. Assume f ∈ L2(0, T ;H−1(Ω)). Then the set {fm}N

m=1 defined by
(3.4) satisfies

(3.7) δ

N∑
m=1

‖fm‖2−1 ≤ C‖f‖2L2(0,T ;H−1(Ω))

and

(3.8)
N∑

m=1

∫ tm

tm−1

‖fm − f(t)‖2−1 dt → 0 as δ → 0 .
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If f ∈ Hγ(0, T ; H−1(Ω)) for some γ ∈ [0, 1], then

(3.9)
N∑

m=1

∫ tm

tm−1

‖fm − f(t)‖2−1 dt ≤ Cδ2γ‖f‖2Hγ(0,T ;H−1(Ω)) .

Proof. Relations (3.7) and (3.8) follows from [18, p.221, Lemma 4.5] and [18, p.223,
Lemma 4.9], respectively.

To prove (3.9) it suffices to examine the cases γ = 0 and γ = 1 thanks to
interpolation theorems. If f ∈ H0(0, T ; H−1(Ω)) = L2(0, T ;H−1(Ω)), then

N∑
m=1

∫ tm

tm−1

‖fm − f(t)‖2−1 dt

≤ 2
N∑

m=1

∫ tm

tm−1

‖fm‖2−1 dt + 2
N∑

m=1

∫ tm

tm−1

‖f(t)‖2−1 dt

= 2δ

N∑
m=1

‖fm‖2−1 + 2‖f‖2L2(0,T ;H−1(Ω)) ≤ C‖f‖2L2(0,T ;H−1(Ω)) .

(3.10)

If f ∈ H1(0, T ; H−1(Ω)), then for 1 ≤ m ≤ N and t ∈ [tm−1, tm],

‖fm − f(t)‖2−1 =
∥∥∥1

δ

∫ tm

tm−1

{f(s)− f(t)} ds
∥∥∥

2

−1

=
1
δ2

∥∥∥
∫ tm

tm−1

∫ s

t

∂tf(r) dr ds
∥∥∥

2

−1
≤ 1

δ2

∣∣∣
∫ tm

tm−1

∫ tm

tm−1

‖∂tf(r)‖−1 dr ds
∣∣∣
2

≤
∫ tm

tm−1

‖∂tf(r)‖2−1 dr

∫ tm

tm−1

1 dr = δ

∫ tm

tm−1

‖∂tf(r)‖2−1 dr

so that through an integration in t from tm−1 to tm and summations in m we
obtain:

N∑
m=1

∫ tm

tm−1

‖fm − f(t)‖2−1 dt ≤ δ2
N∑

m=1

∫ tm

tm−1

‖∂tf(r)‖2−1 dr

≤ δ2‖f‖2H1(0,T ;H−1(Ω)) .

(3.11)

Interpolations between (3.10) and (3.11) yield (3.9). ¤

Similarly we have:

Lemma 3.3. Assume f ∈ L2(0, T ;L2(Ω)). Then the set {fm}N
m=1 defined by (3.4)

satisfies

(3.12) δ

N∑
m=1

‖fm‖20 ≤ C‖f‖2L2(0,T ;L2(Ω))

and

(3.13)
N∑

m=1

∫ tm

tm−1

‖fm − f(t)‖20 dt → 0 as δ → 0 .

If f ∈ Hγ(0, T ; L2(Ω)) for some γ ∈ [0, 1], then

(3.14)
N∑

m=1

∫ tm

tm−1

‖fm − f(t)‖20 dt ≤ Cδ2γ‖f‖2Hγ(0,T ;L2(Ω)) .
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Our task is to prove the convergence of the fully discrete solutions and ro derive
error estimates for the fully discrete approximations defined in (3.5)–(3.6). Using
the triangle inequality

‖u− uδh‖W(0,T ) ≤ ‖u− uh‖W(0,T ) + ‖uh − uδh‖W(0,T )

and recalling that semidiscrete error estimates are already known, we see that our
task reduces to estimating the error between the semidiscrete solutions and the
fully discrete solutions.

4. Estimation of the errors between semidiscrete and fully discrete ap-
proximate solutions

In this section we will estimate the errors between semidiscrete and fully discrete
approximate solutions. Specifically, we will derive, respectively, O(δ) and O(δγ)
(γ ∈ [0, 1]) error estimates for uh(t)− uδh(t) under various regularity assumptions.

The following lemma gives some useful estimates for generic solutions of the fully
discrete schemes and will be invoked repeatedly in the sequel.

Lemma 4.1. Assume g ∈ L2(0, T ; H−1(Ω)) and W 0
h ∈ Vh. Let {Wm

h }N
m=1 ⊂ Vh

be defined by

(4.1)
〈Wm

h −Wm−1
h

δ
, vh

〉
+ a[Wm

h , vh] = 〈gm, vh〉 ∀ vh ∈ Vh, 1 ≤ m ≤ N

where gm ≡ δ−1
∫ tm

tm−1
g(s) ds. Then

(4.2)
N∑

m=1

‖Wm
h −Wm−1

h ‖21 ≤
C

δ
‖g‖2L2(0,T ;H−1(Ω)) + C‖W 0

h‖21

and

(4.3)
N∑

m=1

‖Wm
h ‖21 ≤

C

δ
‖g‖2L2(0,T ;H−1(Ω)) +

C

δ
‖W 0

h‖20 .

If, in addition, g ∈ L2(0, T ; L2(Ω)), then

(4.4)
N∑

m=1

‖Wm
h −Wm−1

h ‖21 ≤ C‖g‖2L2(0,T ;L2(Ω)) + C‖W 0
h‖21 .

