
INTERNATIONAL JOURNAL OF c© 2006 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 3, Number 4, Pages 481–503

PARALLEL FINITE ELEMENT METHOD FOR COUPLED
CHLORIDE MOISTURE DIFFUSION IN CONCRETE

SUWITO, XIAO-CHUAN CAI, AND YUNPING XI

(Communicated by Yanping Lin)

Abstract. Penetration of chloride ions into concrete and diffusion of moisture

in concrete are important factors responsible for the corrosion of steel in

concrete. The two diffusion processes are coupled. This paper deals with

the analysis and simulation of coupled chloride penetration and moisture

diffusion in concrete. Of particular interest is the parallel programming in

finite element method for solving the coupled diffusion problem. Parallel

computing technology has been advantageous for solving computationally

intensive problems. It has become quite mature technology and more affordable

for general application. Our approach to solve the parallel programming

problem is to use available libraries, i.e. Portable, Extensible Toolkit

for Scientific Computation (PETSc) and The Message Passing Interface (MPI)

standard. The formulation of the coupled diffusion problem, the material

models involved in the differential equations, the details of parallel domain

decomposition technique in the finite element algorithm are presented. The

advantages of parallel programming are demonstrated by a numerical example.

Key Words. Chloride, moisture, humidity, diffusion, parallel computing,

finite element, concrete.

1. Introduction

Reinforced concrete structures are often exposed to deicing salts, salt splashes,
salt spray, or seawater, resulting in penetration of chloride ions into concrete. The
chloride ions in the concrete will eventually reach the embedded reinforcement bars
(rebar) and accumulate to a certain critical concentration level, at which the rebar
begins to corrode. Since the density of corrosion product is lower than that of steel,
the corrosion product occupies larger volume than the volume of steel consumed
in the corrosion process. This volumetric mismatch will generate very high tensile
stress in the concrete cover that may lead to concrete cracking and/or spalling.

The other necessary conditions for the rebar corrosion to take place are low pH
value, and sufficient oxygen and moisture present in the rebar-concrete interface.
For non-saturated concrete (e.g. the concrete not submerged in water), oxygen
supply is usually not an issue. For old concrete structures, pH value of the concrete
is usually much lower than new concrete (pH is about 12.5 to 13). Therefore the
diffusion of moisture in the concrete is just as important as the diffusion of chloride
ions in terms of the corrosion process of rebars. Although moisture is the carrier of
chloride ions, the moisture and the chloride ions can diffuse in the same or opposite
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directions depending on the boundary (environmental) and initial conditions of a
structure. When the moisture and chloride diffusions are considered as two fully
coupled diffusion processes, the computational program is very complicated.

Chloride-induced rebar corrosion has been one of the major causes of deteri-
oration in reinforced concrete structures. In some states of the U.S., chloride-
induced deterioration may govern the service life of reinforced concrete structures.
With the increasing acceptance of durability-based design for reinforced concrete
structures, it is very important to develop both material models and computational
tools that are able to accurately simulate the processes of chloride ion penetration
and moisture diffusion in concrete. This study is aimed to address both aspects:
development of theoretical models and computational techniques for coupled
chloride and moisture diffusion in concrete.

The material models and governing partial differential equations for chloride ions
penetration and moisture diffusion are time dependent and complex. Thus, various
numerical approaches have been developed as effective tools to solve the problem.
In this study, a finite element method is employed to solve the coupled chloride
penetration and moisture diffusion equations. The space discretization is carried
out based on a Galerkin procedure and time discretization based on mid-point time
integration method.

The diffusion processes of moisture and chloride take place only in a thin layer
of concrete structures (5 to 10 cm), and therefore, very small finite elements
must be used in the diffusion analysis to deal with drastic variation of the
moisture profiles and chloride concentration profiles. For large scale structures
with different environmental conditions on their surfaces, the number of elements
required for a durability analysis is enormous. If we want to further combine
the diffusion analysis with stress analysis for the damage development due to the
steel corrosion, the computational time will be escalated even at a higher rate,
resulting in a computationally intensive program. With increased availability of
parallel computing facilities, it becomes natural to implement parallel finite element
method for the diffusion analysis. In this study, a parallel finite element program is
implemented on a cluster of PCs using the Linux operating system, and the parallel
architecture is classified as a distributed memory system.

The development of parallel finite element program used to be a time consuming
and complicated process. Now, with the help of higher level libraries for
parallel implementation such as PETSc (Portable, Extensible Toolkit for Scientific
Computation), parallel finite element program can be developed in a relatively
simple manner. PETSc provides a suite of data structures and routines for the
scalable (parallel) solution of scientific applications modeled by partial differential
equations. PETSc employs the MPI (Message Passing Interface) standard for all
message-passing communication.

