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Abstract. In this paper, we study numerical approximations of eigenvalues

when using projection method for spectral approximations of completely con-

tinuous operators. We improve the theory depending on the ascent of T − µ

and provide a new approach for error estimate, which depends only on the

ascent of Th − µh. Applying this estimator to the integral operator eigenvalue

problems, we obtain asymptotically exact indicators. Numerical experiments

are provided to support our theoretical conclusions.
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1. Spectral Approximations of Completely Continuous Operators

In this paper, we assume that X is a separable reflexive Banach space or a
separable Hilbert space, ‖ · ‖ and < ·, · > are the norm and the adjoint pair in X,
respectively. Let Sh be a sequence of finite dimensional spaces such that

Sh1 ⊂ Sh2 ∀h2 < h1;
⋃

h>0

Sh = X.

We will consider a completely continuous operator T : X → X and a family of
finite ranked operators Th : X → X , such that

‖Th − T‖ → 0 (h → 0).

Consider the operator eigenvalue problem: Find µ ∈ C, 0 6= u ∈ X, such that

(1) Tu = µu.

Also consider its discrete scheme: Find µh ∈ C, 0 6= uh ∈ Sh, such that

(2) Thuh = µhuh.

Let µ be an eigenvalue of T with algebraic multiplicity m, let E be the spectral
projection associated with T and µ, and let Eh be the spectral projection associated
with Th and the eigenvalues of Th which converge to µ. Similarly, let E∗ and E∗

h be
spectral projections associated with the adjoint T ∗ of T and the adjoint T ∗h of Th,
respectively. Moreover, denote R(E), R(Eh), R(E∗), and R(E∗

h) the image spaces
of E, Eh, E∗, and E∗

h, respectively.

Received by the editors July 1, 2004 and, in revised form, June 20, 2005.
2000 Mathematics Subject Classification. 65N25.
Fund Project: Project Supported by the Foundation of Guizhou Province Scientific Research
for Senior Personnel, China.

361



362 Y. YANG AND Q. HUANG

In [4], Chatelin has proved that there exist m eigenvalues of Th (including mul-
tiplicity) µ1,h, µ2,h, . . . , µm,h converging to µ and µ1,h, µ2,h, . . . , µm,h are not
necessarily equal, neither are the ascent of µ and that of µi,h. In addition, the
abstract error estimates of approximate eigenvalues and eigenfunctions have been
studied since 1964 by Babuška, Bramble, Chatelin, Grigorieff, Lemordant, Osborn,
Stummel, Vainikko, etc. A systematic summarization is found in [1]. We will need
the following lemmas [1].

Lemma 1. There is a constant c independent of h, such that

(3) θ(R(E), R(Eh)) ≤ c · ‖(T − Th) |R(E) ‖
for small h, where (T − Th) |R(E) denotes the restriction of T − Th to R(E).

Lemma 2. Let ϕ1, · · · , ϕm be any basis for R(E), and ϕ∗1, · · · , ϕ∗m be the dual basis

for R(E∗). We define µ̄h = 1
m ·

m∑
j=1

µj,h, then there is a constant c independent of

h, such that

| µ− µ̄h | ≤ 1
m

m∑

j=1

|< (T − Th)ϕj , ϕ
∗
j >|

+ c · ‖(T − Th) |R(E) ‖‖(T ∗ − T ∗h ) |R(E∗) ‖.(4)

Lemma 3. Let α be the ascent of µ − T . Let ϕ1, · · · , ϕm be any basis for R(E),
and ϕ∗1, · · · , ϕ∗m be the dual basis for R(E∗). Then there is a constant c, such that

| µ− µj,h | ≤ c{
m∑

i,k=1

|< (T − Th)ϕi, ϕ
∗
k >|

+ ‖(T − Th) |R(E) ‖‖(T ∗ − T ∗h ) |R(E∗) ‖}
1
α(5)

(j = 1, 2, · · · ,m).