Proof. If g ∈ L2(0, T ;H−1(Ω)), by setting vh = Wm
h −Wm−1

h in (4.1) we obtain

1
δ
‖Wm

h −Wm−1
h ‖20 +

1
2
a[Wm

h ,Wm
h ]

−1
2
a[Wm−1

h ,Wm−1
h ] +

1
2
a[Wm

h −Wm−1
h ,Wm

h −Wm−1
h ]

= 〈gm,Wm
h −Wm−1

h 〉 ≤ ‖gm‖−1‖W i
h −Wm−1

h ‖1

≤ 1
Ca
‖gm‖2−1 +

Ca

4
‖Wm

h −Wm−1
h ‖21 ,

where Ca is the positive coercivity constant in (2.2). The last relation may be
simplified as

a[Wm
h ,Wm

h ]− a[Wm−1
h , Wm−1

h ] +
Ca

2
‖Wm

h −Wm−1
h ‖21 ≤

2
Ca
‖gm‖2−1 .
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Summations in m for m = 1, · · · , N yield

a[WN
h ,WN

h ]− a[W 0
h , W 0

h ] +
Ca

2

N∑
m=1

‖Wm
h −Wm−1

h ‖21 ≤
2

Ca

N∑
m=1

‖gm‖2−1

so that, by dropping the first term and applying Lemma 3.2, we obtain
K∑

m=J

‖Wm
h −Wm−1

h ‖21 ≤
C

δ
δ

K∑

m=J

‖gm‖2−1 + C‖W J−1
h ‖21

≤ C

δ
‖g‖2L2(tJ−1,tK ;H−1(Ω)) + C‖W J−1

h ‖21 ,

which proves (4.2).
Likewise, if g ∈ L2(0, T ;L2(Ω)), by setting vh = Wm

h −Wm−1
h in (4.1) we obtain

1
δ
‖Wm

h −Wm−1
h ‖20 +

1
2
a[Wm

h ,Wm
h ]− 1

2
a[Wm−1

h ,Wm−1
h ]

+
1
2
a[Wm

h −Wm−1
h ,Wm

h −Wm−1
h ] = 〈gm, Wm

h −Wm−1
h 〉

≤ ‖gm‖0‖Wm
h −Wm−1

h ‖0 ≤ δ

2
‖gm‖20 +

1
2δ
‖Wm

h −Wm−1
h ‖20 .

Thus, we have

a[Wm
h ,Wm

h ]− a[Wm−1
h , Wm−1

h ] + Ca‖Wm
h −Wm−1

h ‖21 ≤ δ‖gm‖20 .

Summations in m with an application of Lemma 3.3 yield (4.4).
To prove (4.3), we proceed as follows. Setting vh = Wm

h in (4.1) we obtain

1
2δ
‖Wm

h ‖20 −
1
2δ
‖Wm−1

h ‖20 +
1
2δ
‖Wm

h −Wm−1
h ‖20 + a[Wm

h ,Wm
h ]

= 〈gm,Wm
h 〉 ≤

1
2Ca

‖gm‖2−1 +
Ca

2
‖Wm

h ‖21 .

This relation may be simplified as
1
2δ
‖Wm

h ‖20 −
1
2δ
‖Wm−1

h ‖20 +
Ca

2
‖Wm

h ‖21 ≤
1

2Ca
‖gm‖2−1 .

Summations in m for m = 1, · · · , N yield

1
2δ
‖WN

h ‖20 −
1
2δ
‖W 0

h‖20 +
Ca

2

N∑
m=1

‖Wm
h ‖21 ≤

1
2δCa

δ

N∑
m=1

‖gm‖2−1

so that, by dropping the first term and applying Lemma 3.2, we obtain (4.3). ¤

The next lemma gives estimates for the error between a generic fully discrete
solution and a generic semidiscrete solution. In the subsequent application of this
lemma in this section (in the proof of Theorem 4.7) we will choose the generic dis-
crete solutions to be the semidiscrete and fully discrete solutions defined in Sections
3.1 and 3.2, respectively. By choosing the semidiscrete solution as the zero solution
thereby obtaining an estimate for the generic fully discrete solution we may apply
this lemma to estimate a term in the proof of Theorem 5.1.

Lemma 4.2. Assume g, g ∈ L2(0, T ; H−1(Ω)) and W 0
h ,W

0

h ∈ Vh. Let {Wm
h }N

m=1 ⊂
Vh be defined by (4.1), wδh ∈ H1(0, T ;Vh) be defined by

(4.5) wδh(t) = Wm−1
h +

t− tm−1

δ
(Wm

h −Wm−1
h ) on [tm−1, tm], m = 1, 2, · · · , N,
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and wh ∈ H1(0, T ; Vh) be defined by

(4.6)





wh(0) = W
0

h ,

〈∂twh(t), vh〉+ a[wh(t), vh] = 〈g(t), vh〉 ∀ vh ∈ Vh, a.e. t .

Then

‖wh − wδh‖2L2(0,T ;H1(Ω)) ≤ C

N∑
m=1

∫ tm

tm−1

‖g(t)− gm‖2−1 dt

+ Cδ

N∑
m=1

‖Wm
h −Wm−1

h ‖21 + C‖W 0

h −W 0
h‖20

(4.7)

and

‖∂twh − ∂twδh‖2L2(0,T ;H−1(Ω)) ≤ C

N∑
m=1

∫ tm

tm−1

‖g(t)− gm‖2−1 dt

+ Cδ

N∑
m=1

‖Wm
h −Wm−1

h ‖21 + C‖W 0

h −W 0
h‖20.

(4.8)

Proof. Subtracting (4.1) from (4.6) and noting that

∂twδh =
Wm

h −Wm−1
h

δ
for t ∈ [tm−1, tm] ,

we obtain
〈∂twh(t)− ∂twδh(t), vh〉+ a[wh(t)− wδh, vh] + a[wδh −Wm

h , vh]

= 〈g(t)− gm, vh〉 ∀ vh ∈ Vh, ∀ t ∈ [tm−1, tm] .
(4.9)

Denoting ξδh = wh − wδh and using the relations

Wm
h = Wm−1

h +
tm − tm−1

δ
(Wm

h −Wm−1
h )

and

wδh = Wm−1
h +

t− tm−1

δ
(Wm

h −Wm−1
h ) on [tm−1, tm]

we may rewrite (4.9) as:

〈∂tξδh(t), vh〉+ a[ξδh(t), vh] = 〈g(t)− gm, vh〉
+

tm − t

δ
a[Wm

h −Wm−1
h , vh] ∀ vh ∈ Vh, ∀ t ∈ [tm−1, tm].

(4.10)

Setting vh = ξδh(t) we have, for t ∈ [tm−1, tm],

1
2

d

dt
‖ξδh(t)‖20 + Ca‖ξδh(t)‖21
≤ 〈∂tξδh(t), ξδh(t)〉+ a[ξδh(t), ξδh(t)] = 〈g(t)− gm, ξδh(t)〉
≤ ‖g(t)− gm‖−1‖ξδh(t)‖1 +

C(tm − t)
δ

‖Wm
h −Wm−1

h ‖1‖ξδh(t)‖1
≤ 1

Ca
‖g(t)− gm‖2−1 +

Ca

4
‖ξδh(t)‖21 + C‖Wm

h −Wm−1
h ‖21 +

Ca

4
‖ξδh(t)‖21

which may be simplified as

1
2

d

dt
‖ξδh(t)‖20 +

Ca

2
‖ξδh(t)‖21 ≤

1
Ca
‖g(t)− gm‖2−1 + C‖Wm

h −Wm−1
h ‖21 .
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An integration with respect to t over [tm−1, tm] leads us to

‖ξδh(tm)‖20 − ‖ξδh(tm−1)‖20 + Ca

∫ tm

tm−1

‖ξδh(t)‖21 dt

≤ C

∫ tm

tm−1

‖g(t)− gm‖2−1 dt + Cδ‖Wm
h −Wm−1

h ‖21 .