2. Governing differential equations and material parameters

2.1. Governing equations. We derive the governing partial differential equa-
tions for chloride penetration and moisture diffusion in concrete based on Fick’s
law and the mass balance equations for chloride and moisture in concrete. The two
resulting equations are coupled and must be solved simultaneously. First of all,
the flux of chloride ions (JCl) through a unit area of porous media depends on the
gradient of chloride ions as well as the gradient of moisture, i.e.:

(1) JCl = − (DCl∇Cf + εDH∇H) ,
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where DCl = chloride diffusivity (cm2/day), Cf = free chloride concentration (in
gram of free chloride per gram of concrete, g/g), DH = humidity diffusivity, H =
pore relative humidity and ε = humidity gradient coefficient, which represents the
coupling effect of moisture diffusion on chloride penetration. In some literatures
on transport properties of concrete, DCl is called absolute diffusivity, and εDH is
called relative diffusivity.

The moisture content in concrete can be described by water content (w) or by
the relative humidity in pores (H), called pore relative humidity. The problem with
water content is that even if the total water content is fixed (for a completely sealed
concrete sample), the mobile water content is a function of time because a part of
the water is consumed by the hydration reaction and thus becomes chemically
combined water, which is immobile. Therefore, it is advantageous to use pore
relative humidity to represent moisture content, which is a combined indicator for
liquid water and water vapor [9]. In the present study, the moisture flux (JH) is
related to the gradients of chloride and pore relative humidity, i.e.:

(2) JH = − (δDCl∇Cf + DH∇H)

in which δ = chloride gradient coefficient, which represents the coupling effect of
chloride ions on moisture diffusion.

The mass balance of chloride ions and moisture can be expressed using Fick’s
second law as follows:

(3)
∂Ct

∂Cf

∂Cf

∂t
= −∇ · [JCl]

(4)
∂w

∂H

∂H

∂t
= −∇ · [JH ] ,

where ∂Ct/∂Cf is the chloride binding capacity and ∂w/∂H is the moisture
capacity; Ct is the total chloride concentration (in gram of free chloride per gram
of concrete, g/g). When chloride ions enter the concrete, some of them attach
to the pore wall, become bound chloride; and some of them are free to diffuse
around. So, only the free chloride is considered in Eq. (1). The binding capacity of
chloride in Eq. (3) is the ratio of the total chloride and the free chloride. Similarly,
the moisture capacity represents the bound moisture on the surface of pore wall.
Substituting Eq. (1) into Eq. (3) and Eq. (2) into Eq. (4) give:

(5)
∂Ct

∂Cf

∂Cf

∂t
= ∇ · [(DCl∇Cf + εDH∇H)]

(6)
∂w

∂H

∂H

∂t
= ∇ · [(δDCl∇Cf + DH∇H)] ,

which can be rewritten as:

(7)
∂Ct

∂Cf

∂Cf

∂t
= ∇ · [DCl∇Cf + Dε∇H]

(8)
∂w

∂H

∂H

∂t
= ∇ · [Dδ∇Cf + DH∇H]

in which Dε = εDH and Dδ = δDCl. Eqs. (7) and (8) are the governing equations
for the coupled problem of chloride ions and moisture diffusions. The general
boundary conditions are

(9) Cf = C0 on Γ1



484 SUWITO, X.-C. CAI, AND Y. XI

(10) DCl
∂Cf

∂n
+ JCl + Dε

∂H

∂n
+ αCl (Cf − Cfa) = 0 on Γ2

(11) Cf = C0 on Γ3

(12) DH
∂H

∂n
+ JH + Dδ

∂Cf

∂n
+ αH (H −Ha) = 0 on Γ4,

where αCl and αH are the convective chloride and relative humidity coefficients;
and Cfa and Ha are ambient chloride ions and relative humidity; respectively. Γ1

and Γ3 are the part of boundary with a constant chloride ions and relative humidity;
and Γ2 and Γ4 are the part of boundary subjected to a specified chloride ions and
relative humidity flux; respectively. Γ1 and Γ2 form the complete boundary surface
for the chloride ions diffusion problem, and Γ3 and Γ4 for the moisture diffusion
problem.

It is important to note that the present formulation is different from the previous
formulation (e.g. [2]) in that Eqs. (7) and (8) are two fully coupled (two-way
coupled) partial differential equations, while the previous formulation was one-way
coupled equations.

2.2. Material parameters. In Eqs. (1) through (12), there are many material
parameters. It is very important to use reliable material models in the equations in
order to obtain an accurate prediction of the coupled diffusion processes. The six
material parameters in Eqs. (7) and (8) can be divided into three groups. ∂Ct/∂Cf
and ∂w/∂H are binding capacities, Dε and Dδ are coupling parameters, and DCl

and DH are diffusivities. In the following, the material models used in the present
study will be briefly described.

A recently developed model for the chloride binding capacity [33] will be used,
i.e.:

(13)
dCf

dCt
=

1

1 + A 10BβC−S−H

35450βsol

(
Cf

35.45βsol

)A−1
,

where A and B are two material constants related to chloride adsorption and equal
to 0.3788 and 1.14, respectively [27]. The binding capacity depends on the two
parameters, βsol and βC−S−H . The parameter βsol is the ratio of pore solution to
concrete (L/g) and the parameter βC−S−H is the ratio of C-S-H gel (calcium silicate
hydrate gel) to concrete (g/g). The detail of derivations of βsol and βC−S−H can
be found in the paper by Xi and Bazant [32].

