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DISCRETIZATION METHODS FOR SEMILINEAR PARABOLIC
OPTIMAL CONTROL PROBLEMS

ION CHRYSSOVERGHI

(Communicated by B. Vulkov)

Abstract. We consider an optimal control problem described by semilin-

ear parabolic partial differential equations, with control and state constraints.

Since this problem may have no classical solutions, it is also formulated in the

relaxed form. The classical control problem is then discretized by using a finite

element method in space and the implicit Crank-Nicolson midpoint scheme in

time, while the controls are approximated by classical controls that are bilinear

on pairs of blocks. We prove that strong accumulation points in L2 of sequences

of optimal (resp. admissible and extremal) discrete controls are optimal (resp.

admissible and weakly extremal classical) for the continuous classical problem,

and that relaxed accumulation points of sequences of optimal (resp. admissi-

ble and extremal relaxed) discrete controls are optimal (resp. admissible and

weakly extremal relaxed) for the continuous relaxed problem. We then apply

a penalized gradient projection method to each discrete problem, and also a

progressively refining version of the discrete method to the continuous classical

problem. Under appropriate assumptions, we prove that accumulation points

of sequences generated by the first method are admissible and extremal for the

discrete problem, and that strong classical (resp. relaxed) accumulation points

of sequences of discrete controls generated by the second method are admissible

and weakly extremal classical (resp. relaxed) for the continuous classical (resp.

relaxed) problem. For nonconvex problems whose solutions are non-classical,

we show that we can apply the above methods to the problem formulated in

Gamkrelidze relaxed form. Finally, numerical examples are given.

Key Words. Optimal control, parabolic systems, discretization, piecewise

bilinear controls, penalized gradient projection method, relaxed controls.

1. Introduction

We consider an optimal distributed control problem for systems governed by a
semilinear parabolic boundary value problem, with control and state constraints.
The problem is motivated, for example, by the control of a heat (or another, e.g.
pollution) diffusion process involving a source, which is nonlinear in the heat and
temperature, with a possibly nonconvex cost, resulting in an optimal control prob-
lem, which is not necessarily convex. The scope of this paper is the study of dis-
cretization/optimization methods generating classical controls (instead of relaxed
ones used in our previous work, see [4]-[7] for the numerical solution of nonconvex
optimal control problems (but with a convex control constraint set), which may
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have classical, or non-classical relaxed, solutions. The problem is therefore also
formulated in relaxed form, using Young measures. The classical control prob-
lem is then discretized by using a Galerkin finite element method with continuous
piecewise linear basis functions in space and the implicit Crank-Nicolson midpoint
scheme in time, while the controls are approximated by classical controls that are
bilinear on pairs of blocks. We have adopted the midpoint scheme since it gives
good state approximation (under some smoothness) and yields a simple and purely
symmetric matching backward scheme for the adjoint discretization. On the other
hand, discontinuous double-blockwise bilinear controls generally give better overall
approximation of smooth, and in some cases piecewise smooth, optimal controls,
than blockwise constant ones (see numerical examples). They are well defined on
pairs of blocks due to the midpoint scheme used, and for consistency with mini-
mizations involving the Hamiltonian in the algorithms. We first state various useful
necessary optimality conditions for the continuous classical and relaxed problems,
and for the discrete problem. Under appropriate assumptions, we prove that strong
accumulation points in L2 of sequences of optimal (resp. admissible and extremal)
discrete controls are optimal (resp. admissible and weakly extremal classical) for the
continuous classical problem, and that relaxed accumulation points of sequences of
optimal (resp. admissible and extremal relaxed) discrete controls are optimal (resp.
admissible and weakly extremal relaxed) for the continuous relaxed problem. We
then apply a penalized gradient projection method to each discrete problem, and
also a corresponding discrete method to the continuous classical problem, which
progressively refines the discretization during the iterations, thus reducing comput-
ing time and memory. Under appropriate assumptions, we prove that accumulation
points of sequences generated by the fixed discretization method are admissible and
extremal for the discrete problem, and that strong classical (resp. relaxed) accumu-
lation points of sequences of discrete controls generated by the progressively refining
method are admissible and weakly extremal classical (resp. relaxed) for the con-
tinuous classical (resp. relaxed) problem. For nonconvex problems whose solutions
are non-classical, we show that we can apply the above methods to the problem for-
mulated in Gamkrelidze relaxed form. Using a standard procedure, the computed
Gamkrelidze controls can then be approximated by classical ones. For nonconvex
problems with smooth (or in some cases piecewise smooth) classical solutions, the
proposed discrete penalized gradient projection method often yields very accurate
numerical results. On the other hand, and if the control constraint set convex, the
Gamkrelidze formulation approach seems to give better results than pure relaxed
methods proposed in previous work (see e.g. [3]) when dealing with nonconvex
problems with non-classical solutions, since the approximation of the relaxed con-
trol by highly oscillating classical controls is replaced by the approximation of three,
possibly piecewise smooth, classical ones. Finally, several numerical examples are
given. For approximation of nonconvex optimal control and variational problems,
and of Young measures, see [1]-[7], [10]-[12].

2. The Continuous Optimal Control Problem

Let Ω be a bounded domain in Rd with a Lipschitz boundary Γ, and let I = (0, T ),
T <∞, be an interval. Consider the semilinear parabolic state equation

yt +A(t)y = f(x, t, y(x, t), w(x, t)) in Q = Ω× I,

y(x, t) = 0 in Σ = Γ× I and y(x, 0) = y0(x) in Ω,
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where A(t) is the second order elliptic differential operator

A(t)y = −
d∑

j=1

d∑
i=1

(∂/∂xi)[aij(x, t)∂y/∂xj ].

The constraints on the control are w(x, t) ∈ U in Q, where U is a compact subset
of Rd′ , the state constraints are

Gm(w) =
∫

Q

gm(x, t, y, w)dxdt = 0, m = 1, ..., p,

Gm(w) =
∫

Q

gm(x, t, y, w)dxdt 6 0, m = p+ 1, ..., q,

and the cost functional to be minimized

G0(w) =
∫

Q

g0(x, t, y, w)dxdt.

Define the set of classical controls

W = {w : (x, t) 7→ w(x, t)|w measurable from Q to U},

and the set of relaxed controls (Young measures; for the theory, see [18], [15])

R = {r : Q→M1(U)|r weakly measurable } ⊂ L∞w (Q,M(U)) ≡ L1(Q,C(U))∗,

where M(U) (resp. M1(U)) is the set of Radon (resp. probability) measures on U .
The set W is endowed with the relative strong topology of L2(Q) and the set R with
the relative weak star topology of L1(Q,C(U))∗. The set R is convex, metrizable
and compact. If we identify every classical control w(·) with its associated Dirac
relaxed control r(·) = δw(·), then W may be considered as a subset of R, and W

is thus dense in R. For a given function φ ∈ L1(Q,C(U)) = L1(Q̄, C(U)) (or
equivalently, for a given Caratheodory function φ in the sense of Warga [18]) and
r ∈ R, we shall use the notation

φ(x, t, r(x, t)) :=
∫

U

φ(x, t, u)r(x, t)(du).

We denote by | · | the Euclidean norm in Rn, by (·, ·) and ‖ · ‖ the inner product
and norm in L2(Ω), by (·, ·)Q and ‖ · ‖Q the inner product and norm in L2(Q), by
(·, ·)1 and ‖ · ‖1 the inner product and norm in the Sobolev space V = H1

0 (Ω), and
by < ·, · > the duality bracket between the dual V ∗ = H−1(Ω) and V . We also
define the usual bilinear form associated with A(t)

a(t, y, v) =
d∑

j=1

d∑
i=1

∫
Ω

aij(x, t)
∂y

∂xi

∂v

∂xj
dx.