Through summations in m over m = 1, 2, · · · , N and using the relation ξδh(0) =
W

0

h −W 0
h we obtain

‖ξδh(T )‖20 + Ca

∫ T

0

‖ξδh(t)‖21 dt

≤ C

N∑
m=1

∫ tm

tm−1

‖g(t)− gm‖2−1 dt + Cδ

N∑
m=1

‖Wm
h −Wm−1

h ‖21 + ‖W 0

h −W 0
h‖00 ,

which implies (4.7).
Next we prove estimate (4.8). Since ξδh(t) ∈ Vh a.e. on [0, T ], we have

(4.11) 〈∂tξδh(t), v〉 = 〈∂teδh(t), Phv〉 ∀ v ∈ H1
0 (Ω) , a.e. t .

Using (4.11), (4.10) and (2.5) we obtain, for a.e. t ∈ [tm−1, tm],

〈∂tξδh(t), v〉 = 〈∂tξδh(t), Phv〉
= −a[ξδh(t), Phv] + 〈g(t)− gm, Phv〉+

tm − t

δ
a[Wm

h −Wm−1
h , Phv]

≤ C
(
‖ξδh(t)‖1 + ‖g(t)− gm‖−1 + ‖Wm

h −Wm−1
h ‖1

)
‖v‖1 ∀ v ∈ H1

0 (Ω)

so that

‖∂tξδh(t)‖−1 ≤ C
(
‖ξδh(t)‖1 + ‖g(t)− gm‖−1 + ‖Wm

h −Wm−1
h ‖1

)
.

Hence,
∫ tm

tm−1

‖∂tξδh(t)‖2−1 dt

≤ C
(∫ tm

tm−1

‖ξδh(t)‖21 dt +
∫ tm

tm−1

‖g(t)− gm‖2−1dt + δ‖Wm
h −Wm−1

h ‖21
)
.

Through summations in m over m = 1, 2, · · · , N and applying (4.7) we have:
∫ T

0

‖∂tξδh(t)‖2−1 dt

≤ C
( ∫ T

0

‖ξδh(t)‖21 dt +
N∑

m=1

∫ tm

tm−1

‖g(t)− gm‖2−1 dt + δ

N∑
m=1

‖Wm
h −Wm−1

h ‖21
)

≤ C
( N∑

m=1

∫ tm

tm−1

‖g(t)− gm‖2−1 dt + δ

N∑
m=1

‖Wm
h −Wm−1

h ‖21 + ‖W 0

h −W 0
h‖20

)
.

This proves (4.8). ¤
We now derive an O(δ) error estimate under the regularity hypotheses which

are precisely those that ensure the standard regularity for the solution of the linear
parabolic PDE – see [11, p.360-361,Theorem 5]. Compared to O(δ) error estimates
in the literature such as those in [16], our O(δ) error estimate is derived in the
norm for the solution spaceW(0, T ) (instead of the typical discrete L∞(0, T ;L2(Ω))
norm) and an approach of proof is given that is different than those in the literature.
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Theorem 4.3. Assume that u0 ∈ H2(Ω) ∩ H1
0 (Ω) and f ∈ H1(0, T ; L2(Ω)). Let

uh ∈ H1(0, T ;Vh) be the solution of (3.1) and let uδh be defined by (3.5)–(3.6).
Then

(4.12) ‖uh − uδh‖W(0,T ) ≤ Cδ
(
‖f‖H1(0,T ;L2(Ω)) + ‖u0‖2

)
.

Proof. Applying Lemma 4.2 with g ≡ f , g ≡ f , W 0
h ≡ U0

h , W
0

h ≡ U0
h , wh ≡ uh,

Wm
h ≡ Um

h and wδh ≡ uδh we obtain:

‖uh − uδh‖2W(0,T )

≤ C

N∑
m=1

∫ tm

tm−1

‖f(t)− fm‖2−1 dt + Cδ

N∑
m=1

‖Um
h − Um−1

h ‖21 .
(4.13)

From (4.13) and Lemma 3.2 we obtain

‖uh − uδh‖2W(0,T ) ≤ C

N∑
m=1

∫ tm

tm−1

‖f(t)− fm‖2−1 dt + Cδ

N∑
m=1

‖Um
h − Um−1

h ‖21

≤ Cδ2‖f‖2H1(0,T ;H−1(Ω)) + Cδ

N∑
m=1

‖Um
h − Um−1

h ‖21 .

Thus (4.12) is proved if we can justify that

(4.14) δ

N∑
m=1

‖Um
h − Um−1

h ‖21 ≤ Cδ2
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
.

Subtracting consecutive equations in (3.5) and denoting Y m
h = Um

h − Um−1
h for

m = 1, 2, · · · , N we obtain
〈Y m

h − Y m−1
h

δ
, vh

〉
+ a[Y m

h , vh]

= 〈fm − fm−1, vh〉 ∀ vh ∈ Vh, 2 ≤ m ≤ N .

Setting vh = Y m
h we have, for m = 2, · · · , N ,

1
2δ

(
‖Y m

h ‖20 − ‖Y m−1
h ‖20 + ‖Y m

h − Y m−1
h ‖20

)
+ a[Y m

h , Y m
h ]

= 〈fm − fm−1, Y m
h 〉 ≤ C‖fm − fm−1‖2−1 +

Ca

2
‖Y m

h ‖21
so that

1
2δ

(
‖Y m

h ‖20 − ‖Y m−1
h ‖20

)
+

Ca

2
‖Y m

h ‖21 ≤ C‖fm − fm−1‖2−1 .

Summations for m = 2, · · · , N yield

1
2δ

(
‖Y N

h ‖20 − ‖Y 1
h ‖20

)
+

Ca

2

N∑
m=2

‖Y m
h ‖21 ≤ C

N∑
m=2

‖fm − fm−1‖2−1

so that

(4.15) δ

N∑
m=1

‖Y m
h ‖21 ≤ Cδ

N∑
m=2

‖fm − fm−1‖2−1 + δ‖Y 1
h ‖21 + C‖Y 1

h ‖20 .