The diffusivity of chloride ions in concrete can be estimated using the multifactor
method as follows:

(14) DCl = f1f2(gi)f3(H)f4(T )f5(Cf ),

where f1 is a factor accounting for the influential parameters and resulted from the
calibration of the numerical model with the experimental data. Since the diffusivity
of concrete is mainly influenced by its water-cement ratio (w/c) and curing age (t0),
an expression for the factor f1 was suggested:

(15) f1 =
28− t0
62500

+
(

1
4

+
(28− t0)

300

)
(w/c)6.55

.

The second factor f2(gi) is to account for the effect of composite action of the
aggregates and the cement paste on the diffusivity of concrete. This factor can be
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formulated using the three phase composite model developed by Christensen [13]:

(16) f2(gi) = Dcp

(
1 +

gi

[1− gi]/3 + 1/[(Dagg/Dcp)− 1]

)

in which gi is the volume fraction of aggregates in the concrete, Dagg and Dcp are
the diffusivities of aggregates and cement paste. The diffusivity of the aggregates
and cement paste can be calculated using the model proposed by Martys et al. [19]:

(17) D =
2

(
1− (

Vp − V c
p

))

S2

(
Vp − V c

p

)4.2
,

where Vp is the porosity, S is the surface area and V c
p is the critical porosity (the

porosity at which the pore space is first percolated). Numerical simulation of porous
materials composed of randomly overlapping spheres showed that the pore space
becomes disconnected at V c

p = 3% (Martys et al. [19]). The value of Dagg can be
evaluated by Eq. (17) (if S, Vp, and V c

p for the aggregate are known) or may be
taken as a constant (the approach taken in this study), typically 1 x 10−12cm/s.
Dcp can be evaluated using Eq. (13), in which the surface area of cement paste, S,
can be estimated by the monolayer capacity, Vm, of adsorption isotherm of concrete
since Vm is proportional to S (Xi et al. [33, 34]; Xi [30, 31]). The porosity, Vp, can be
estimated by absorption isotherm, n(H, T ) = Wsol/Wconc at saturation (H = 1).
Wsol and Wconc are the weight of pore solution and concrete, respectively. The
detail treatment of absorption isotherm can be seen on papers by Xi et al. [33, 34]
and Xi [30, 31].

The third factor, f3(H) is to account for the effect of relative humidity level on
the chloride diffusivity. A model proposed by Bazant and Najjar [9] can be used,
which was developed initially for moisture diffusion. In this paper, assuming the
analogy between the moisture and the chloride diffusion, the model is:

(18) f3(H) =
(

1 +
(1−H)4

(1−HC)4

)−1

in which Hc is the critical humidity level at which the diffusivity drops halfway
between its maximum and minimum values (Hc = 0.75).

The fourth factor, f4(T ), is to account for the effect of temperature on the
diffusivity of concrete. This can be done by using Arrhenius’ law as follows

(19) f4(T ) = exp
[
U

R

(
1
T0
− 1

T

)]

in which U is the activation energy of the diffusion process, R is the gas constant
(8.314 J mol−1K−1), T and T0 are the current and reference temperatures,
respectively, in Kelvin (T0 = 296 K). U has been found to depend on water-to-
cement ration, w/c, and the cement type [14, 21] (see Table 1).

Table 1. Activation energies for various cement paste

w/c Ordinary portland Cement with
cement (KJ/mol) pozzolans (KJ/mol)

0.4 41.8 ± 4.0 –
0.5 41.8 ± 4.0 4.18
0.6 41.8 ± 4.0 –
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The fifth factor, f5(Cf ), is to account for the dependence of the chloride
diffusivity on the free chloride concentration, called concentration dependence

(20) f5(Cf ) = 1− kion(Cf )m

in which kion and m are constants, 8.333 and 0.5, respectively [32].
Considering concrete as two-phase material consisting of cement paste and

aggregate, the moisture capacity of concrete can be evaluated by taking the average
of the moisture capacities of cement paste and aggregate as follows:

(21)
dw

dH
= fagg

(
dw

dH

)

agg

+ fcp

(
dw

dH

)

cp

in which fagg and fcp are the weight percentages of the aggregate and cement paste,
respectively; (dw/dH)agg and (dw/dH)cp are the moisture capacities of aggregate
and cement paste, respectively; and water content, w, is given by the BET equation:

(22) w =
CkVmH

(1− kH) [1 + (C − 1) kH]
,

where Vm, C and k are constants evaluated by curve fitting of the adsorption test
data. The details for evaluating the Eqs. (21) and (22) can be seen in [30, 31, 33, 34].

The moisture diffusivity of concrete can be predicted by the composite action as
follows [13]:

(23) DH = DHcp

(
1 +

gi

[1− gi]/3 + 1/[(DHagg/DHcp)− 1]

)

in which gi is the aggregate volume fraction, DHcp is the humidity diffusivity of the
cement paste and DHagg is the humidity diffusivity of the aggregates.