Lemma 4. Let µh be an eigenvalue of Th such that lim
h→0

µh = µ. Suppose for each

h, uh is a unit vector satisfying (µh − Th)kuh = 0 for some positive integer k ≤ α.
Then for any integer j with k ≤ j ≤ α, we have

(6) ‖uh − Pjuh‖ ≤ c · ‖(Th − T ) |R(E) ‖
j−k+1

α ,

where Pj is the projection on N((µ − T )j) along Mj . Mj is a closed subspace of
X, such that X = N((µ− T )j)⊕Mj.

These Lemmas provide a foundation of the spectral approximate theory for com-
pletely continuous operators. We can establish a prior error estimates of finite
element solution for differential operators and integral operators by using these
Lemmas. However, we shall note that (5) and (6) depend on the ascent α of
T − µ, which is very difficult to determine for non-self adjoint eigenvalue prob-
lems. Furthermore, the value of the constant c is unknown in (5) and (6). So, it is
inconvenient to obtain a posteriori error estimates.

Since Babuška and Rheinboldt published the first paper on a posteriori error
estimates of finite element methods [2], many developments have been made in
this subject. In [6], an abstract error estimate has been presented, which gives a
posteriori error estimates to finite element approximations for self-adjoint compact
operator eigenvalue problems. In the cuurent paper, we will present an abstract
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error estimate that can provide a posteriori error estimates to finite element ap-
proximations for general completely continuous (probably non-self adjoint) operator
eigenvalue problems.

Let (µh, uh) be an eigen-pair of Th and l be the ascent of Th−µh, where ‖uh‖ = 1.
We choose u∗h such that

(7) u∗h ∈ R(E∗
h), < uh, u∗h >= 1, < v, u∗h >= 0, ∀v ∈ M,

where M ⊂ R(Eh) satisfies R(Eh) = M ⊕ {uh}. Since T ∗h − µh and Th − µh have
the same ascent, we have

(8) (T ∗h − µh)lu∗h = 0.

Theorem 1. Given u∗h satisfying (7) and (8), there exists u∗ ∈ R(E∗) such that

(9) ‖u∗h − u∗‖ ≤ c‖(T ∗ − T ∗h ) |R(E∗) ‖
1
α ,

(10) (µ− µh)l < uh, u∗ >=<

l−1∑

i=0

(µ− µh)i(µ− T )l−1−i(T − µh)uh, u∗ >,

and

(µ− µh)l < uh, u∗ >

= −
l−1∑

k=0

< (
l−1∑

m=k

Ck
m)(µh − T )k+1uh, u∗ > (µ− µh)l−1−k,(11)

where < uh, u∗ >= 1+ < uh, u∗ − u∗h >.
Proof. From the proof of Lemma 4 [1], there exists u∗ which satisfies

(12) (T ∗ − µ)lu∗ = 0,

and (9). So, we have

< (T − µ)luh, u∗ >=< uh, (T ∗ − µ)lu∗ >= 0.

Thus,

(µ− µh)l < uh, u∗ >=< (µ− µh)luh, u∗ >

= < ((µ− µh)l − (µ− T )l)uh, u∗ >

= <

l−1∑

i=0

(µ− µh)i(µ− T )l−1−i(T − µh)uh, u∗ > .

Then (10) is proved. Using binomial theorem with respect to the right-hand side,
we have

(µ− µh)l < uh, u∗ >

= <

l−1∑

i=0

(µ− µh)i(
l−1−i∑

k=0

Ck
l−1−i(µ− µh)l−1−i−k(µh − T )k)(T − µh)uh, u∗ >

= − <

l−1∑

i=0

l−1−i∑

k=0

Ck
l−1−i(µ− µh)l−1−k(µh − T )k+1)uh, u∗ > .