We proceed to estimate the three terms on the right hand side of (4.15).
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The term δ
∑N

m=2 ‖fm − fm−1‖2−1 in (4.15) is estimated as follows. For each
m = 2, · · · , N ,

‖fm − fm−1‖2−1 =
1
δ2

∥∥∥
∫ tm

tm−1

f(t) dt−
∫ tm−1

tm−2

f(t) dt
∥∥∥

2

−1

=
1
δ2

∥∥∥
∫ tm−1

tm−2

(f(t + δ)− f(t)) dt
∥∥∥

2

−1
=

1
δ2

∥∥∥
∫ tm−1

tm−2

∫ t+δ

t

f ′(s) ds dt
∥∥∥

2

−1

≤ 1
δ2

( ∫ tm−1

tm−2

∫ tm

tm−2

‖f ′(s)‖−1 ds dt
)2

≤ Cδ

∫ tm

tm−2

‖f ′(s)‖2−1 ds .

Thus,

δ

N∑
m=2

‖fm − fm−1‖2−1 ≤ Cδ2
N∑

m=2

∫ tm

tm−2

‖f ′(s)‖2−1 ds

≤ Cδ2

∫ T

0

‖f ′(s)‖2−1 ds .

(4.16)

The estimation of the terms δ‖Y 1
h ‖21 and ‖Y 1

h ‖20 in (4.15) is carried out in the
following steps: derivation of a priori estimates for u′h(t); estimation of local errors
‖uh(δ)− U1

h‖20 + δ‖uh(δ)− U1
h‖20; and completion of proof by triangle inequalities.

First, we derive a priori estimates for u′h(t) from (3.1). Note that the regularity
assumptions on f ensures that f ∈ C([0, T ];H−1(Ω)) so that the forcing terms in
(3.1) are continuous; then standard ODE theories imply that the solution uh(t) of
(3.1) is C1 and that Equation (3.1) holds pointwise in t. Setting t = 0 in (3.1) and
then choosing vh = u′h(0) we have

‖u′h(0)‖20 = [f(0), u′h(0)]− a[u0, u
′
h(0)] + a[u0 − U0

h , u′h(0)]

≤ ‖f(0)‖0‖u′h(0)‖0 + [div (A(x)∇u0), u′h(0)] + C‖u0 − U0
h‖1‖u′h(0)‖1

≤ C‖f(0)‖0‖u′h(0)‖0 + C‖u0‖2‖u′h(0)‖0 + Ch‖u0‖2 C

h
‖u′h(0)‖0

so that

(4.17) ‖u′h(0)‖0 ≤ C
(
‖f(0)‖0 + ‖u0‖2

)
.

Differentiating (3.1) with respect to t and then setting vh = u′h(t) we obtain:

1
2

d

dt
‖u′h(t)‖20 + a[u′h(t), u′h(t)] = [f ′(t), u′h(t)] ≤ C‖f ′(t)‖2−1 +

Ca

2
‖u′h(t)‖21

so that
1
2

d

dt
‖u′h(t)‖20 +

Ca

2
‖u′h(t)‖21 ≤ C‖f ′(t)‖2−1 .

The last estimate and (4.17) readily yield

‖u′h(s)‖20 +
∫ δ

0

‖u′h(t)‖21 dt ≤ C

∫ δ

0

‖f ′(t)‖2−1 dt + C‖u′h(0)‖20

≤ C

∫ δ

0

‖f ′(t)‖2−1 dt + C
(
‖f(0)‖20 + ‖u0‖22

)

≤ C
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
∀ s ∈ [0, δ].

(4.18)

Here we also used the continuous embedding H1(0, T ;L2(Ω)) ↪→ C([0, T ];L2(Ω))
to estimate ‖f(0)‖0.
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Next, we estimate the local error ‖uh(δ) − U1
h‖20 + δ‖uh(δ) − U1

h‖20. Integrating
(3.1) from t0 = 0 to t1 = δ we obtain

〈uh(δ)− U0
h , vh〉+ a[

∫ δ

0
uh(t) dt, vh] = δ 〈f1, vh〉 ∀ vh ∈ Vh.

From (3.5) with m = 1 we deduce

〈U1
h − U0

h , vh〉+ δ a[U1
h , vh] = δ 〈f1, vh〉 ∀ vh ∈ Vh .

Subtracting the last two relations we obtain:

〈uh(δ)− U1
h , vh〉+ δa[uh(δ)− U1

h , vh]

+ a[
∫ δ

0
uh(t) dt− δuh(δ), vh] = 0 ∀ vh ∈ Vh .

Setting vh = uh(δ)− U1
h we are led to:

‖uh(δ)− U1
h‖20 + δ a[uh(δ)− U1

h , uh(δ)− U1
h ]

= −a[
∫ δ

0
uh(t) dt− δuh(δ), uh(δ)− U1

h ]

≤ C

δ

∥∥∥
∫ δ

0

uh(t) dt− δuh(δ)
∥∥∥

2

1
+

Caδ

2
‖uh(δ)− U1

h‖21

so that

‖uh(δ)− U1
h‖20 +

Caδ

2
‖uh(δ)− U1

h‖21

≤ C

δ

∥∥∥
∫ δ

0

(
uh(t)− uh(δ)

)
dt

∥∥∥
2

1
=

C

δ

∥∥∥
∫ δ

0

∫ t

δ

u′h(s) ds dt
∥∥∥

2

1

≤ C

δ

( ∫ δ

0

∫ δ

0

‖u′h(s)‖1 ds dt
)2

≤ Cδ
( ∫ δ

0

‖u′h(s)‖1 ds
)2

≤ Cδ2

∫ δ

0

‖u′h(s)‖21 ds .

By virture of (4.18) the last relation reduces to

(4.19) ‖uh(δ)− U1
h‖20 + δ ‖uh(δ)− U1

h‖21 ≤ Cδ2
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
.