The humidity diffusivity of aggregates in concrete is very small due to the fact
that the pores in aggregates are discontinuous and enveloped by cement paste and
so it can be neglected. The humidity diffusivity of cement paste can be predicted
by the following empirical formula:

(24) DHcp = αh + βh[1− 2−10
γ

h
(H−1)

],

where αh, βh and γh are coefficients to be calibrated from the test data and given
as:

(25) αh = 1.05− 3.8(w/c) + 3.56(w/c)2

(26) βh = −14.4 + 50.4(w/c)− 41.8(w/c)2

(27) γh = 31.3− 136(w/c) + 162(w/c)2.

So far, there have been no material models developed for the two coupling
parameters, Dε and Dδ. Most recently, Ababneh and Xi conducted some
experimental studies for the coupling effect of chloride concentration on moisture
diffusion [3]. Ababneh [1] also conducted an experimental study on the effect of
moisture concentration on chloride diffusion. In the present study, we used the
available test data to determine the two constants ε and δ, and then determine the
two coupling parameters. The specific values of ε and δ are given in Table 2.
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Table 2. Material parameters used in the analysis

Parameter Value
Water to Cement Ration (w/c) 0.55
Volume Fraction of Aggregate 0.65

Cement Type I
ε 0.028
δ 0.2

3. Finite element formulation

Before the parallel implementation of the coupled governing equations, we need
to briefly introduce the finite element formulation, which provides the basis for the
discussion in the next sections. The continuous variables in the coupled chloride
penetration and moisture diffusion equations, free chloride Cf and moisture Hm,
are spatially discretized over the space domain, Ω. The discretization process can
be expressed as follows

(28) Ω =
nelem∪
e=1

Ωe,

where nelem is the total number of finite elements and Ωe is a finite element. Also
we define ∂Ω as the boundary of the problem domain and ∂Ωe the boundary of a
finite element.

Using isoparametric elements, the unknowns in the coupled chloride penetration
and moisture diffusion equations, Cf and Hm, are approximated in terms of nodal
values {Ĉf} and {Ĥm}, respectively, as

(29) Cf ≈ bN cc
{

Ĉf

}

(30) Hm ≈ bNhc
{

Ĥm

}
,

where bN cc and bNhc are the element shape functions for Cf and Hm, respectively.
The notations bc and {} are for row and column vectors, respectively. The element
shape functions are defined as

(31) bN cc = bNhc ≡ bN1 N2 · · · Nnc
in which Ni is the shape function for node i and n is the total number of nodes of
an element. The vectors

{
Ĉf

}
and

{
Ĥm

}
can be expressed as

(32)
{

Ĉf

}
≡

⌊
Ĉf1 Ĉf2 · · · Ĉfn

⌋T

(33)
{

Ĥm

}
≡

⌊
Ĥm1 Ĥm2 · · · Ĥmn

⌋T

,

where Ĉfi and Ĥmi are the value of Cf and Hm, respectively, at node i.
Substituting the approximated values of Eqs. (29) and (30) into Eqs. (7) and

(8), respectively, and applying the Galerkin procedure result in

(34)
d

dt

([
Ce(φ̂)

] {
φ̂

})
=

[
Ke(φ̂)

] {
φ̂

}
,
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where the element matrices Ke and Ce are expressed as follows

(35) [Ke] =
[

Kcc

Khc

Kch

Khh

]

(36) [Kcc] = −
∫

Ωe

∇bN ccT DCf∇bN cc dΩ +
∫

∂Ωe

bN ccT DCf∇bN cc dΓ

(37) [Kch] = −
∫

Ωe

∇bN ccT Dε∇bNhc dΩ +
∫

∂Ωe

bN ccT Dε∇bNhc dΓ

(38) [Khc] = −
∫

Ωe

∇bNhcT Dδ∇bN cc dΩ +
∫

∂Ωe

bNhcT Dδ∇bN cc dΓ

(39) [Khh] = −
∫

Ωe

∇bNhcT DHm∇bNhc dΩ +
∫

∂Ωe

bNhcT DHm∇bNhc dΓ

(40) [Ce] =
[

Cc

0
0

Ch

]

(41) [Cc] =
∫

Ωe

bN ccT cc bN cc dΩ

(42) [Ch] =
∫

Ωe

bNhcT ch bNhc dΩ

and the vector
{

φ̂
}

is defined as

(43)
{

φ̂
}

=
⌊
Ĉf Ĥm

⌋T

.

Finally, applying the mid-point integration method to Eq. (34) over the time
interval [tξ+1, tξ] results in

(44)
([

Ce(φ̂)− θ∆t Ke(φ̂)
]{

φ̂
})ξ+1

=
([

Ce(φ̂) + (1− θ)∆tKe(φ̂)
]{

φ̂
})ξ

,

where ∆t ≡ tξ+1− tξ in which tξ is the time at time step ξ. The value of parameter
θ is related to the solution method adopted in the program. Typical values of θ
are 0, 1/2 and 1 that correspond to fully explicit, semi-implicit and fully implicit
methods, respectively. The semi-implicit method is used in this study. Eq. (44) is
ready for software implementation, in which all the known values are on the right
hand side and all the unknown values are on the left hand side of equation. Eq.
(44) can be further simplified to

(45) [A]ξ+1
{

φ̂
}ξ+1

= {b}ξ

(46) [A]ξ+1 =
[
Ce(φ̂)− θ∆tKe(φ̂)