On the right-hand side, we arrange µ−µh in descending power to have (11). Since
< uh, u∗h >= 1, it follows that < uh, u∗ >= 1+ < uh, u∗ − u∗h >. 2

Remark. If X is a Hilbert space, let T ∗ and T ∗h be the Hilbert adjoints of T
and Th, respectively. Let ϕ1, ϕ2, · · · , ϕm be an orthonormal basis of R(E), and let
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ϕ∗j = E∗ϕj. Then ϕ∗1, ϕ
∗
2, · · · , ϕ∗m ∈ N((µ∗ − T ∗)α), and {ϕ∗i } is the dual basis of

{ϕi}. Replaceing the adjoint pair < ·, · > in Banach space by the inner product
(·, ·) in Hilbert space, all the former results remain valid.

2. The Galerkin Method for Integral Operator Eigenvalue Problems and
Sloan Iteration

Consider (1) as an integral operator eigenvalue problem, i.e.

(Tu)(s) =
∫

Ω

k(s, t)u(t)dt, ∀s ∈ Ω.(13)

We assume that the integral operator T satisfies one of the following conditions:
1. Ω is a bounded domain of Rn,

∫
Ω

∫
Ω

| k(x, y) |2 dxdy < ∞. We choose X =

L2(Ω). T : L2(Ω) → L2(Ω) is completely continuous.
2. Ω = [0, 1]. The kernel k(s, t) belongs to the family of C(a, γ) with respect to

t; namely, for a ≥ γ ≥ 0, and any t with 0 ≤ t ≤ 1,

kt ∈ Ca(0, t) ∩ Ca(t, 1) ∩ Cγ(0, 1)

is uniformly valid with respect to t in [0, 1].

According to the Grahum - Sloan theorem [4], we have T : L2(Ω) → C(Ω) is
completely continuous. Moreover,T : L2(Ω) → L2(Ω) and T : C(Ω) → C(Ω) is
completely continuous. Let Vµ = {u : (T − µ)u = 0} be the eigenvector space of µ
corresponding to T . Let V ∗

µ = {u : (T ∗ − µ∗)u = 0} be the eigenvector space of µ∗

corresponding to T ∗. From [4] Th.7.2, we see that Vµ ⊂ Ca. Furthermore, if k(s, t)
belongs to the family of C(a, γ) with respect to s, then V ∗

µ ⊂ Ca.

In this section, we will discuss the Galerkin method of the compact integral
operator eigenvalue problem (1). Assume that X is a Hilbert space. Let Sh ⊂ X
be a piecewise polynomial space and Ph : X → Sh be a family of orthogonal
projection operators, so that Ph → I pointwisely. The Galerkin method takes the
solution of (2) as the approximate solution of (1) after choosing Th = PhT in (2).

Let {µh, uh} be an eigen-pair of (2). Since Ph is a family of projection operators,
Ph → I pointwisely, and T is completely continuous, we have

‖PhT − T‖ → 0 (h → 0).

Thus, from [4], we conclude that µh converge to µ with the same algebraic multi-
plicity, where µ is the eigenvalue of (1).

In order to improve the accuracy, Sloan established a calculate scheme in 1976
[5]:

TPhus
h = µhus

h.(14)

It is easy to prove that, if {µh, uh} is an eigen-pair of (2), then {µh, Tuh} is an
eigen-pair of (14). Inversely, if {µh, us

h} is an eigen-pair of (14), then {µh, Phus
h} is

an eigen-pair of (2). We say that us
h is the Sloan iterate solution of (1).

We will need the following lemmas [4].
Lemma 5. Let Sh be a finite element space of order r and Ph : L2(Ω) → Sh be
a family of orthogonal projection operators, T : L2(Ω) → Hr+1(Ω), T ∗ : L2(Ω) →
Hr+1(Ω). Then

‖uh − Euh‖ ≤ chr+1,(15)

‖us
h − Eus

h‖ ≤ ch2(r+1).(16)
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Comparing with uh, the convergence order of us
h used by Sloan iteration has a

square improvement.