Now, we use the triangle inequality and (4.18)–(4.19) to estimate δ‖Y 1
h ‖21 and

‖Y 1
h ‖20:

‖Y 1
h ‖21 = ‖U1

h − U0
h‖21 ≤ 2‖U1

h − uh(δ)‖21 + 2‖uh(δ)− uh(0)‖21

≤ Cδ
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
+ C

∥∥∥
∫ δ

0

u′h(s) ds
∥∥∥

2

1

≤ Cδ
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
+ Cδ

∫ δ

0

‖u′h(s)‖21 ds

≤ Cδ
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)

so that

(4.20) δ‖Y 1
h ‖21 ≤ Cδ2

(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
;
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similarly,

‖Y 1
h ‖20 = ‖U1

h − U0
h‖20 ≤ 2‖U1

h − uh(δ)‖20 + 2‖uh(δ)− uh(0)‖20

≤ 2‖U1
h − uh(δ)‖20 + 2

∥∥∥
∫ δ

0

u′h(s) ds
∥∥∥

2

0

≤ Cδ2
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
+ Cδ

∫ δ

0

‖u′h(s)‖20 ds

≤ Cδ2
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
+ Cδ2

(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
.

(4.21)

Substituting estimates (4.16), (4.20) and (4.21) into (4.15) we obtain

δ

N∑
m=1

‖Y m
h ‖21 ≤ Cδ2‖f ′‖2H1(0,T ;L2(Ω)) + Cδ2

(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)

≤ Cδ2
(
‖f‖2H1(0,T ;L2(Ω)) + ‖u0‖22

)
,

which is precisely (4.14). ¤

Corollary 4.4. Assume that u0 ∈ H2(Ω) ∩ H1
0 (Ω) and f ∈ L2(0, T ; H1

0 (Ω)) ∩
H1(0, T ;H−1(Ω)). Let uh ∈ H1(0, T ; Vh) be the solution of (3.1) and let uδh be
defined by (3.5)–(3.6). Then

‖uh − uδh‖W(0,T )

≤ Cδ
(
‖f‖L2(0,T ;H1(Ω)) + ‖f‖H1(0,T ;H−1(Ω)) + ‖u0‖2

)
.

(4.22)

Proof. A careful review of the proof of Theorem 4.3 reveals that the H1(0, T ;L2(Ω))
assumption on f may be weakened to: f ∈ H1(0, T ;H−1(Ω)) and f(0) ∈ L2(Ω) (see
also [18, p.202, Theorem 3.5].) Since f ∈ L2(0, T ; H1

0 (Ω)) ∩ H1(0, T ; H−1(Ω)) ↪→
C([0, T ];L2(Ω)), we have f(0) ∈ L2(Ω). Hence, the conclusions of Theorem 4.3
hold. ¤

Remark 4.5. In Corollary 4.4 we assumed that f has a homogeneous boundary
condition. This is reasonable as the differential equation ∂tu − div [A(x)∇u] = f
holds in H1(Ω) for a.e. t and u has a homogeneous boundary condition.

Remark 4.6. Recall that the basic regularity for f is L2(0, T ; H−1(Ω)). It seems
from Theorem 4.3 and Corollary 4.4 that raising the regularity of f by one integer
order in either t or x is not enough to guarantee O(δ) error estimate. Theorem 4.3
assumed one order regularity in t and one order regularity in x, while Corollary 4.4
assumed two orders of regularity in x.

The regularity assumptions on f in Theorem 4.3 is mixed in both t and x since
H1(0, T ;L2(Ω)) is more regular in both t and x than L2(0, T ;H−1(Ω)) which
is the basic regularity of f . Such mixed regularity assumptions are harder to
verify than uni-directional regularity assumptions such as Hα(0, T ; H−1(Ω)) and
L2(0, T ;Hσ(Ω)) for some α > 0 and σ > −1. In the next theorem we establish es-
timates for ‖uh−uδh‖W(0,T ) under suitable uni-directional regularity assumptions.
We will use the Φγ

0(Ω) notation introduced in Section 2.3.

Theorem 4.7. Let uh ∈ H1(0, T ;Vh) be the solution of (3.1) and let uδh be defined
by (3.5).



518 L. S. HOU AND W. ZHU

i) If for some γ ∈ [0, 1],

u0 ∈ H1+γ(Ω) ∩H1
0 (Ω),

f ∈ L2(0, T ; H−1+2γ(Ω) ∩ Φ−1+2γ
0 (Ω)) and f ∈ Hγ(0, T ; H−1(Ω)) ,

(4.23)

then
‖uh − uδh‖W(0,T )

≤ Cδγ
(
‖f‖L2(0,T ;H−1+2γ(Ω)) + ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖1+γ

)
.

(4.24)

ii) If δ ≤ Ch, and for some γ ∈ [0, 1],

u0 ∈ H(1+3γ)/2(Ω) ∩ Φ(1+3γ)/2
0 (Ω),

f ∈ L2(0, T ; H−1+2γ(Ω) ∩ Φ−1+2γ
0 (Ω)) and f ∈ Hγ(0, T ; H−1(Ω)) ,

(4.25)

then
‖uh − uδh‖W(0,T )

≤ Cδγ
(
‖f‖L2(0,T ;H−1+2γ(Ω)) + ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖(1+3γ)/2

)
.

(4.26)

iii) If δ ≤ Ch2, and for some γ ∈ [0, 1],

u0 ∈ H2γ(Ω) ∩ Φ2γ
0 (Ω),

f ∈ L2(0, T ; H−1+2γ(Ω) ∩ Φ−1+2γ
0 (Ω)) and f ∈ Hγ(0, T ; H−1(Ω)) ,

(4.27)

then
‖uh − uδh‖W(0,T )

≤ Cδγ
(
‖f‖L2(0,T ;H−1+2γ(Ω)) + ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖2γ

)
.

(4.28)

Proof. We will furnish a complete proof for case i). For cases ii) and iii) we will
merely indicate the changes to be made to the proof of case i).

Case i) Thanks to interpolation theorems (see [15],) it suffices to prove (4.24) for
the cases γ = 0 and γ = 1.

For γ = 0, regularity assumption (4.23) reduces to u0 ∈ H1
0 (Ω) and f ∈

L2(0, T ;H−1(Ω)). Applying Lemma 4.2 with g ≡ f , g ≡ f , W 0
h ≡ U0

h , W
0

h ≡ U0
h ,

wh ≡ uh, Wm
h ≡ Um

h and wδh ≡ uδh we obtain:

‖uh − uδh‖2W(0,T )

≤ C

N∑
m=1

∫ tm

tm−1

‖f(t)− fm‖2−1 dt + Cδ

N∑
m=1

‖Um
h − Um−1

h ‖21 .
(4.29)

Applying Lemma 4.1 with Wm
h ≡ Um

h , W 0
h ≡ U0

h and g ≡ f , also noting that
‖U0

h‖1 = ‖Phu0‖1 ≤ C‖u0‖1 we obtain:
N∑

m=1

‖Um
h − Um−1

h ‖21 ≤
C

δ
‖f‖2L2(0,T ;H−1(Ω)) + C‖U0

h‖21

≤ C

δ
‖f‖2L2(0,T ;H−1(Ω)) + C‖u0‖21 if f ∈ L2(0, T ; H−1(Ω)) .