]ξ+1

(47) {b}ξ =
([

Ce(φ̂) + (1− θ)∆t Ke(φ̂)
]{

φ̂
})ξ

.
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4. Parallel implementation of finite element program

The purpose of developing a parallel computing program is to make a significant
reduction in the executing time of the program. Ideally, if the executing time for
solving a problem is T on a one-processor system, then, with a p-processor system,
the executing time would be simply T/p. But, one must realize that the ideal
condition only applies to a very specific problem: the problem that can be evenly
distributed within a number of processors without the need of any communication
between the processors. Apparently, the ideal problem almost does not exist. In
reality, a properly designed parallel program can achieve a significant reduction
in the executing time. The efficiency and effectiveness of the parallel program
depend largely on several parameters, such as the problem to be solved with selected
algorithms, the parallel paradigms and hardware architectures.

The parallel implementation of the finite element program developed in this
study is based on the distributed memory. In the distributed memory system,
each processor has its own memory module. Such a distributed memory system is
built by connecting each component with a high-speed communications network.
Individual processor communicates to each other over the network. Inter-processor
communications are managed by a message-passing technology. The industry
standard interface for message passing is The Message Passing Interface (MPI)
standard, which is a library callable from C or Fortran.

Developing parallel program using MPI directly is quiet complex. Thus, PETSc
is used in this study, which is a higher level library than MPI and it provides a
suite of data structures and routines for the scalable (parallel) solution of scientific
applications modeled by partial differential equations. PETSc employs the MPI
standard for all message-passing communication and hides lower level programming
implementation.

4.1. Parallel finite element algorithm. In general, there are two strategies
that can be used for parallel implementation of a finite element program, i.e.: (1)
the system equations are formed by the usual sequential approach (without any
partitioning of problem domain), but solved in parallel; and (2) the problem domain
is divided into a number of sub-domains and then the system equations are formed
concurrently for each sub-domain and solved also in parallel. The first approach,
also called implicit domain decomposition approach, is generally suitable for static
or steady state and linear problems; while the second approach, called the explicit
domain decomposition approach, is more suitable for time dependent and nonlinear
problems. This is because the computation time of time dependent and nonlinear
problems is more dominant than that of static and linear problems. Since the
problem at hand is a time dependent problem, the second approach is employed.

A parallel program is typically developed by dividing the program into multiple
fragments that can execute simultaneously, each on its own processor. In the finite
element analysis, this can be accomplished by applying a domain decomposition
method [25]. Domain decomposition method is the method usually used for solving
large scale system equations and it is also suitable for parallel programming because
of data locality. There are two types of domain decomposition methods, overlapping
and non-overlapping methods. The non-overlapping method, which is also known
as sub-structuring method, is employed in this study.

In the non-overlapping domain decomposition method, after generating mesh,
T , in the domain, Ω, the mesh is then partitioned into non-overlapping sub-mesh,
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Ti. The process can be mathematically expressed as

(48) T = ∪iTi

and

(49) Ti ∩ Tj = {} for i 6= j.

Once the mesh is partitioned, the contributions of the system of equation (Eq.
(45)) from individual sub-mesh can be assembled concurrently. The assembled
system equation can be written in the block matrix form as

(50)




A1
II A1

IB

. . .
...

Ap
II Ap

IB

A1
BI · · · Ap

BI ABB








ϕ̂1
I

...
ϕ̂p

I

ϕ̂B





=





b1
I
...

b2
I

bB





,

where subscript “I” and “B” correspond to the internal and boundary degree of
freedoms, respectively. Blocks ABB and bB have the contribution from all sub-
domains, can be expressed as

(51) ABB =
p∑

i=1

Ai
BB

(52) bB =
p∑

i=1

bi
B

for i = 1, . . . , p. It should be noticed that the following block components

(53)
[

Ai
II

Ai
BI

Ai
IB

Ai
BB

]
and

{
bi

I

bi
B

}

can be computed entirely on processor i, which works only on sub-domain Ωi. This
means that all processors can work concurrently to form their own block components
as expressed in Eq. (53). Eliminating all internal unknowns (ϕ̂i

I) from Eq. (50)
results in a Schur complement system as expressed

(54) Ascϕ̂B = bsc

with

(55) Asc =
p∑

i=1

(
Ai

BB −Ai
BI

(
Ai

II

)−1
Ai

IB

)

and

(56) bsc = bB −
p∑

i=1

(
Ai

BI

(
Ai

II

)−1
bi

I

)
.