Let α be the ascent of µ. For the orthogonal projection method, if α = 1, then
R(E) = Vµ. Thus µ − µh and dist(us

h, Vµ) have the same accuracy as µ − µ̂h and
dist(us

h, R(E)), respectively. If α ≥ 1, we have the following lemma.

Lemma 6. Let K(t, s) be the kernel of T . If K(t, s) belongs to the family of C(a, γ)
with respect to t and s and α is the ascent of T − µ satisfying α ≥ 1. Then for the
orthogonal projection method, when h is sufficient small, we have

µ− µh = O(h
2β
α ),(17)

dist(us
h, Vµ) = O(h

2β
α ),(18)

where β = min(a, r + 1).

In order to do a posteriori error estimates to the eigen-pair (µh, uh) using Sloan
iteration, we need to study the difference between Euh and ETuh.

If Euh is an eigenvector of T associated with µ, then

ETuh = TEuh = µEuh.

Hence, Euh and ETuh are the same eigenvectors (ignoring constant coefficient).
If Euh is a generalized eigenvector (not an eigenvector) of T associated with µ,

we have the following result.

Theorem 2. Given PhTuh = µhuh, then

ETuh − µhEuh = E(I − Ph)(I − Ph)Tuh.(19)

Proof. Note that

ETuh = E(T − PhT + PhT )uh

= E(T − PhT )uh + EPhTuh(20)
= E(I − Ph)(I − Ph)Tuh + µhEuh,

then the result follows. ¤

From (19), we conclude that the error ETuh−µhEuh is of higher order comparing
with the error of uh. Thus

uh − Euh = uh − µ−1
h ETuh + µ−1

h ETuh − Euh ≈ uh − µ−1
h ETuh

= uh − µ−1
h Tuh + µ−1

h Tuh − µ−1
h ETuh ≈ uh − µ−1

h Tuh.(21)

Now, consider a further problem: Given uh a generalized eigenvector of PhT ,
so that (PhT − µh)luh = 0 (l > 1). Is Tuh a generalized eigenvector of TPh, i.e.
(TPh − µh)lTuh = 0? If it is, what is the difference between Euh and ETuh? The
answer for the first question is positive. In fact, given (PhT − µh)luh = 0, from
binomial theorem and (TPh)l−k · T = T (PhT )l−k, we have

(TPh − µh)lTuh = (
l∑

k=0

Ck
l (TPh)l−k(−µh)k)Tuh

= (
l∑

k=0

Ck
l (TPh)l−kT (−µh)k)uh = T (

l∑

k=0

Ck
l (PhT )l−k(−µh)k)uh

= T (PhT − µh)luh = 0.(22)
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As for the difference between Euh and ETuh, from (20) in Theorem 2, it is easy
to conclude that

ETuh − µhEuh = E(I − Ph)(I − Ph)Tuh + E(Th − µh)uh.(23)

However, to obtain more subtle estimates, we need to do further analysis in E(Th−
µh)uh.

3. A Posteriori Error Estimates

Consider the integral operator T : L2(Ω) → L2(Ω). Let µ be an eigenvalue of
T , α be the ascent of T − µ, and (µh, uh) be an eigen-pair of Th(= PhT ) with
‖uh‖0 = 1 and µh converges to µ. We choose u∗h ∈ R(E∗

h) as in (7).
Let Sh be a piecewise polynomial space of degree r and Ph be a family of pro-

jection operators on Sh. For Th = PhT , we choose

u∗ = P ∗l u∗h;(24)

and for Th = TPh, we choose

u∗ = P ∗l u∗sh (u∗sh = µ∗h
−1T ∗u∗h),(25)

where P ∗l is the projection defined by the similar method in lemma 4.