The relaxed formulation of the above optimal control problem is the following. The
relaxed state equation (in weak form) is

< yt, v > +a(t, y, v) =
∫

Ω

f(x, t, y(x, t), r(x, t))v(x)dx, ∀v ∈ V, a.e. in I,

y(t) ∈ V a.e. in I, y(x, 0) = y0(x) a.e. in Ω,

the control constraint is r ∈ R, and the state constraints and cost functionals are

Gm(r) =
∫

Q

gm(x, t, y(x, t), r(x, t))dxdt, m = 0, ..., q.
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We suppose that the coefficients aij satisfy the ellipticity conditions
d∑

j=1

d∑
i=1

aij(x, t)zizj > α
d∑

i=1

z2
i , ∀zi ∈ R, a.e. in Q,

with α > 0, aij ∈ L∞(Q), which imply that

|a(t, y, v)| 6 α1‖y‖1‖v‖1, a(t, v, v) > α2‖v‖21, t ∈ I, v ∈ V,
for some α1 > 0, α2 > 0. We suppose that the function f is defined on Q×R×U,
measurable for fixed y, u, continuous for fixed x, t, and satisfies the condition

|f(x, t, y, u)| 6 ψ(x, t) + β|y|, ∀(x, t, y, u) ∈ Q× R× U,

with ψ ∈ L2(Q), β > 0, and the Lipschitz condition

|f(x, t, y1, u)− f(x, t, y2, u)| 6 L|y1 − y2|, ∀(x, t, y1, y2, u) ∈ Q× R× R× U,

Then, for every relaxed control r ∈ R and y0 ∈ L2(Ω), the state equation has a
unique solution y = yr such that y ∈ L2(I, V ), yt ∈ L2(I, V ∗); hence y is essentially
equal to a function in C(Ī , L2(Ω)), and thus the initial condition makes sense.

We suppose now in addition that the functions gm are defined on Q × R × U,
measurable for fixed y, u, continuous for fixed x, t, and satisfy

|gm(x, t, y, u)| 6 ζm(x, t) + ηmy
2, ∀(x, t, y, u) ∈ Q× R× U,

with ζm ∈ L1(Q), ηm > 0. The following lemma and theorem are proved in [4].

Lemma 2.1. The operators w 7→ yw, from W to L2(Q), and r 7→ yr, from R
to L2(Q), and the functionals w 7→ Gm(w) on W , and r 7→ Gm(r) on R, are
continuous.

Theorem 2.1. Under the above assumptions, if there exists an admissible control
(i.e. satisfying all the constraints), then there exists an optimal relaxed control.

It is well known that, even when the control set U is convex, the classical problem
may have no classical solutions. In order to state the various necessary conditions
for optimality, we suppose in addition that the functions f ,gm,fy,fu, gmy,gmu are
defined on Q × R × U ′, where U ′ is an open set containing the compact set U ,
measurable on Q for fixed (y, u) ∈ R × U and continuous on R × U for fixed
(x, t) ∈ Q, and satisfy

|gmy(x, t, y, u)| 6 ζm1(x, t) + ηm1|y|, ∀(x, t, y, u) ∈ Q× R× U,

|gmu(x, t, y, u)| 6 ζm2(x, t) + ηm2|y|, ∀(x, t, y, u) ∈ Q× R× U,

with ζm1, ζm2 ∈ L2(Q), ηm1, ηm2 > 0, and

|fy(x, t, y, u)| 6 L1, ∀(x, t, y, u) ∈ Q× R× U,

|fu(x, t, y, u)| 6 ζ(x, t) + η|y|, ∀(x, t, y, u) ∈ Q× R× U,

with ζ ∈ L2(Q), η > 0.
We now give some useful results concerning necessary conditions for optimality

(see also [9]).

Lemma 2.2. Dropping the index m in the functionals, for r, r′ ∈ R, the directional
derivative of the functional G, defined on R, is given by

DG(r, r′ − r) = lim
ε→0+

G(r + ε(r′ − r))−G(r)
ε

=
∫

Q

H(x, t, y, z, r′(x, t)− r(x, t))dxdt,
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where the Hamiltonian H is defined by

H(x, t, y, z, u) = zf(x, t, y, u) + g(x, t, y, u),

and the adjoint state z = zr satisfies the equation

− < zt, v > +a(t, v, z) = (zfy(t, y, r) + gy(t, y, r), v), ∀v ∈ V, a.e. in I,

z(t) ∈ V a.e. in I, z(x, T ) = 0 a.e. in Ω,

where y = yr. The mappings r 7→ zr, from R to L2(Q), and (r, r′) 7→ DG(r, r′− r),
from R×R to R, are continuous.

Theorem 2.2. If r ∈ R is optimal for either the relaxed or the classical optimal
control problem, then r is strongly extremal relaxed, i.e. there exist multipliers

λm ∈ R, m = 0, ..., q, with λ0 > 0, λm > 0, m = p + 1, ..., q,
q∑

m=0
|λm| = 1, such

that
q∑

m=0

λmDGm(r, r′ − r) > 0, ∀r′ ∈ R,

and λmGm(r) = 0, m = p+ 1, ..., q (transversality conditions) .

The above inequalities are equivalent to the strong relaxed pointwise minimum prin-
ciple

H(x, t, y(x, t), z(x, t), r(x, t)) = min
u∈U

H(x, t, y(x, t), z(x, t), u), a.e. in Q,

where H and z are defined with g =
q∑

m=0
λmgm.

If U is convex, then this minimum principle implies the weak relaxed pointwise
minimum principle

Hu(x, t, y, z, r(x, t))r(x, t) = min
φ
Hu(x, t, y, z, r(x, t))φ(x, t, r(x, t)), a.e. in Q,

where the minimum is taken over the set B(Q,U ;U) of Caratheodory functions
φ : Q× U → U (see [18]), which in turn implies the global weak relaxed condition∫

Q

Hu(x, t, y, z, r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt > 0, ∀φ ∈ B(Q,U ;U).

A control r satisfying this condition and the above transversality conditions is called
weakly extremal relaxed.

Proof. The first part of the theorem is proved using the techniques of [18] (mainly
Theorem V.3.2, see also [4]). Now, the strong relaxed minimum principle can be
written in the compact form, for a.a. (x, t) ∈ Q, (x, t) fixed∫

U

H(u)r(du) 6 H(u), ∀u ∈ U.

Let φ : Q × U → U be any Caratheodory function (φ ∈ B(Q,U ;U)). Since U is
convex here, we have∫

U

H(u)r(du) 6 H(u+ ε(φ(u)− u)), ∀u ∈ U, ∀ε ∈ [0, 1],

hence ∫
U

H(u)r(du) 6
∫

U

H(u+ ε(φ(u)− u))r(du).
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By the Mean Value Theorem and the uniform continuity of H in u

0 6
∫

U

H(u+ ε(φ(u)− u))−H(u)
ε

r(du)

=
∫

U

Hu(u+ εµ(u)(φ(u)− u))(φ(u)− u)r(du) (0 6 µ(u) 6 1)

=
∫

U

Hu(u)(φ(u)− u)r(du) + α(ε),

where α(ε) → 0 as ε→ 0, hence∫
U

Hu(u)(φ(u)− u)r(du) = H ′
u(r)(φ(r)− r) > 0,

for every φ ∈ B(Q,U ;U), a.e. in Q, which is the weak relaxed minimum principle.
By integration, we get the global weak relaxed condition∫

Q

Hu(r)(φ(r)− r)dxdt > 0, ∀φ ∈ B(Q,U ;U).

�

Lemma 2.3. We suppose that U is convex, and drop the index m. For w,w′ ∈W ,
the directional derivative of the functional G, defined on W , is given by

DG(w,w′ − w) = lim
ε→0+

G(w + ε(w′ − w))−G(w)
ε

=
∫

Q

Hu(x, t, y, z)(w′ − w)dxdt,

where the adjoint state z = zw satisfies the equation

− < zt, v > +a(t, v, z) = (zfy(t, y, w) + gy(t, y, w), v), ∀v ∈ V, a.e. in I,

z(x, t) = 0 in Σ, z(x, T ) = 0 in Ω, y = yw.