Solving Eq. (54) directly by first forming the Schur complement matrix (Asc)
could be computationally expensive because of the need to form matrix Asc from
each substructure. The size of matrix Asc grows quite fast as the number of
substructures grows. Therefore, instead of solving Eq. (54) directly, an iterative
domain decomposition method will be employed, in which the reduced system (Eq.
(54)) is solved without explicitly forming the Schur complement matrix. Each sub-
domain is responsible for providing the matrix-vector product, Ai

scϕ̂
i
B , and the

modified right hand side vector, bi
sc. The procedure for computing Ai

scϕ̂
i
B involves

the following steps:
• Compute y1 = Ai

BBϕ̂i
B
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• Compute w = Ai
IBϕ̂i

B

• Solve Ai
IIz = w for z

• Compute y2 = Ai
BIz

• Compute y1 − y2.
As for the modified right hand side vector, bi

sc, the computation procedures are:
• Solve Ai

IIs = bi
I for s

• Compute q = Ai
BIs

• Compute bi
sc = bi

B − q.
Once the iterative procedure converges, the internal unknowns for each sub-domain,
ϕ̂i

I , can be obtained by solving the following equation

(57) Ai
IIϕ̂

i
I = bi

I −Ai
IBϕ̂i

B .

Iterative solver must be used in the iterative domain decomposition method. For
this study, the iterative solver GMRES (Generalized Minimal Residual method)
(see Saad [22]) was chosen. GMRES is mainly chosen because of its ability to solve
nonsymmetric linear system as in the case of our problem.

To improve the convergence of the interface problem (Eq. (54)), the precondi-
tioning will be applied. Since the Schur complement matrix Asc is never assembled,
the Jacobi preconditioning (i.e. using the diagonal part of Asc) provided by PETSc
cannot be used. Thus for this study, a simple preconditioning will be formed
by taking the diagonal parts of the interface matrix ABB . This preconditioning
performed relatively well for our study, as shown by the number of iterations needed
to solve the Schur complement system iteratively (Table 3). It is obvious that the
number of iterations increase with the increasing problem sizes, but the increasing
number of iteration tends to reach the certain maximum number.

Table 3. Number of iterations for solving Schur complement system

Time Steps 
# of Procs # of Nodes 

1 1000 3000 5000 

3000 10 11 11 11 
2 

12000 16 18 19 19 

3000 10 10 11 12 
4 

12000 15 17 18 18 

3000 11 12 13 13 
8 

12000 16 17 18 18 

3000 11 12 12 13 
16 

12000 16 17 18 19 

3000 11 12 12 13 
32 

12000 17 18 19 20 

3000 11 12 13 13 
64 

12000 16 19 20 20 

 

4.2. Parallel programming. The parallel finite element program is developed
based on a single program multiple data (SPMD) model of parallel execution,
in which each processor follows the same algorithm but operates on a different
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sub-mesh. Following the SPMD model, the finite element mesh is partitioned,
preprocessed and stored in a number of input files, one file for each sub-mesh. The
number of input files is the same as the number of processors.

The linear triangular element is used in this study. The triangular mesh is
generated using the free software called Triangle [23, 24]. For partitioning the
mesh, the METIS software library [17] developed by the University of Minnesota
is employed. METIS provides the tools to efficiently partition unstructured
mesh while evenly distributing the computation load and minimizing the total
communication among processors. Once the mesh has been partitioned, they need
to be processed by a preprocessor program so that each sub-mesh consisting of
a certain number of nodes and elements followed by a list of nodes and a list of
element connectivities and also followed by the information of nodes that are shared
with neighboring sub-meshes and the global degree of freedoms of those nodes. Fig.
1 shows an example of the mesh numbering scheme.

The previously described algorithm was implemented using PETSc, which
provides algebraic data objects such as vector and matrix, routines for managing
vector and matrix and numerical libraries such as solvers and preconditioners. In
addition, PETSc also includes the routines for managing parallel data layout such
as mapping between the global numberings, local and global indices, scattering,
etc. Thus, PETSc can be considered as a toolkit that can ease the development of
parallel finite element program and consequently reduce its development time.
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Figure 1. An example renumbering of internal and boundary nodes

PETSc library can be called using C, C++ and FORTRAN languages, with
some limitations using FORTRAN because of the language syntax. Regardless of
programming language used, a program developed using PETSc has three elements
in common: (1) including one or more PETSc header files; (2) initializing PETSc;
and (3) finalizing PETSc.

After the initialization of PETSc, the program spawns into the number of
processes as specified by the user. Each input file can then be opened and read
by its processor. After reading all data from the input file, each processor starts
the computing process for each time step. First, the data structures for vectors
and matrices needed for computation must be prepared. Based on Eq. (53), four
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sequential (not parallel) matrices (Ai
II , Ai

IB , Ai
BI and Ai

BB) and two sequential
vectors (bi

I and bi
B) are needed.

Using the PETSc objects for matrices and vectors, we can form all components
in Eq. (53) for each processor. A direct approach would be then to form the
matrix Asc and bsc and solve Eq. (54) for ϕ̂B . However, the direct approach
is considered inefficient because the matrix Asc is expensive to be assembled and
usually dense. Thus, an iterative domain decomposition method without actually
forming matrix Asc was employed. The iterative domain decomposition method
can be accomplished in PETSc by using the matrix-free method combined with
the iterative solver. The matrix-free method creates the matrix structure without
actually generating the matrix and must be solved using the iterative solver. Also
it is possible to use our own preconditioner in the matrix-free method.

PETSc provides a wide range of solvers, both direct and iterative methods. In
this study, the LU factorization (direct method) is used to solve the local problem
and the GMRES global problem. PETSc also provides a number of preconditioners,
but, because of the matrix-free method, we cannot use those preconditioners.
Instead, we need to implement our own preconditioner. Fortunately, PETSc has a
routine that facilitates the implementation of our own preconditioner.