(4.30)

Combining (4.29), (4.30), and (3.9) with γ = 0 we deduce that

(4.31) ‖uh − uδh‖2W(0,T ) ≤ C‖f‖2L2(0,T ;H−1(Ω)) + Cδ‖u0‖21 .

For γ = 1, regularity assumption (4.23) is equivalent to

(4.32) u0 ∈ H2(Ω) ∩H1
0 (Ω) and f ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ; H−1(Ω)) .
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Thus by Corollary 4.4, estimate (4.22) holds.
Interpolations between (4.31) and (4.22) yield (4.24).
Case ii) For γ = 0, regularity assumption (4.25) reduces to u0 ∈ H1/2(Ω) and f ∈

L2(0, T ;H−1(Ω)). Using the relation δ ≤ Ch and the inverse inequality ‖U0
h‖1 ≤

Ch−1/2‖U0
h‖1/2 in (4.30) we obtain from (4.29) and (4.30) that

(4.33) ‖uh − uδh‖2W(0,T ) ≤ C
(
‖f‖2L2(0,T ;H−1(Ω)) + ‖u0‖21/2

)
.

The rest of the proof is similar to that of Case i).
Case iii) For γ = 0, regularity assumption (4.27) reduces to u0 ∈ L2(Ω) and

f ∈ L2(0, T ;H−1(Ω)). Using the relation δ ≤ Ch2 and the inverse inequality
‖U0

h‖1 ≤ Ch−1‖U0
h‖0 in (4.30) we obtain from (4.29) and (4.30) that

(4.34) ‖uh − uδh‖2W(0,T ) ≤ C
(
‖f‖2L2(0,T ;H−1(Ω)) + ‖u0‖20

)
.

The rest of the proof is similar to that of Case i). ¤

Remark 4.8. Using the definition of Φr
0(Ω) we see that for suitable values of γ,

Theorem 4.7 may be stated without the need of the Φr
0(Ω) notation. For instance,

case i) can be stated as follows: if for some γ ∈ [0, 3/4],

u0 ∈ H1+γ(Ω) ∩H1
0 (Ω),

f ∈ L2(0, T ; H−1+2γ(Ω)) and f ∈ Hγ(0, T ; H−1(Ω)) ,

then
‖uh − uδh‖W(0,T )

≤ Cδγ
(
‖f‖L2(0,T ;H−1+2γ(Ω)) + ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖1+γ

)
.

5. Convergence of and error estimates for fully discrete approximations

In this section we first prove that ‖uh − uδh‖W(0,T ) → 0 as h, δ → 0; the proof
will be based on the denseness of smooth functions in L2(0, T ; H−1(Ω)) and the
error estimates of Theorem 4.7. We then prove ‖u − uδh‖W(0,T ) → 0 as h, δ → 0
and derive fully discrete error estimates.

Theorem 5.1. Assume that f ∈ L2(0, T ; H−1(Ω)) and u0 ∈ L2(Ω). Let uh ∈
H1(0, T ;Vh) be the solution of (3.1) and uδh be defined by (3.5)–(3.6). If i) u0 ∈
H1

0 (Ω), or ii) u0 ∈ H1/2(Ω) and δ ≤ Ch, or iii) u0 ∈ L2(Ω) and δ ≤ Ch2, then

(5.1) ‖uh − uδh‖W(0,T ) → 0 as h, δ → 0 .

Proof. Using the denseness of C∞0 ([0, T ]×Ω) in L2(0, T ;L2(Ω)) ⊂ L2(0, T ; H−1(Ω))
we may choose a family of functions {f ε} ⊂ C∞0 ([0, T ] × Ω) ⊂ L2(0, T ; L2(Ω)) ∩
H1(0, T ;H−1(Ω)) such that ‖f ε−f‖L2(0,T ;H−1(Ω)) → 0 as ε → 0. Likewise, we may
choose a family of functions uε

0 ⊂ H1
0 (Ω) such that ‖uε

0 − u0‖1 → 0 as ε → 0 in
Case i), or ‖uε

0 − u0‖1/2 → 0 as ε → 0 in Case ii), or ‖uε
0 − u0‖0 → 0 as ε → 0 in

Case iii).
We use the ˜ notation to denote the ε dependence, e.g., f̃ denotes f ε, ũ0 denotes

uε
0, and ũh Denotes ũε

h. Let ũh ∈ H1(0, T ;Vh) be the solution of

(5.2)





〈
∂tũh(t), v

〉
+ a[ũh(t), vh] =

〈
f̃(t), vh

〉 ∀ vh ∈ Vh, a.e. t ∈ [0, T ] ,

ũh(0) = Phũ .
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We define Ũm
h ∈ Vh and ũδh ∈ H1(0, T ; Vh) as follows:

(5.3)





Ũ0
h = Phũ0;

〈 Ũm
h − Ũm−1

h

δ
, vh

〉
+ a[Ũm

h , vh] = 〈f̃m, vh〉 ∀ vh ∈ Vh, 1 ≤ m ≤ N

and

(5.4) ũδh(t)
∣∣
[tm−1,tm]

= Ũm−1
h +

t− tm−1

δ
(Ũm

h − Ũm−1
h ), 1 ≤ m ≤ N ,

where in (5.3), f̃m = δ−1
∫ tm

tm−1
f̃(s) ds.

Using triangle inequalities and denoting θh = uh − ũh and θδh = uδh − ũδh we
deduce

(5.5) ‖uh − uδh‖W(0,T ) ≤ ‖θh‖W(0,T ) + ‖ũh − ũδh‖W(0,T ) + ‖θδh‖W(0,T ) .

We need to estimate the three terms on the right hand side of (5.5).
We first estimate the term ‖ũh− ũδh‖W(0,T ). Applying Theorem 4.7 Case i) with

γ = 1/2 we have

‖ũh − ũδh‖W(0,T )

≤ Cδ1/2
(
‖f̃‖L2(0,T ;L2(Ω)) + ‖f̃‖H1/2(0,T ;H−1(Ω)) + ‖u0‖1

)
.