The mappings w 7→ zw, from W to L2(Q), and (w,w′) 7→ DG(w,w′ − w), from
W ×W to R, are continuous.

In the above notations of DG, it is understood, depending on the notation used
for the arguments, that the directional derivative is taken in the corresponding
space, W or R, on which G is defined.

Theorem 2.3. If w ∈ W is optimal for the classical problem, then w is weakly
extremal classical, i.e. there exist multipliers λm as in Theorem 2.2 such that

q∑
m=0

λmDGm(w,w′ − w) > 0, ∀w′ ∈W,

aand λmGm(w) = 0, m = p+ 1, ..., q (transversality conditions).
The above inequalities are equivalent to the weak classical pointwise minimum prin-
ciple

Hu(x, t, y, z, w(x, t))w(x, t) = min
u∈U

Hu(x, t, y, z, w(x, t))u, a.e. in Q,

where H and z are defined with g =
q∑

m=0
λmgm.

Proof. Similar to Theorem 2.2, using here Theorem V.2.3 in [18]. �
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3. The discrete optimal control problems

We suppose here that the domain Ω is a polyhedron for simplicity, that a(t, u, v) is
independent of t and symmetric, the functions f ,fy,fu, gm,gmy,gmu are continuous
on Q̄ × R × U (possibly finitely piecewise in t), the functions ψ, ζm, ηm, ζm1, ζm2,
ηm1, ηm2 are constant, and y0 ∈ V := H1

0 (Ω). For each integer n > 0, let {En
i }

M(n)
i=1

be an admissible regular quasi-uniform triangulation of Ω̄ into closed d-elements
(e.g. d-simplices), with hn = maxi[diam(En

i )] → 0 as n → ∞, and {In
j }

N(n)
j=1 , with

N(n) = 2N ′(n), a subdivision of the interval Ī into closed intervals In
j = [tnj−1, t

n
j ],

of equal length ∆tn, with ∆tn → 0 as n→∞. We define the blocks Qn
ij = En

i × In
j .

Let V n ⊂ V be the subspace of functions that are continuous on Ω̄ and linear (i.e.
affine) on each Sn

i . The set of discrete controls Wn is the set of controls that are
bilinear (biaffine), i.e. a product of a linear function of x by a linear function of t,
on the interior of each double block Qn

i,2k−1 ∪ Qn
i,2k, i = 1, ...,M , k = 1, ..., N ′. A

discrete control
wn ≈ (w̄n

ij)ij = [w̄n
i,2k−1, w̄

n
i,2k]ik ∈Wn

is uniquely determined by its (limit) values at the vertices of each block Qn
ij and

the midpoints t̄n2k−1, t̄
n
2k of the consecutive pairs of intervals In

2k−1, I
n
2k

w̄ln
i,2k−1, w̄

ln
i,2k, i = 1, ...,M, k = 1, ..., N ′, l = 1, ..., d+ 1,

where l corresponds to the vertex xln
i of En

i . The set of acceptable discrete controls
Wn

a ⊂ Wn is the subset of discrete controls satisfying in addition the following
linear constraints on the values at the endpoints of the double intervals In

2k−1 ∪ In
2k

c1 6 w̄ln
i,2k−1 − (w̄ln

i,2k − w̄ln
i,2k−1)/2 6 c2, c1 6 w̄ln

i,2k + (w̄ln
i,2k − w̄ln

i,2k−1)/2 6 c2,

i = 1, ...,M, k = 1, ..., N ′, l = 1, ..., d+ 1,

which guarantee that wn(x, t) ∈ U a.e. in Q, and on the derivatives

|∇xw
n(x, t)| 6 cx (optional) , |∂tw

n(x, t)| 6 ct, a.e. in Q,

Since wn is piecewise bilinear, the inequality for ∂t a.e. in Q is equivalent to the
linear constraints

−ct∆tn 6 w̄ln
i,2k − w̄ln

i,2k−1 6 ct∆tn, i = 1, ...,M, k = 1, ..., N ′, l = 1, ..., d+ 1.

We also define the simplexwise linear midsections of wn at each midpoint t̄nj

w̄n
j (x) = wn(x, t̄nj ), a.e. in Ω, j = 1, ..., N.

Remark. Note that all the results in this article remain valid (with obvious simpli-
fications) if we define Wn

a to be the set of controls that are constant on the interior
of each block Qn

ij , with values in U .
For a given discrete control

wn ≈ (w̄n
j )j=1,...,N ∈Wn, with w̄n

j = (w̄n
ij)i=1,...,M ,

the corresponding discrete state yn = (yn
0 , ..., y

n
N ) is given by the discrete state

equation (implicit Crank-Nicolson midpoint scheme)

(1/∆tn)(yn
j − yn

j−1, v
n) + a(ȳn

j , v
n) = (f(t̄nj , ȳ

n
j , w̄

n
j ), vn), ∀vn ∈ V n, j = 1, ..., N,

(yn
0 − y0, vn)1 = 0, ∀vn ∈ V n, yn

j ∈ V n, j = 0, ..., N,

with ȳn
j = (yn

j−1 + yn
j )/2, t̄nj = (tnj−1 + tnj )/2.
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Note that the discrete state depends only on the piecewise linear midsections (func-
tions of x) w̄n

1 , ..., w̄
n
N of the discrete control wn. For ∆tn sufficiently small, depend-

ing on the Lipschitz constant L of f , and for each j, this scheme has a unique solu-
tion yn

j , which can be computed by the standard predictor-corrector method, where
a regular linear system is involved, and where the corrector scheme is contractive.
The discrete functionals are defined by

Gn
m(wn) = ∆tn

N∑
j=1

∫
Ω

gm(x, t̄nj , ȳ
n
j , w̄

n
j )dx.

The discrete control constraint is wn ∈ Wn
a , and the discrete state constraints are

either of the two following ones

Case (a) |Gn
m(wn)| 6 εn

m, m = 1, ..., p,

Case (b) Gn
m(wn) = εn

m, m = 1, ..., p,

and
Gn

m(wn) 6 εn
m, ε

n
m > 0, m = p+ 1, ..., q,

where the feasibility perturbations εn
m are chosen numbers converging to zero, to

be defined later. The straightforward proof of the following lemma is omitted.

Lemma 3.1. The operators wn 7→ yn
j and the discrete functionals wn 7→ Gn

m(wn),
defined on Wn

a , are continuous. If any of the discrete problems is feasible, then there
exists an optimal control for this problem.

Lemma 3.2. Dropping the index m, for wn, w′n ∈Wn
a , the directional derivative

of the functional Gn is given by

DGn(wn, w′n − wn) = ∆tn
N∑

j=1

(Hu(t̄nj , ȳ
n
j , z̄

n
j , w̄

n
j ), w̄

′n
j − w̄n

j ),

where the discrete adjoint zn is given by the scheme

−(1/∆tn)(zn
j − zn

j−1, v
n) + a(vn, z̄n

j ) = (z̄n
j fy(t̄nj , ȳ

n
j , w̄

n
j ) + gy(t̄nj , ȳ

n
j , w̄

n
j ), vn),

∀vn ∈ V n, j = N, ..., 1, zn
N = 0, zn

j ∈ V n, j = N, ..., 0,

which has a unique solution zn
j−1 for ∆tn sufficiently small, and for each j. More-

over, the operator wn 7→ zn and the functional (wn, w′n) 7→ DGn(wn, w′n − wn)
are continuous.

The proofs of the two following theorems parallel the continuous case and are
omitted.