Also, since PETSc uses MPI standard for communication between processors,
the program is portable for most computer systems.

4.3. Performance of parallel finite element implementation. Some com-
parative parameters are needed to measure the performance of the parallel
implementation of finite element program. Two commonly used parameters are
speed-up and efficiency. The speed-up can be defined as the ratio between the time
taken by the code to execute on a single processor, Ts(n), and the time taken for
the same code to execute on p processors, Tp(n),

(58) Sp(n) =
Ts(n)
Tp(n)

,

where n is the problem size. Parallel efficiency can be expressed as the ratio between
speed-up and the number of processors,

(59) Ep(n) =
Sp(n)

p
.

There are some different scenarios on how to interpret Ts(n) in Eq. (58). Ideally,
the Ts(n) would be the time taken to run the fastest serial algorithm on the fastest
serial machine available. However, in practice, most researchers do not have the
fastest machine. Instead, they usually take Ts(n) as the time taken to run the fastest
serial algorithm on the fastest processor in their parallel computing systems.

Another possibility is to take Ts(n) as the time taken to run the parallel algorithm
on one processor. This is usually done for examining the performance of the parallel
algorithm. However, not all parallel algorithms is able to run on one processor as in
our parallel algorithm which will only run on two or more processors. To evaluate
the performance of a parallel algorithm for the case in which the parallel algorithm
cannot be run in one processor, one may replace Ts(n) with T2(n), the time taken
to run the parallel algorithm in two processors.

5. Comparison with test data

Experimental results of 90-day ponding test conducted by Andrade and Whiting
[6] are compared with numerical results from our model. As shown in Fig. 2,
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for w/c = 0.6, the numerical result agrees well with experimental data. When
the water-cement ratio is low, i.e. w/c = 0.4, the model prediction is not accurate.
This is due to the fact that admixtures (such as water reducing admixture) are used
in concrete with low w/c to make the concrete mix workable, while the material
models used in this study did not include the effects of admixtures.
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Figure 2. Comparison with experimental results

6. A numerical example

The physical model used in the present study is shown in Fig. 3. It is a concrete
slab of 15 cm by 30 cm. The concrete slab contains initially no chloride ions and
it has 60% relative humidity (RH). The concrete slab is exposed to 3% NaCl and
100% RH on the top surface. The other boundaries are assumed to be sealed.
Obviously, this example is not to simulate the concrete under service condition,
but to simulate the commonly used long-term pond test. With these initial and
boundary conditions, one can speculate that the chloride and the moisture diffusions
are in the same direction. The material parameters used in the example are shown
in Table 2.

Fig. 4 shows the typical finite element mesh used in the analysis and Fig. 5
shows the typical mesh partitioned into 8 sub-meshes. The mesh is partitioned so
that each sub-mesh has almost the same number of elements, and that the number
of nodes on sub-mesh boundaries is as small as possible.

Figs. 6-9 show numerical results from the coupled chloride and moisture diffusion
analysis. Fig. 6 shows the distribution of chloride ions in the concrete after 400
days and Fig. 7 the distribution of relative humidity after 400 days. One can see
from the color contours in Fig. 6 and Fig. 7 that the chloride ions and moisture
are penetrating in the same direction towards the bottom of the concrete slab.

Fig. 8. shows the chloride profile as a function of time at different depths, i.e.
at 1 cm, 3 cm and 5 cm. If we chose the critical chloride ion content of 0.04%
and assume that there is a rebar at the depth of 5 cm from the top surface of the
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SealedSealed

Sealed

30 cm

15 cm

100% RH

3% NaCl

60% RH

Figure 3. The physical model for chloride ion penetration and
moisture diffusion in a concrete slab

Figure 4. The typical finite element mesh used in the analysis
for the concrete slab

Figure 5. An example of mesh partitioning (partitioned into 8
sub-domains)
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Figure 6. Chloride ions distribution at time = 400 days

Figure 7. Relative humidity distribution at time = 400 days
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concrete slab, then it would take about 100 days for the free chloride concentration
to reach the critical value on the surface of the rebar, and then the corrosion of the
rebar starts. Table 4 lists a variety of suggested critical chloride contents that may
initiate the corrosion of reinforcement bars in concrete. Fig. 9 shows the relative
humidity profile as a function of time at different depths, i.e. at 1 cm, 3 cm and 5
cm.
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Table 4. Suggested critical chloride ions contents

 

 

Critical chloride ions 

content 

Critical chloride ions 

content** 

Berke (1986) 0.9-1.0*** 0.039%-0.043% 

Browne (1982) 0.40% (weight of cement)* 0.055% 

FHWA 0.30% (weight of cement)* 0.041% 

ACI (1994) 0.15% (weight of cement)* 0.021% 

Cady and Weyers (1992) - 0.025%-0.05% 
*   The cement content is considered as 550 lb/yd3 
**  Total chloride content in concrete in gram of chloride per gram of concrete 
*** kg of chloride per cubic  meter of concrete 

 