(5.6)

Next, we estimate ‖θh‖W(0,T ) ≡ ‖uh − ũh‖W(0,T ). Subtracting (5.2) from (3.1)
we obtain

(5.7)





〈
∂tθh(t), vh

〉
+ a[θh(t), vh]

=
〈
f(t)− f̃(t), vh

〉 ∀ vh ∈ Vh, a.e. t ∈ [0, T ],

θh(0) = uh(0)− U0
h = Phu0 − Phũ0 .

Setting vh = θh(t) we have that
1
2

d

dt
‖θh(t)‖20 + a[θh(t), θh(t)] =

〈
f(t)− f̃(t), θh(t)

〉

≤ C‖f(t)− f̃(t)‖2−1 +
Ca

2
‖θh(t)‖21

so that
1
2

d

dt
‖θh(t)‖20 +

Ca

2
‖θh(t)‖21 ≤ C‖f(t)− f̃(t)‖2−1 .

An integration in t together with the relation θh(0) = Phu0 − Phũh yields

‖θh‖2L2(0,T ;H1(Ω)) ≤ C
(
‖f − f̃‖2L2(0,T ;H−1(Ω)) + ‖Ph(u0 − ũ0)‖20

)

≤ C
(
‖f − f̃‖2L2(0,T ;H−1(Ω)) + ‖u0 − ũ0‖20

)
.

(5.8)

We estimate ‖∂tθh‖2L2(0,T ;H1(Ω)) as follows. Let v ∈ H1
0 (Ω) be arbitrarily given.

Since θh(t) ∈ Vh for almost every t, the definition of the projection Ph : L2(Ω) → Vh

implies
〈
∂tθh(t), v

〉
=

〈
∂tθh(t), Phv

〉
a.e. t; thus, using (5.7) we deduce

〈
∂tθh(t), v

〉
=

〈
∂tθh(t), Phv

〉
= −a[θh(t), Phv] +

〈
f(t)− f̃(t), Phv

〉

≤ C
(
‖θh(t)‖1 + ‖f(t)− f̃(t)‖−1

)
‖Phv‖1 ≤ C

(
‖θh(t)‖1 + ‖f(t)− f̃(t)‖−1

)
‖v‖1 .

By taking the supremum over v ∈ H1
0 (Ω) with ‖v‖1 ≤ 1 we are led to

‖∂tθh(t)‖2−1 ≤ C
(
‖θh(t)‖21 + ‖f(t)− f̃(t)‖2−1

)
.
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Integrating in t and utilizing (5.8) we arrive at

(5.9) ‖∂tθh‖2L2(0,T ;H−1(Ω)) ≤ C
(
‖f − f̃‖2L2(0,T ;H−1(Ω)) + ‖u0 − ũ0‖20

)
.

The term ‖θδh‖W(0,T ) ≡ ‖uδh − ũδh‖W(0,T ) may be estimated as follows. Sub-
tracting (5.3)–(5.4) from the corresponding member of (3.5)–(3.6) and denoting
Θm

h = Um
h − Ũm

h we obtain

(5.10)





Θ0
h = U0

h − Ũ0
h = Ph(u0 − ũ0);

〈Θm
h −Θm−1

h

δ
, vh

〉
+ a[Θm

h , vh]

= 〈fm − f̃m, vh〉 ∀ vh ∈ Vh, 1 ≤ m ≤ N

and

(5.11) θδh(t)
∣∣
[tm−1,tm]

= Θm−1
h +

t− tm−1

δ
(Θm

h −Θm−1
h ), 1 ≤ m ≤ N.

Applying Lemma 4.1 to (5.10)–(5.11) we have

δ

N∑
m=1

‖Θm
h ‖21 + δ

N∑
m=1

‖Θm
h −Θm−1

h ‖21

≤ C‖f − f̃‖2L2(0,T ;H−1(Ω)) + Cδ‖Ph(u0 − ũ0)‖21 + C‖Ph(u0 − ũ0)‖20 .

(5.12)

Thus,

‖θδh‖2L(0,T ;H1(Ω)) =
N∑

m=1

∫ tm

tm−1

‖θδh(t)‖21 dt

≤ 2
N∑

m=1

∫ tm

tm−1

(
‖Θm−1

h ‖21 + ‖Θm
h −Θm−1

h ‖21
)

dt

= 2δ

N∑
m=1

‖Θm−1
h ‖21 + 2δ

N∑
m=1

‖Θm
h −Θm−1

h ‖21

≤ C‖f − f̃‖2L2(0,T ;H−1(Ω)) + Cδ‖Ph(u0 − ũ0)‖21 + C‖Ph(u0 − ũ0)‖20 .

To estimate ‖∂tθδh‖L2(0,T ;H−1(Ω)) we note that using (5.11), the projection property
of Ph and (5.10) we obtain, for a.e. t ∈ [tm−1, tm],

〈∂tθδh(t), v〉 =
1
δ
〈Θm

h −Θm−1
h , v〉 =

1
δ
〈Θm

h −Θm−1
h , Phv〉

= −a[Θm
h , Phv] + 〈fm − f̃m, Phv〉

≤ C
(
‖Θm

h ‖1 + ‖fm − f̃m‖−1

)
‖v‖1 ∀ v ∈ H1

0 (Ω)

so that
‖∂tθδh(t)‖−1 ≤ C

(
‖Θm

h ‖1 + ‖fm − f̃m‖−1

)
.

Hence,

‖∂tθδh‖2L2(0,T ;H−1(Ω)) =
N∑

m=1

∫ tm

tm−1

‖∂tθδh(t)‖2−1 dt

≤ C

N∑
m=1

( ∫ tm

tm−1

‖Θm
h ‖21 dt +

∫ tm

tm−1

‖fm − f̃m‖2−1 dt
)
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Adding up the above estimates for θδh and ∂tθδh and utilizing (5.12) we have

‖θδh‖2W(0,T ) ≤ C‖f − f̃‖2L2(0,T ;H−1(Ω))

+ Cδ‖Ph(u0 − ũ0)‖21 + C‖Ph(u0 − ũ0)‖20 .
(5.13)

Combining (5.5) with (5.6), (5.8), (5.9) and (5.13) we conclude

‖uh − uδh‖W(0,T ) ≤ C‖f − f̃‖L2(0,T ;H−1(Ω)) + Cδ‖Ph(u0 − ũ0)‖21 + C‖u0 − ũ0‖20
+ Cδ1/2

(
‖f̃‖L2(0,T ;L2(Ω)) + ‖f̃‖H1/2(0,T ;H−1(Ω)) + ‖ũ0‖1

)
.