Theorem 3.1. If wn ∈ Wn
a is optimal for the discrete problem (constraint Case

(b)), then it is discrete weakly extremal classical, i.e. there exist multipliers λn
m ∈ R,

m = 0, ..., q, with λn
0 > 0, λn

m > 0, m = p+ 1, ..., q,
q∑

m=0
|λn

m| = 1, such that

q∑
m=0

λn
mDG

n
m(wn, w′n − wn) = ∆tn

N∑
j=1

(Hn
u (t̄nj , ȳ

n
j , z̄

n
j , w̄

n
j ), w̄

′n
j − w̄n

j ) > 0,

∀w′n ∈Wn
a ,

and λn
m[Gm(wn)− εn

m] = 0, m = p+ 1, ..., q,
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where Hn and zn are defined with g =
q∑

m=0
λn

mgm. The above global inequality condi-

tion is equivalent to the discrete weak classical double-blockwise minimum principle∫
En

i

[Hn
u (x, t̄n2k−1, ȳ

n
2k−1, z̄

n
2k−1, w̄

n
i,2k−1)w̄

n
i,2k−1+Hn

u (x, t̄n2k, ȳ
n
2k, z̄

n
2k, w̄

n
i,2k)w̄n

i,2k]dx

= min
w
′n
i,2k−1, w

′n
i,2k

∫
En

i

[Hn
u (x, t̄n2k−1, ȳ

n
2k−1, z̄

n
2k−1, w̄

n
i,2k−1)w̄

′n
i,2k−1

+Hn
u (x, t̄n2k, ȳ

n
2k, z̄

n
2k, w̄

n
i,2k)w̄

′n
i,2k]dx, i = 1, ...,M, k = 1, ..., N ′,

where the minimum is taken, for each i, k, over all pairs [w
′n
i,2k−1, w

′n
i,2k] subject to

the linear constraints on the values and derivatives defining the set Wn
a .

4. Behavior in the limit

Let W̄n
a denote the set of discrete controls that are constant on the interior of each

double block Qn
i,2k−1 ∪ Qn

i,2k, k = 1, ..., N ′, with values in U . Clearly, W̄n
a ⊂ Wn

a .
The following classical control approximation result (a) is proved similarly to the
lumped parameter case (see [13]), and the second (b) is proved in [4].

Proposition 4.1. (a) For every w ∈ W , there exists a sequence (wn ∈ W̄n
a ) that

converges to w in L2 strongly.
(b) For every r ∈ R, there exists a sequence (wn ∈ W̄n

a ) that converges to w in R.

Lemma 4.1. (Stability) We suppose that ∆tn 6 C(hn)2, for some constant C
independent of n. If ∆t is sufficiently small, for every wn ∈ Wn

a , we have the
following inequalities, where the constants c are independent of n

(i) ‖yn
k ‖ 6 c, k = 0, ..., N, (ii)

N∑
j=1

∥∥yn
j − yn

j−1

∥∥2
6 c,

(iii) ∆tn
N∑

j=1

∥∥ȳn
j

∥∥2

1
6 c, (iv) ∆tn

N∑
j=0

∥∥yn
j

∥∥2

1
6 c.

Proof. Dropping the index n for simplicity of notation, setting v = 2∆tyj in the
discrete equation, and using our assumptions on a, f and the Cauchy-Schwarz in-
equality, we have

‖yj − yj−1‖2 + ‖yj‖2 − ‖yj−1‖2 +
∆t
2

[4a(ȳj , ȳj) + a(yj , yj)− a(yj−1, yj−1)]

6 2∆t|(f(t̄j , ȳj , w̄j), yj)| 6 c∆t(1 + ‖yj‖+ ‖yj−1‖)‖yj‖

6 c∆t(1 + ‖yj−1‖2 + ‖yj‖2) 6 c∆t(1 + ‖yj−1‖2 + ‖yj − yj−1‖2),
hence, for ∆t 6 1/2c

1
2
‖yj − yj−1‖2 + ‖yj‖2 − ‖yj−1‖2 +

∆t
2

[4a(ȳj , ȳj) + a(yj , yj)− a(yj−1, yj−1)]

6 c∆t(1 + ‖yj−1‖2).
By summation over j = 1, ..., k, we obtain

1
2

k∑
j=1

‖yj − yj−1‖2 + ‖yk‖2 + 2α2∆t
k∑

j=1

‖ȳj‖21

6 ‖y0‖2 + α1
∆t
2
‖y0‖21 + c∆t

k∑
j=1

(1 + ‖yj−1‖2).
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Since ‖y0‖ and ‖y0‖1 remain bounded, using the discrete Bellman-Gronwall in-
equality (see [17]), we obtain inequality (i), and inequalities (ii), (iii) follow. By the
inverse inequality (see [8]), the condition ∆tn 6 C(hn)2, and inequality (ii), we get

∆t
N∑

j=1

‖yj − yj−1‖21 6
∆t
h2

N∑
j=1

‖yj − yj−1‖2 6 C
N∑

j=1

‖yj − yj−1‖2 6 c.

Inequality (iv) follows easily from this inequality and inequality (iii). �

For given values v0, ..., vN in a vector space, define the piecewise constant and
continuous piecewise linear functions

v−(t) = vj−1, v+(t) = vj , v̄(t) = (vj−1 + vj)/2, t ∈
o

In
j , j = 1, ..., N,

v∧(t) = vj−1 +
t− tnj−1

∆tn
(vj − vj−1), t ∈ In

j , j = 1, ..., N.

Remark. Note that for any sequence (wn ∈Wn
a ), we have

|wn(x, t)−w̄n(x, t)|=
∣∣wn(x, t)−wn(x, t̄j)

∣∣6 ∆tn

2
sup
t∈In

j

|∂tw
n|, x ∈ Ω, t ∈ In

j ,

and due to the constraint on the derivative ∂tw
n

‖wn − w̄n‖∞ 6
∆tn

2
ct → 0, as n→∞.

It follows that wn → w if and only if w̄n → w, in L2 strongly or weakly. It follows
also from the definition of the weak star convergence in R that wn → r in R ((wn)
considered as a sequence in R) if and only if w̄n → r in R.

Lemma 4.2. (Consistency) Under the condition ∆tn 6 C(hn)2, if wn → w ∈W
in L2 strongly (resp. wn → r in R, the wn considered as relaxed controls), then
the corresponding discrete states yn

−, y
n
+, ȳ

n, yn
∧ converge to yw (resp. yr) in L2(Q)

strongly, as n→∞, and

lim
n→∞

Gn
m(wn) = Gm(w)( resp. lim

n→∞
Gn

m(rn) = Gm(r)), m = 0, ..., q.

Proof. By the above remark, we have also w̄n → w in L2 (resp. w̄n → r in R).
Since, by Lemma 4.1 (iii), yn

− and yn
+ are bounded in L2(I, V ), it follows from the

definition of yn
∧ that yn

∧ is also bounded in L2(I, V ). By extracting a subsequence,
we can suppose that yn

∧ → y in L2(I, V ) weakly (hence in L2(Q) weakly), for some
y. The discrete state equation can be written in the form

d

dt
(yn
∧(t), vn) = (ψn(t), vn)1, ∀vn ∈ V n, a.a. t ∈ (0, T ),

in the scalar distribution sense, where the piecewise constant function ψn is defined,
using Riesz’ representation theorem, by

(ψn
j (t), vn)1 = −a(ȳn

j , v
n) + (f(t̄nj , ȳ

n
j , w̄

n
j ), vn), in

o

In
j , j = 1, ..., N.

By our assumptions, we have, for j = 1, ..., N∣∣(ψn
j , v

n)1
∣∣ 6 c[

∥∥ȳn
j

∥∥
1
‖vn‖1 + (1 +

∥∥ȳn
j

∥∥)‖vn‖] 6 c(1 +
∥∥ȳn

j

∥∥
1
)‖vn‖1,

hence ∥∥ψn
j

∥∥
1

6 c(1 +
∥∥ȳn

j

∥∥
1
) and

∥∥ψn
j

∥∥2

1
6 c(1 +

∥∥ȳn
j

∥∥2

1
).