Theorem 3. Assume that Ph : L2(Ω) → Sh is a family of orthogonal projection
operators in (2). Let T ∗ : R(E∗) ⊂ L2(Ω) → Ha(Ω) be continuous, ‖Tuh‖′a ≤
c‖uh‖0, R(E) ⊂ Ha(Ω), R(E∗) ⊂ Ha(Ω), (µh, uh) be the approximate eigen-pair
obtained from (2), and l be the ascent of Th − µh. We choose Th = TPh and u∗

defined in (25). Then

| µ− µh | ≤ ch
2β
l ,(26)

where β = min(a, r + 1). Moreover, ε(µh) defined below is the asymptotically exact
indicator of µh.

ε(µh)l = − 1
(us

h, u∗sh )
((µh − T )lus

h, u∗sh ).(27)

Proof. To avoid over-elaborate narration, we assume that (µ − T ∗)l−1u∗ 6= 0. Let
Ir : C(Ω) → Sh be piecewise interpolate operator of degree r. For any fixed i, by
orthogonality of Ph and interpolation error estimate, we have

| ((µ− µh)i(µ− T )l−1−i(T − µh)us
h, u∗) |

= | (µ− µh)i((T − µh)us
h, (µ∗ − T ∗)l−1−iu∗) |

= | µ− µh |i| ((I − Ph)us
h, (I − Ir)T ∗(µ∗ − T ∗)l−1−iu∗) |

≤ c | µ− µh |i h2β‖us
h‖β‖T ∗(µ∗ − T ∗)l−1−iu∗‖β .(28)

Note that T, T ∗ are continuous, and (9), we have:
l−1∑

k=0

< (
l−1∑

m=k

Ck
m)(µh − T )k+1us

h, u∗ > (µ− µh)l−1−k

= (1 + O(µ− µh))((µh − T )lus
h, u∗)

= (1 + O(µ− µh))(((µh − T )lus
h, u∗sh )

+((I − Ph)us
h, (I − Ir)T ∗(µ∗h − T ∗)l−1(u∗ − u∗sh )))

= (1 + O(‖(T ∗ − T ∗h ) |R(E∗ ) ‖
1
α ))(1 + O(µ− µh))((µh − T )lus

h, u∗sh ).(29)
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1
(us

h, u∗)
− 1

(us
h, u∗sh )

=
(us

h, u∗sh − u∗)
(us

h, u∗)(us
h, u∗sh )

= O(‖(T ∗ − T ∗h ) |R(E∗ ) ‖
1
α ),(30)

Substituting (28) and (30) into (10), we get (26). Substituting (29) and (30) into
(11), we have

(µ− µh)l = (1 + O(‖(T ∗ − T ∗h ) |R(E∗) ‖
1
α ))2(1 + O(µ− µh))ε(µh)l,

which indicates that e(µh) is an asymptotically exact indicator of µh. ¤

Based on (11), a more subtle error indicator can be obtained. In particular, let
ε(µh) be the initial value. Then, we use iteration method to obtain the root e of
the following equation:

el < us
h, u∗sh >= −

l−1∑

k=0

< (
l−1∑

m=k

Ck
m)(µh − T )k+1us

h, u∗sh > el−1−k.(31)

On the other hand, suppose that Ω = [0, 1] and T : L2(Ω) → C(Ω) is completely
continuous. Let Ph : C(Ω) → Sh be a piecewise polynomial interpolative operator
of degree r. We choose Th = PhT . Then the discrete scheme (2) is obtained by the
collocation method.

Similarly as Theorem 3, we are able to establish the following result.

Theorem 4. Suppose that ‖Tuh‖′a ≤ c‖uh‖0, R(E) ⊂ Ha(Ω), R(E∗) ⊂ Ha(Ω), µh

is the collocated solution of µ, and l is the ascent of Th−µh. We choose Th = PhT
and u∗ defined in (24). Then

| µ− µh | ≤ ch
β
l ,(32)

where β = min(a, r + 1). Moreover, ε(µh) defined as below is the asymptotically
exact indicator of µh.