From the facts that f̃ = f ε → f in L2(0, T ; H−1(Ω)) and ũ0 = uε
0 → u0 in L2(Ω)

as ε → 0 it is evident that all terms except Cδ‖Ph(u0 − ũ0)‖21 on the right hand
side of the last estimate tend to zero as ε → 0 and h, δ → 0. In case i), i.e., the case
where u0 ∈ H1

0 (Ω), we may simply choose uε
0 = u0 so that δ‖Ph(u0 − ũ0)‖21 → 0 as

h, δ → 0. In case ii), i.e., the case where u0 ∈ H1/2(Ω) and δ ≤ Ch, we have

δ‖Ph(u0 − ũ0)‖21 ≤
Cδ

h
‖Ph(u0 − ũ0)‖21/2 ≤ C‖u0 − ũ0‖21/2

so that δ‖Ph(u0−ũ0)‖21 → 0 as h, δ → 0. In case iii), i.e., the case where u0 ∈ L2(Ω)
and δ ≤ Ch2, we have

δ‖Ph(u0 − ũ0)‖21 ≤
Cδ

h2
‖Ph(u0 − ũ0)‖20 ≤ C‖u0 − ũ0‖20

so that δ‖Ph(u0 − ũ0)‖21 → 0 as h, δ → 0. Hence, in all three cases we have proved
that ‖uh − uδh‖W(0,T ) → 0 as h, δ → 0. ¤

Remark 5.2. An alternative proof for the estimate of the norm ‖θδh‖W(0,T ) can

be obtained through an application of Lemma 4.2 to (5.10) with g ≡ 0,W
0

h ≡ 0,
wh ≡ 0, g ≡ f − f̃ , Wm

h ≡ Θm
h and wδh ≡ θδh, and an application of Lemma 4.1.

Finally, using the triangle inequality

‖u− uδh‖W(0,T ) ≤ ‖u− uh‖W(0,T ) + ‖uh − uδh‖W(0,T )

and combining the results of Theorems 3.1, 4.7, 4.3 and 5.1 we arrive at the following
results concerning fully discrete approximations of the linear parabolic problem:

Theorem 5.3. Assume that f ∈ L2(0, T ; H−1(Ω)) and u0 ∈ L2(Ω). Let u ∈
W(0, T ) be the solution of (2.1) and uδh be defined by (3.5)–(3.6). If u0 ∈ H1

0 (Ω),
or u0 ∈ H1/2(Ω) and δ ≤ Ch, Or u0 ∈ H1

0 (Ω) and δ ≤ Ch2, then

‖u− uδh‖W(0,T ) → 0 as δ, h → 0 .

Also, the following error estimates hold:

i): If u0 ∈ H1+γ(Ω) ∩H1
0 (Ω) and

f ∈ L2(0, T ; H−1+2γ(Ω) ∩ Φ−1+2γ
0 (Ω)) ∩Hγ(0, T ; H−1(Ω))

for a γ ∈ [0, 1], then

‖u− uδh‖W(0,T ) ≤ C(δγ + h2γ)
(
‖f‖L2(0,T ;H−1+2γ(Ω))

+ ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖1+γ

)
.
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ii): If δ ≤ Ch, u0 ∈ H(1+3γ)/2(Ω) ∩ Φ(1+3γ)/2
0 (Ω) and

f ∈ L2(0, T ; H−1+2γ(Ω) ∩ Φ−1+2γ
0 (Ω)) ∩Hγ(0, T ; H−1(Ω))

for a γ ∈ [0, 1], then

‖u− uδh‖W(0,T ) ≤ C(δγ + h2γ)
(
‖f‖L2(0,T ;H−1+2γ(Ω))

+ ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖(1+3γ)/2

)
.

iii): If δ ≤ Ch2, u0 ∈ H(1+3γ)/2(Ω) ∩ Φ(1+3γ)/2
0 (Ω) and

f ∈ L2(0, T ; H−1+2γ(Ω) ∩ Φ−1+2γ
0 (Ω)) ∩Hγ(0, T ; H−1(Ω))

for a γ ∈ [0, 1], then

‖u− uδh‖W(0,T ) ≤ C(δγ + h2γ)
(
‖f‖L2(0,T ;H−1+2γ(Ω))

+ ‖f‖Hγ(0,T ;H−1(Ω)) + ‖u0‖2γ

)
.

iv): If u0 ∈ H2(Ω) and f ∈ H1(0, T ; L2(Ω)), then

‖u− uδh‖W(0,T ) ≤ C(δ + h)
(
‖f‖H1(0,T ;L2(Ω)) + ‖u0‖2

)
.

Furthermore, in each of the cases i)–iv), if

u ∈ L2(0, T ;Hr+1(Ω)) ∩H1(0, T ;Hr−1(Ω))

for some r ∈ [1, k], then the O(h2γ) term in i)–iii) or the O(h) term in iv) on the
right hand side of the error estimate can be replaced by

Chr
(
‖u‖L2(0,T ;Hr+1(Ω)) + ‖∂tu‖L2(0,T ;Hr−1(Ω))

)
.

Remark 5.4. Some remarks are in order for the last theorem. a) The conclusion
in Case iv) follows from Theorem 4.3 and the implied regularity for the solution
u (see [11]): u ∈ L∞(0, T ; H2(Ω)) and ∂tu ∈ L∞(0, T ;L2(Ω)) . The significance of
this case is that no spatial differentiability is required of f . b) The last statement
in the theorem about the O(hr) estimates follows from the known error estimates
for semidiscrete finite element approximations.

We conclude this work by reiterating some features of the fully discrete scheme
and its error estimates. i) The scheme is well defined for f ∈ L2(0, T ; H−1(Ω)) and
u0 ∈ L2(Ω). ii) The W(0, T ) norm we use to measure the error is stronger than the
more commonly used L∞(0, T ; L2(Ω)) norm. iii) The error estimates and conver-
gence are obtained under minimal regularity; in particular, f is allowed have only
a fractional order temporal derivative – in contrast, standard fully discrete error
estimates in the literature such as those of [16] require ∂tf ∈ L2(0, T ; L2(Ω)) (which
rules out f being a timewise step function with values in H−1(Ω)). iv) Fractional
order error estimates are derived under uni-directional regularity assumptions that
are easier to verify than the (t,x)-mixed regularity assumptions; such results facili-
tate the derivation of error estimates for fully discrete approximations of semilinear
parabolic PDEs and for fully discrete approximations of control control problems
constrained by parabolic PDEs.
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