Therefore, using Lemma 4.1 (iii)∫ T

0

‖ψn(t)‖21dt 6 c(1 +
∫ T

0

‖ȳn‖21dt) 6 c,
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which shows that ψn belongs to L2(I, V ), hence to L1(I, V ). Following the proof
of Lemma 5.6 in [16], it can then be shown that∫ +∞

−∞
|τ |2ρ‖ŷn

∧(τ)‖2dτ 6 c, for ρ < 1/4,

where ŷn
∧ denotes the Fourier transform of yn

∧ (extended by 0 outside [0, T ]). By
the 2nd Compactness Theorem in [16], p. 274, there exists a subsequence (same
notation) such that yn

∧ → ỹ in L2(Q) strongly, for some ỹ, and we must have ỹ = y,
since ŷn

∧ → y also in L2(Q) weakly. Since, by Lemma 4.1 ((ii) multiplied by ∆t),
yn
+−yn

− → 0 in L2(Q), we have also ȳn → y in L2(Q) strongly. Finally, similarly to
the proof of Lemma 4.3 in [4], we can pass to the limit in the weak discrete equation,
integrated in t, using Proposition 2.1 in [3] for the nonlinear term, and show that
y = yw, or y = yr. The last convergences follow using the same Proposition. �

In the sequel, we suppose (theoretically) that there exists a constant C such that
∆tn 6 C(hn)2, for every n. Note that this condition (in fact, the inverse inequality
used to derive inequality (iv)) is a worst case one. In practice, the corresponding
sequences of gradients (∇yn) constructed by the algorithms are often bounded in
L2(Q), or even in L∞(Q), and the above condition is not needed. We suppose
also that the considered continuous classical or relaxed problem is feasible. The
following theorem is a theoretical result concerning the behavior in the limit of
optimal discrete controls.

Theorem 4.1. In the presence of state constraints, we suppose that the sequences
(εn

m) in the discrete state constraints (Case (a)) converge to zero as n → ∞ and
satisfy

|Gn
m(w̃n)| 6 εn

m, m = 1, ..., p, Gn
m(w̃n) 6 εn

m, ε
n
m > 0, m = p+ 1, ..., q,

for every n, where (w̃n ∈ Wn ⊂ R) is a sequence converging in L2 strongly (resp.
in R) to an optimal control w̃ ∈ W (resp. r̃ ∈ R) of the classical (resp. relaxed)
problem, if it exists (resp. which always exists). For each n, let wn be optimal
for the discrete problem (Case (a)). Then every strong classical (resp. relaxed)
accumulation point of (wn), if it exists (resp. which always exists), is optimal for
the continuous classical (resp. relaxed) problem.

Proof. The proof is similar to that of Theorem 4.1 in [6], using here Lemma 4.2.
Note that our assumption implies that the discrete problems are feasible for every
n. �

Lemma 4.3. (Consistency) If wn → w ∈ W in L2 strongly, or if wn → r in R
(the wn considered here as relaxed controls), then the corresponding discrete adjoint
states zn

−, z
n
+, z̄

n, zn
∧ converge to zw in L2(Q) strongly, as n→∞. If wn → w ∈W

and w′n → w′ ∈W , in L2 strongly, then

lim
n→∞

DGn
m(wn, w′n − wn) = DGm(w,w′ − w), m = 0, ..., q.

Proof. The proof is similar to that of Lemma 4.2, using also Lemma 4.2. �

Next, we study the behavior in the limit of extremal discrete controls. Con-
sider the discrete problems with state constraints (Case (b)). We shall construct
sequences of perturbations (εn

m) converging to zero and such that the discrete prob-
lem is feasible for every n. Let w′n ∈ Wn be any solution of the problem without
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state constraints

cn = min
wn∈W n

{
p∑

m=1

[Gn
m(wn)]2 +

q∑
m=p+1

[max(0, Gn
m(wn))]2},

and set

εn
m = Gn

m(w′n), m = 1, ..., p, εn
m = max(0, Gn

m(w′n)), m = p+ 1, ..., q.

Let ṽ be an admissible control for the continuous classical (resp. relaxed) problem,
and (w̃n ∈ W̄n

a ) a sequence converging to ṽ in L2 strongly (resp. in R) (Proposi-
tion 4.1). We have

lim
n→∞

[Gn
m(w̃n)]2 = [Gm(ṽ)]2 = 0, m = 1, ..., p,

lim
n→∞

[max(0, Gn
m(w̃n))]2 = [max(0, Gm(ṽ))]2 = 0, m = p+ 1, ..., q,

which imply a fortiori that cn → 0, hence εn
m → 0, m = 1, ..., q. Then clearly the

discrete problem (Case (b)) is feasible for every n, for these perturbations εn
m. We

suppose in the sequel that the εn
m are chosen as in the above minimum feasibility

procedure. Note that we often find cn = 0, for large n, due to sufficient discrete
controllability, in which case the perturbations εn

m are equal to zero.

Theorem 4.2. For each n, let wn be admissible and extremal for the discrete
problem (Case (b)). Then
(i) Every strong accumulation point of the sequence (wn) in L2 is admissible and
weakly extremal classical for the continuous classical problem,
(ii) Every relaxed accumulation point of (wn) is admissible and weakly extremal
relaxed for the continuous relaxed problem.

Proof. (i) The passage to the strong limit in the discrete principle in global form
is proved similarly to Theorem 4.2 in [6], using here Proposition 2.1 in [3], Propo-
sition 4.1 and Lemmas 4.2, 4.3.

(ii) Since R is compact and
q∑

m=0
|λn

m| = 1, let (wn), (λn
m), m = 0, ..., q, be subse-

quences such that wn → r in R and λn
m → λm, m = 0, ..., q, and consider the

discrete principle in global form, which can be written∫
Q

Hn
u (x, t̄n, ȳn, z̄n, w̄n)(w̄′n − w̄n)dxdt > 0, ∀w′n ∈Wn

a .

For every continuous function φ : Q× U → U , we then have∫
Q

Hu(x, t̄n, ȳn, z̄n, w̄n)[φ(x̄n(x), t̄n(t), w̄n)− w̄n]dxdt > 0,

where we set x̄n(x) = barycenter of Sn
i , for x ∈

o

Sn
i , i = 1, ...,M. Passing to the

limit, by Lemmas 4.2, 4.3 and Proposition 2.1 in [3], we obtain∫
Q

Hu(x, t, y, z, r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt

=
∫

Q

∫
U

Hu(x, t, y, z, r(x, t))[φ(x, t, u)− u)]r(du)dxdt > 0, for every such φ.

Now let φ : Q × U → U be any Caratheodory function, or equivalently, φ ∈
L1(Q,C(U ;U)), and let (φk) be a sequence in C(Q × U ;U) converging to φ in
L1(Q,C(U ;U)). By Egorof’s theorem, we can suppose that φk → φ a.e. in Q,
with values in C(U ;U), hence a.e. in Q× U , with values in U . Replacing φ by φk

in the above inequality and using Lebesgue’s dominated convergence theorem (the
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integrand is clearly bounded by a fixed function in L1(Q×U)), we can pass to the
limit as k → ∞ and obtain the global weak relaxed condition. Finally, we pass to
the limit as n→∞ in the transversality conditions and the state constraints as in
Theorem 4.2 in [6]. �

5. Discrete penalized gradient methods

We suppose here that U is convex. Let (M l
m), m = 1, ..., q, be nonnegative in-

creasing sequences such that M l
m →∞ as l→∞, and define the penalized discrete

functionals

Gnl(wn) = Gn
0 (wn) + (1/2){

p∑
m=1

M l
m[Gn

m(wn)]2 +
q∑

m=p+1

M l
m[max(0, Gn

m(wn))]2}.