Table 5. Performance of parallel finite element on PC clusters
(Case 1: 3000 Node; Case 2: 6000 nodes; Case 3: 12000 Nodes;
and case 4: 24000 Nodes)

Execution Time (sec.) # of 

Procs. Case 1 Case 2 Case 3 Case 4 

1 1047 2208 5393 12698 

2 1312 3833 10768 33155 

4 512 1301 3990 11132 

8 209 557 1515 4639 

16 97 237 623 1607 

32 68 123 276 709 

64 55 84 135 316 

 

Table 5, Fig. 10, Fig. 11, Fig. 12 and Fig. 13 show the performance of the
parallel computation. Four meshes with the numbers of nodes of 3000, 6000, 12000
and 24000 were analyzed. In all four cases, the execution time using 2 processors
is higher than that of 1 processor (see Table 5), which is actually not a surprise,
because we used a direct solver, LU factorization, to solve the local problem. This
approach performs better on larger number of processors in which the local problem
becomes smaller. In addition, the speed of the network plays important role in the
parallel computing. Up to 64 processors were used in the example.

The speed up and efficiency are shown in Fig. 10 and Fig. 11, respectively. They
are based on the Ts(n) taken to be the time to run the fastest serial algorithm on
one processor of our parallel machine system. The speed is approaching the ideal
case (linear speed up) with the increase of problem size (see Fig. 10). This is
because in larger problems, the local computation time becomes longer relative to
the communication time. Even though still debatable, the minimum speed up value
of 20.0 is the most widely accepted as the minimum value. As for the efficiency, the
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Figure 10. Speed up over a number of processors used in the analysis
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Figure 11. Efficiency over a number of processors used in the analysis

maximum value reached in our study is about 0.6 (the ideal would be 1.0). This is
mainly due to the limited problem size.

Fig. 12 and Fig. 13 show the speed up and efficiency by replacing Ts(n) with
T2(n), respectively, where T2(n) is the time taken by the fastest parallel algorithm
on two processors. As mention before, this comparison is necessary to see the
performance of our parallel algorithm as our algorithm cannot be run on one
processor. Except for the problem size of 3000 nodes, the results for both speed up
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Figure 12. Speed up over a number of processors used in the
analysis using T2(n) as reference

and efficiency are better than those ideal cases. As the problem size increases, both
the speed-up and efficiency are getting better. At 64 processors, the speed-up and
efficiency for the largest problem size reach 107 and 3.3, respectively. This shows
that the employed parallel algorithm performs quite well for our problem.
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Figure 13. Efficiency over a number of processors used in the
analysis using T2(n) as reference
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As the number of processors used in the analysis increases, the size of problem
solved by each processor decreases. So, the speed-up increases with increasing
number of processors. This simply means that the time required for solving the
problem becomes shorter when more processors are used in the analysis. But,
with more processors, the communication between the processors increases, and
the interface boundaries between partitions increase, which result in larger size of
Schur complement system, and thus require longer computing time. These are
the reasons why there will be an optimum number of processors beyond which
increasing the number of processors will not improve the speed of the computation.
Even though our results do not show the optimum condition, one can still see the
trend that there will be an optimum condition under which the increase of number
of processors will not be able to enhance the speed up. For example, the speed up
of the problem with the size of 3000 nodes (Fig. 10 and Fig. 12) almost reaches
the optimum condition at 64 processors.

7. Conclusion

Two fully-coupled partial differential equations are established for characterizing
the chloride ion penetration and moisture diffusion in concrete. The model
prediction can simulate realistically the coupled chloride penetration and moisture
diffusion. Six material parameters in the two partial differential equations need
to be determined in order to solve the equations numerically, including two
diffusivities, two capacities, and two coupling parameters. The material models
developed for the two diffusivities and two capacities are introduced. Further
experimental research is needed to validate the two coupling parameters.

A parallel finite element program is developed to solve the two fully-coupled
partial differential equations. The parallel algorithm to generate and to solve the
finite element problem is presented in detail and the algorithm is implemented using
the functions of PETSc and MPI (i.e. Portable, Extensible Toolkit for Scientific
Computation and The Message Passing Interface standard). The performance of
the parallel finite element program is evaluated by two indicators: the speed-up
and the efficiency.

Chloride penetration and moisture diffusion in a concrete slab is used as a
numerical example. The results obtained from the example show that the parallel
computing program produces the same results as the single processor program, but
with less time. Therefore, the parallel computing program provides a powerful
tool to solve the computationally intensive problem, especially for large scale
structures. The model predictions can be used for characterizing chloride and
moisture distributions in concrete at any time. With given critical chloride
concentration, the results can also be used to estimate the time for the onset of
steel corrosion in concrete.

With increasing number of processors, the required computing time decreases,
but the internal communications between the sub-domains increase, and the size of
Schur complement system in the parallel algorithm also increases, which reduce the
speed-up. Therefore, there exists an optimum number of processors for each specific
application. Depending on the physical problem under consideration, especially
on the number of finite elements used, the optimum number of processors varies.
Thus, we can conclude that the non-overlapping or substructuring method is more
effective on larger number of processors (before reaching the optimum number of
processors).
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