ε(µh)l = − 1
(uh, u∗h)

((µh − T )luh, u∗h).(33)

4. Numerical Experiments

We consider the integral equation problem
1∫

0

K(s, t)u(t)dt = µu(s),(34)

where K(s, t) = 1
2 | s− t |, for s ≤ t; K(s, t) = 2 | s− t |, for t ≤ s.

We note that the first order derivative of the kernel is discontinuous. The eigen-
values of the largest and the third largest modulus are µ1 = 0.36031939951656 and
µ3 = −0.10038687851114, respectively. We shall use Galerkin method to approxi-
mate µ1 and µ3. Then, we use e(µh) in Theorem 3 and in Theorem 4 to estimate
the errors.

Partition [0, 1] into n equal subintervals. Let Sh ⊂ C0 be a piecewise linear
polynomial space, {li}n

0 are the nodal base functions. An expansion method for
(34) is then applied by approximating the eigenfunctions of

u(s) ' uh(s) =
n∑

i=0

zili(s)(35)

and by approximating the eigenvalue µ with µh.
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Define the residual function rh(s) as

rh(s) =

1∫

0

K(s, t)uh(t)dt− µhuh(s).

The particular expansion method is determined by the restrictions imposed on the
residual function. We need to determine the coefficients zi, i = 0, 1, 2, . . . , n in (35)
so that rh(s) is small in some measure. The same as in the Ritz-Galerkin method,
we require that rh(s) be orthogonal to each of the functions li(s), i = 0, 1, 2, . . . , n,
namely,
∫ 1

0

l∗i (s)rh(s)ds =
∫ 1

0

l∗i (s)[
∫ 1

0

K(s, t)uh(t)dt− µhuh(s)]ds = 0, i = 0, 1, . . . , n,

where h = 1/n. This leads to a generalized matrix eigenvalue problem

Lz = µhMz,

where

L = (lij), lij =
∫ 1

0

∫ 1

0

l∗i (s)K(s, t)lj(t)dsdt, i, j = 0, 1, . . . , n;

M = (mij), mij =
∫ 1

0

l∗i (s)lj(s)ds, i, j = 0, 1, 2, . . . , n.

The entries of L and M can be calculated explicitly. We list them in the Appendix.

Table 1

h i µi,h ei,h e(µi,h) e(µi,h)
ei,h

1
2 1 0.35900382 1.31558318e-003 1.32848276e-003 1.0098052

3 -0.103039524 2.65264576e-003 2.83573653e-003 1.0690219
1
4 1 0.36022636 9.30373241e-005 9.32672751e-005 1.0024716

3 -0.09988222 -5.04659611e-004 -5.01813644e-004 0.9943606
1
8 1 0.36031352 5.88772391e-006 5.88102704e-006 1.0006445

3 -0.10036284 -2.40342271e-005 -2.40195864e-005 0.9993908
1
16 1 0.36031903 3.67640473e-007 3.67700370e-007 1.0001629

3 -0.10038551 -1.36615773e-006 -1.36595929e-006 0.9998547
1
32 1 0.36031938 2.29766842e-008 2.29776188e-008 1.0000407

3 -0.10038680 -8.32024585e-008 -8.31994260e-008 0.9999636

The results and errors are shown in Table 1. Here, the ascent of Th − µi,h is 1,
µi,h depicts the approximate eigenvalues of µi, ei,h = µi − µi,h, and e(µi,h) is the
error obtained by using the composite Simpson’s rule and extrapolation for (27)
with l = 1. In Table 1, we see that µi,h converges to µi when h is decreasing.
Moreover, the two errors are extremely close with ratio approaches one. Therefore,
e(µi,h) is an asymptotically exact indicator for µi,h.