Let γ > 0, b, c ∈ (0, 1), and let (βl), (ζk) be positive sequences, with (βl) decreasing
and converging to zero, and ζk 6 1. The algorithm described below contains vari-
ous options. In the case of the progressively refining version, we suppose that each
element En+1

i′ is a subset of some element En
i and that either N(n+ 1) = N(n) or

N(n + 1) = µN(n), for some integer µ > 2. In this case, we have Wn
a ⊂ Wn+1

a ,
and thus a control wn ∈ Wn

a may be considered also as belonging to Wn+1
a , hence

the computation of states, adjoints and functional derivatives for this control, but
with the possibly finer discretization n+ 1, makes sense.

Algorithm
Step 1. Set k = 0, l = 1, choose a value of n and an initial control wn1

0 ∈Wn
a .

Step 2. Find vnl
k ∈Wn

a such that

ek = DGnl(wnl
k , v

nl
k − wnl

k ) +
γ

2

∥∥v̄nl
k − w̄nl

k

∥∥2

Q

= min
v′n∈W n

a

[DGnl(wnl
k , v

′n − wnl
k ) +

γ

2

∥∥v̄′n − w̄nl
k

∥∥2

Q
],

and set dk = DGnl(wnl
k , v

nl
k − wnl

k ).
Step 3. If |ek| 6 βl, set wnl = wnl

k , vnl = vnl
k , dl = dk, el = ek, l = l+1, [n = n+1],

and go to Step 2.
Step 4. (Armijo step search) Find the lowest integer value s ∈ Z, say s̄, such that
α(s) = csζk ∈ (0, 1] and α(s) satisfies the inequality

Gnl(wnl
k + α(s)(vnl

k − wnl
k ))−Gnl(wnl

k ) 6 α(s)bek,

and set αk = α(s̄).
Step 5. Set wnl

k+1 = wnl
k + αk(vnl

k − wnl
k ), k = k + 1, and go to Step 2.

In the above Algorithm, we consider two versions:
Version A. “n = n + 1” is skipped in Step 3: n is a constant integer chosen in
Step 1, i.e. we choose a fixed discretization and replace the discrete functionals Gn

m

by the perturbed ones G̃n
m = Gn

m − εn
m.

Version B. “n = n+ 1” is not skipped in Step 3: we have a progressively refining
discrete method, i.e. n→∞ (see proof of Theorem 5.1 below), in which case we can
take n = 1 in Step 1, hence n = l in the Algorithm. This version has the advantage
of reducing computing time and memory, and also of avoiding the computation of
the minimum feasibility perturbations εn

m.
If γ > 0, we have a penalized gradient projection method, in which case we can

easily see “by completing the square” that Step 2 amounts to finding, independently
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for each i = 1, ...,M , k′ = 1, ..., N ′, the projection [v̄nl
ki,2k′−1, v̄

nl
ki,2k′ ] of the pair of

functions in [L2(Sn
i )]2

ūnl
ki,2k′−1 = w̄nl

ki,2k′−1 − (1/γ)Hn
u (t̄n2k′−1, ȳ

nl
i,2k′−1, z̄

nl
i,2k′−1, w̄

nl
i,2k′−1),

ūnl
ki,2k′ = w̄nl

ki,2k′ − (1/γ)H
′n
u (t̄n2k′ , ȳ

nl
i,2k′ , z̄

nl
i,2k′ , w̄

nl
i,2k′),

onto the convex subset of [L2(Sn
i )]2 of pairs of bilinear functions [v̄

′nl
i,2k′−1, v̄

′nl
i,2k′ ] sat-

isfying the linear acceptability constraints definingWn
a , which in turn reduces to the

minimization of a quadratic function of the coefficients of the controls v̄
′nl
i,2k′−1, v̄

′nl
i,2k′

on a convex set. The parameter γ is chosen here experimentally to yield a good
convergence rate. If γ = 0, the above Algorithm is a penalized conditional gradient
(Frank-Wolfe) method, and Step 2 reduces similarly to the minimization of a linear
function on a convex set, for each i, k′. On the other hand, since clearly dk 6 ek 6 0
and b ∈ (0, 1), by the definition of the directional derivative the Armijo step αk in
Step 4 can be found for every k.

A (continuous classical or relaxed, or discrete) extremal control is called abnormal
if there exist multipliers as in the corresponding optimality conditions, with λ0 =
0 (or λn

0 = 0). A control is admissible and abnormal extremal in exceptional,
degenerate, situations (see [18]).

With wnl defined in Step 3, define the sequences of multipliers

λnl
m = M l

mG
n
m(wnl), m = 1, ..., p, λnl

m = M l
m max(0, Gn

m(wnl)), m = p+ 1, ..., q,

Theorem 5.1. (i) In Version B, let (wnl) be a subsequence, considered as a se-
quence in R, of the sequence generated by the Algorithm in Step 3 that converges
to some r in the compact set R, as l → ∞ (hence n → ∞). If the sequences (λnl

m)
are bounded, then r is admissible and weakly extremal relaxed for the continuous
relaxed problem.
(ii) In Version B, if (wnl) is a subsequence of the sequence generated by the Algo-
rithm in Step 3 that converges to some w ∈ W in L2 strongly, as l → ∞ (hence
n → ∞). If the sequences (λnl

m) are bounded, then w is admissible and weakly
extremal classical for the continuous classical problem.
(iii) In Version A, let (wnl), n fixed, be a subsequence of the sequence generated by
the Algorithm in Step 3 that converges to some wn ∈Wn

a as l→∞. If the sequences
(λnl

m) are bounded, then wn is admissible and extremal for the fixed discrete problem.
(iv) In any of the three convergence cases (i), (ii), (iii), suppose that the (discrete
or continuous) limit problem has no admissible, abnormal extremal, controls. If the
limit control is admissible, then the sequences of multipliers are bounded, and this
control is extremal as above.

Proof. We shall first show that l→∞ in the Algorithm. Suppose, on the contrary,
that l, hence n (in both versions A, B), remains constant after a finite number
of iterations in k, and so we drop here the indices l and n. Let us show that
then ek → 0. Since Wn

a is compact, let (wk)k∈K , (vk)k∈K be subsequences of the
sequences generated in Steps 2 and 5 such that wk → w̃, vk → ṽ, in Wn

a , as
k →∞, k ∈ K. By Step 2, dk 6 ek 6 0 for every k, hence

e = lim
k→∞, k∈K

ek = DG(w̃, ṽ − w̃) +
γ

2
‖ṽ − w̃‖2Q 6 0,

d = lim
k→∞, k∈K

dk = DG(w̃, ṽ − w̃) 6 lim
k→∞, k∈K

ek = e ≤ 0.

Suppose that e < 0, hence d < 0. The function Φ(α) = G(w+α(v−w)) is continuous
on [0, 1]. Since the directional derivative DG(w, v − w) is linear w.r.t. v − w, Φ is
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differentiable on (0, 1) and has derivative Φ′(α) = DG(w+α(v−w), v−w). Using
the Mean Value Theorem, we have, for each α ∈ (0, 1]

G(wk + α(vk − wk))−G(wk) = αDG(wk + α′(vk − wk), vk − wk),

for some α′ ∈ (0, α). Therefore, for α ∈ [0, 1], by the continuity of DG (Lemma 3.1)

G(wk + α(vk − wk))−G(wk) = α(d+ εkα),

where εkα → 0 as k →∞, k ∈ K, and α → 0+. Now, we have dk = d+ ηk, where
ηk → 0 as k →∞, k ∈ K, and since b ∈ (0, 1)

d+ εkα 6 b(d+ ηk) = bdk,

for α ∈ [0, ᾱ], for some ᾱ > 0, and k > k̄, k ∈ K. Hence

G(wk + α(vk − wk))−G(wk) 6 αbdk 6 αbek,

for α ∈ [0, ᾱ], for some ᾱ > 0, and k > k̄, k ∈ K. It follows from the choice of the
Armijo step αk in Step 4 that αk > cᾱ, for k > k̄, k ∈ K. Hence

G(wk+1)−G(wk) = G(wk + αk(vk − wk))−G(wk) 6 αkbek 6 cᾱbek 6 cᾱbe/2,

for k > k̄, k ∈ K. It follows that G(wk) → −∞ as k → ∞, k ∈ K, which
contradicts the fact that G(wk) → G(w̃) as k →∞, k ∈ K, by the continuity of the
discrete functional (Lemma 3.1). Therefore, we must have e = 0, and ek → e = 0,
for the whole sequence, since the limit 0 is unique. But Step 3 then implies that
l → ∞, which is a contradiction. Therefore, l → ∞. This shows also that n → ∞
in Version B.
(i) Let (wnl) be a subsequence (same notation), considered as a sequence in R,
of the sequence generated in Step 3, that converges to some accumulation point
r ∈ R as l, n → ∞. Suppose that the sequences (λnl

m) are bounded and (up to
subsequences) that λnl

m → λm. By Lemma 4.2, we have

0 = lim
l→∞

λnl
m

M l
m

= lim
l→∞

Gn
m(wnl) = Gm(r), m = 1, ..., p,

0 = lim
l→∞

λnl
m

M l
m

= lim
l→∞

[max(0, Gn
m(wnl))] = max(0, Gm(r)), m = p+ 1, ..., q,

which show that r is admissible. Now, by Steps 2 and 3 we have, for every v′n ∈Wn
a

DGnl(wnl, v′n − wnl) + (γ/2)
∥∥v̄′n − w̄nl

∥∥2

Q

= DGn
0 (wnl, v

′n − wnl) +
p∑

m=1

λnl
mDG

n
m(wnl, v

′n − wnl)

+
q∑

m=p+1

λnl
mDG

n
m(wnl, v

′n − wnl) + (γ/2)
∥∥∥v̄′n − w̄nl

∥∥∥2

Q

=
∫

Q

Hnl
u (x, t̄n, ȳnl, z̄nl, w̄nl)(v̄

′n − w̄nl)dxdt+ (γ/2)
∫

Q

∣∣v̄′n − w̄nl
∣∣2dxdt > el,

with involved multipliers λnl
m . Choosing any continuous function φ : Q̄ × U → U

and setting x̄n(x) = barycenter of Sn
i , for x ∈

o

Sn
i , i = 1, ...,M, we have∫

Q

Hnl
u (x, t̄n, ȳnl, z̄nl, w̄nl)[φ(x̄n(x), t̄n(t), w̄nl(x, t))− w̄nl(x, t)]dxdt

+(γ/2)
∫

Q

[φ(x̄n(x), t̄n(t), w̄nl(x, t))− w̄nl(x, t)]2dxdt > el, for every such φ,
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Using Lemmas 4.2, 4.3 and Proposition 2.1 in [3], we can pass to the limit in this
inequality as l, n→∞ and obtain∫

Q

Hu(x, t, y, z, r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt

+(γ/2)
∫

Q

[φ(x, t, r(x, t))− r(x, t)]2dxdt > 0, for every such φ,

with involved multipliers λm. Replacing φ by u+µ(φ−u), with µ ∈ (0, 1], dividing
by µ, and then taking the limit as µ→ 0+, we obtain the weak relaxed condition∫

Q

Hu(x, t, y, z, r(x, t))[φ(x, t, r(x, t))− r(x, t)]dxdt > 0, for every such φ,

with multipliers λm, which holds also by density for every Caratheodory function
φ. If Gm(r) < 0, for some index m ∈ [p+ 1, q], then for sufficiently large l we have
Gnl

m(wnl) < 0 and λl
m = 0, hence λm = 0, i.e. the transversality conditions hold.

Therefore, r is weakly extremal relaxed.
(ii) Let (wnl) be a subsequence (same notation) of the sequence generated in Step 3
that converges to some w ∈W in L2 strongly as l, n→∞. The admissibility of w is
proved as in (i). Now, let any v′ ∈W and, by Proposition 4.1, (v′n ∈ W̄n

a ⊂Wn
a ) a

sequence converging to v′. Let, as above, (λnl
m) be subsequences such that λl

m → λm.
By Step 2, we have∫

Q

H
′nl
u (x, t̄n, ȳnl, z̄nl, w̄nl)(v̄

′n − w̄nl)dxdt+ (γ/2)
∫

Q

∣∣∣v̄′n − w̄nl
∣∣∣2dxdt > el,

with multipliers λnl
m . Using Proposition 2.1 in [3] and Lemmas 4.2, 4.3, we can pass

to the limit as l, n→∞ and obtain∫
Q

Hu(x, t, y, z, w)(v′ − w)dxdt+ (γ/2)
∫

Q

|v′ − w|2dxdt > 0, ∀v′ ∈W.

It follows as in (i) that∫
Q

Hu(x, t, y, z, w)(v′ − w)dxdt > 0, ∀v′ ∈W,

with multipliers λm as in the optimality conditions, similarly to (i). The transver-
sality conditions are derived as in (i).
(iii) The admissibility of the limit control wn is proved as in (i). Passing here to
the limit in the inequality resulting from Step 2 as l → ∞, for n fixed, and using
Lemmas 3.1 and 3.2, we obtain, similarly to (i)

q∑
m=0

λn
mDG̃

n
m(wn, v′n − wn) =

q∑
m=0

λn
mDG

n
m(wn, v′n − wn) > 0, ∀v′n ∈Wn

a ,

with multipliers as in the optimality conditions, and the discrete transversality
conditions

λn
mG̃

n
m(wn) = λn

m[Gn
m(wn)− εn

m] = 0, m = p+ 1, ..., q,

(iv) In either of the three above convergence cases, suppose that the limit control
is admissible and that the limit problem has no admissible, abnormal extremal,
controls. Suppose that the multipliers are not all bounded. Then, dividing the
corresponding inequality resulting from Step 2 by the greatest multiplier norm
and passing to the limit for a subsequence, we see that we obtain an optimality
inequality where the first multiplier is zero, and that the limit control is abnormal
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extremal, a contradiction. Therefore, the sequences of multipliers are bounded, and
by (i), (ii), or (iii), this limit control is extremal as above. �

One can easily see that Theorem 5.1 remains valid if we replace ek by dk in Step
4 of the Algorithm. In practice, by choosing moderately growing sequences (M l

m)
and a sequence (βl) relatively fast converging to zero, the resulting sequences of
multipliers (λnl

m) are often bounded, or even convergent.
When directly applied to nonconvex optimal control problems whose solutions

are non-classical relaxed controls, methods generating classical controls often yield
very poor convergence (highly oscillating controls). For this reason, we propose here
an alternative approach, which uses the Gamkrelidze formulation. For simplicity,
we suppose that there are no state constraints, and also that U = [c1, c2] ⊂ R,
which is usually the case. Consider the relaxed problem, with state equation

yt +A(t)y = f(x, t, y(x, t), r(x, t)) in Q, y = 0 in Σ, y(x, 0) = y0(x) in Ω,

control constraint r ∈ R, and cost functional

G(r) =
∫

Q

g(x, t, y(x, t), r(x, t))dxdt.