We can also use collocation method to solve this problem. We seek approximated
eigen-pairs (λh, uh), which satisfy

1∫

0

K(si, t)uh(t)dt = µhuh(si), i = 0, 1, , . . . , n.(36)
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Let uh(t) =
n∑

i=0

zili(t), then

1∫

0

K(si, t)
n∑

j=0

zj lj(t)dt = µh

n∑

j=0

zj lj(si),(37)

namely,

n∑

j=0

zj

1∫

0

K(si, t)lj(t)dt = µh

n∑

j=0

zj lj(si), i = 0, 1, . . . , n.(38)

Then, the former problem became a matrix eigenvalue problem

Az = µhz,

where z = (z0, z1, . . . , zn)T , and aij ’s are listed in the Appendix.

Table 2

h i µi,h ei,h e(µi,h) e(µi,h)
ei,h

1
16 1 0.36113254 -8.13139257e-004 -8.14368623e-004 1.0015119

3 -0.09958146 -8.05423027e-004 -8.062210e-004 1.0009898
1
32 1 0.36052281 -2.03408883e-004 -2.03486522e-004 1.0003817

3 -0.10018395 -2.02929937e-004 -2.02981895e-004 1.0002560
1
64 1 0.36037026 -5.08600245e-005 -5.08648986e-005 1.0000958

3 -0.10033605 -5.08301419e-005 -5.08334448e-005 1.0000650
1

128 1 0.36033212 -1.27154946e-005 -1.27157999e-005 1.0000240
3 -0.10037416 -1.27136278e-005 -1.27138358e-005 1.0000164

1
256 1 0.36032258 -3.17890420e-006 -3.17892330e-006 1.0000060

3 -0.10038370 -3.17878753e-006 -3.17880058e-006 1.0000041
1

512 1 0.36032019 -7.94727956e-007 -7.94729154e-007 1.0000015
3 -0.10038608 -7.94720664e-007 -7.94721486e-007 1.0000010

The results and errors are shown in Table 2. Here, the ascent of Th − µi,h is
1 and e(µi,h) is the error obtained by (33) with l = 1. From Table 2, we see
that e(µi,h) and the true error µi,h are extremely close. Thus, e(µi,h) provides an
asymptotically exact indicator for µi,h.

We note that both methods result in asymptotically exact error indicators.
Therefore, accurate error estimator can be accessed by a posteriori error estimates
with these error indicators.
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Appendix

l00 =
1

12n3
= lnn; lii =

7
12n3

, i = 1, 2, . . . , n− 1;

l10 =
11

16n3
= ln,n−1; li,i−1 =

97
48n3

, i = 2, 3, . . . , n− 1;

l01 =
3

16n3
= ln−1,n; li,i+1 =

25
48n3

, i = 1, 2, . . . , n− 2;

l0j =
3j − 1
12n3

, j = 2, . . . , n− 1; l0n =
3n− 2
24n3

;

ln0 =
3n− 2
6n3

; lnj =
3n− 3j − 1

3n3
, j = 1, 2, . . . , n− 2;

li0 =
3i− 1
3n3

, i = 2, . . . , n− 1; lin =
3n− 3i− 1

12n3
, i = 1, 2, . . . , n− 2;

lij =
2(i− j)

n3
, i− j = 2, 3, . . . , n− 2; lij =

j − i

2n3
, j − i = 2, 3, . . . , n− 2.

m00 =
1
3n

= mnn; mii =
2
3n

, i = 1, 2, . . . , n− 1;

mi,i−1 = mi,i+1 =
1
6n

; mi,j = 0, |i− j| > 1.

a00 =
1

12n2
, ann =

1
3n2

, aii =
5

12n2
, i = 1, 2, . . . , n− 1;

ai0 =
3i− 1
3n2

, i = 1, 2, . . . , n; ain =
3n− 3i− 1

12n2
, i = 0, 1, . . . , n− 1;

aij =
j − i

2n2
, i = 0, 1, . . . , j − 1, aij =

2(i− j)
n2

, i = j + 1, j + 2, . . . , n,

for j = 1, 2, . . . , n− 1.
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