Since U is an interval and f, g continuous in u, for each (x, t) fixed, the set

S(x, t) =
{[

f(x, t, y(x, t), u))
g(x, t, y(x, t), u)

]
|u ∈ U

}
is a continuous arc in R2, hence a connected set. For each (x, t), the vector[

f(x, t, y(x, t), r(x, t))
g(x, t, y(x, t), r(x, t))

]
∈ R2

belongs to the convex hull of S(x, t), and hence (see [14]) can be represented as[
f(x, t, y, r))
g(x, t, y, r))

]
= β(x, t)

[
f(x, t, y, u)
g(x, t, y, u)

]
+ [1− β(x, t)]

[
f(x, t, y, v)
g(x, t, y, v)

]
,

with u(x, y), v(x, t) ∈ U , β(x, t) ∈ [0, 1], and by Filippov’s Selection Theorem (see
[18]), we can suppose that these three functions are measurable. Therefore, the
control r yields the same state y as the Gamkrelidze control rG := βδu + (1−β)δv.
Conversely, every such a control rG is clearly a relaxed control r that yields the same
state. Therefore, the above relaxed control problem is equivalent to the following
extended classical one, with the 3-dimensional controlled state equation

yt +A(t)y = β(x, t)f(x, t, y(x, t), u(x, t)) + [1− β(x, t)]f(x, t, y(x, t), v(x, t)) in Q,

y = 0 in Σ, y(x, 0) = y0(x) in Ω,
control constraints

(u(x, y), v(x, t), β(x, t)) ∈ U × U × [0, 1] in Q,

and cost functional

G(β, u, v)=
∫

Q

{β(x, t)g(x, t, y(x, t), u(x, t))+[1−β(x, t)]g(x, t, y(x, t), v(x, t))}dxdt.

We can therefore apply the gradient methods described above to this classical prob-
lem. The Gamkrelidze relaxed controls thus computed can then be approximated
by sub-blockwise (w.r.t. t) constant classical controls using a simple procedure (see
e.g. [7] and Example (d) below). In the general case, i.e. if U is not convex, one
can use methods generating relaxed controls to solve such nonconvex problems (see
[5], [7]).



454 ION CHRYSSOVERGHI

6. Numerical examples

Let Ω = I = (0, 1).
a) Classical optimal control, control constraints. Define the reference control and
state

w̃(x, t) =

{
−1, 0 6 t < 0.25,
min

(
0.6,−0.8+1.8·4x(1−x)

(
t−0.25
0.75

)2(2− t−0.25
0.75

))
, 0.256 t61

ỹ(x, t) = x(1− x)et,

and consider the following optimal control problem, with state equation

yt − yxx = [x(1− x) + 2]et + sin y − sin ỹ + w − w̃ in Q,

y = 0 in Σ, y(x, 0) = ỹ(x, 0) in Ω,
control constraint set U = [−1, 0.6], and cost functional

G0(w) = 0.5
∫

Q

[(y − ỹ)2 + (w − w̃)2]dxdt.

Clearly, the optimal control and state are w̃ and ỹ. The discrete gradient projection
method, without penalties, was applied to this problem, with M = N = 128,
gradient projection parameter γ = 0.5, Armijo parameters b = c = 0.5, zero initial
control, and ct = 10 (constraint on ∂t). After 6 iterations, we obtained the results

Gn
0 (wk)= 2.4·10−8, ek = −1.2·10−17, εk = 2.6·10−5, ηk = 1.1·10−2, ζk = 6.7·10−3,

where ek is defined in Step 2 of the Algorithm, εk, ηk are the state and control
max-errors at the vertices of the simplices and the end points of the double intervals
I2k′−1 ∪ I2k′ , and ζk the control max-error at the vertices of the simplices and the
midpoints of I2k′−1, I2k′ (the control max-errors are in fact of order 10−4 outside
a narrow surface-folding strip, see Figure 1). Actually, the constraint on ∂twk was
found to be inactive here, due to the piecewise smoothness of the optimal control
w̃, with mild derivative ∂tw̃. Figure 1 shows the computed control wk ≈ w̃.
b) Classical optimal control, strictly active control constraints. Choosing the set
U = [−0.7, 0.3], the control constraints being now strictly active for the method and
for the problem, and zero initial control, we obtained after 6 iterations the control
shown in Figure 2 and the values Gn

0 (wk) = 1.49338170, ·10−2, ek = −3.7 · 10−19.
c) Classical optimal control, control and state constraints. With the heat state
equation (and the above boundary conditions)

yt − yxx = y + 3w in Q,

the set U = [−0.7, 0.5], the additional state constraint

G1(w) =
∫

Q

y(x, t)dxdt = 0,

and with the cost of Example (a), we obtained, after 99 iterations in k of the
penalized gradient projection method, the control and state shown in Figures 3 and
4 and the values Gn

0 (wk) = 0.13075793, Gn
1 (wk) = −5.1 · 10−4, ek = −8.8 · 10−6.

Since here the state equation and the equality constraint are linear in (y, w), and the
cost is convex in (y, w), the optimality conditions are also sufficient, and therefore
the method actually approximates the optimal control.
d) Relaxed optimal control, control constraints, Gamkrelidze formulation. Defining
the state equation (with the above boundary conditions)

yt − yxx = [x(1− x) + 2]et + w −
{
φ(x, t), in Ω× (0, 0.5)
ψ(x, t), in Ω× [0.5, 1) , with
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ψ(x, t)=2(0.5−t)(0.25−x(1−x)), φ(x, t)=2(0.5−t)(0.25+x(1−x)),
the convex constraint set U = [−1, 1], and the nonconvex cost functional

G0(w) =
∫

Q

0.5(y − ỹ)2dx dt+
∫ 0.5

0

∫
Ω

(w − φ)2dx dt+
∫ 1

0.5

∫
Ω

(−w2)dx dt,

it is easily verified that the unique optimal relaxed control is

r̃(x, t) =
{
δφ(x,t), in Ω× (0, 0.5) (one− atomic)
β̃(x, t)δ−1 + [1− β̃(x, t)]δ1, in Ω× [0.5, 1) (two− atomic)

where β̃(x, t) = (1 − ψ(x, t))/2 and δα denotes the Dirac measure concentrated
at the point α ∈ U , the optimal state is y = ỹ, and the optimal relaxed cost
G0(r̃) = −0.5. Note that this cost can be approximated as closely as desired using
a classical control (W is dense in R), but cannot be attained for such a control. We
reformulated the problem in Gamkrelidze form (see end of Section 5), with three
classical controls u, v ∈ [−1, 1], β ∈ [0, 1], and applied the conditional gradient
method (i.e. with γ = 0), for iterations 1 to 180, and then the gradient projection
method (with γ = 0.5), for iterations 181 to 200. This was done because in this
special example the pure gradient projection method does not improve the control
iterates at the boundary of Q̄ for t ∈ [0.5, 1], since the optimal values −1, 1 of the
controls u, v there are quickly found almost exactly, hence β disappears in the cost
for t ∈ [0.1, 1], and the adjoint is anyway zero on this boundary. With initial controls
u0 = −0.4, v0 = 0.4, β0 = 0.5, and ct = 20, we obtained the controls uk ≈ vk ≈ φ,
in Ω × (0, 0.5), uk ≈ −1, vk ≈ 1, in Ω × [0.5, 1), with max errors 6 7.9 · 10−4

(Figure 5 shows vk), the state yk ≈ ỹ with max error 6 6.4 · 10−4, the control
βk shown in Figure 6 (note that βk is arbitrary in Ω × (0, 0.5), since the controls
uk, vk are almost equal there, and that the state and cost are not too sensitive
to the values of βk in Ω × [0.5, 1), given that uk ≈ −1, vk ≈ 1 there), the cost
Gn

0 (βk, uk, vk) = −0.499999988 and ek = −7.1 · 10−10. The Gamkrelidze relaxed
control corresponding to (uk, vk, βk) can then be approximated by the classical
control wk which takes, for each i, j, respectively the values wk, uk on the two

sub-blocks of
o

Qn
ij :

o

En
i × ((j − 1)∆tn, (j − 1 + βk,ij)∆tn),

o

En
i × ((j − 1 + βk,ij)∆tn, j∆tn).

Finally, the progressively refining version of each algorithm was also applied to
the above problems, with successive discretizations M = N = 32, 64, 128, in three
nearly equal iteration periods, and yielded results of similar accuracy, but required
less than half the computing time. This shows that finer discretizations become
progressively more efficient as the control iterate gets closer to the extremal control,
while coarser ones in the early iterations have not much influence on the final results.
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