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Abstract. A symmetric finite volume element scheme on quadrilateral grids

is established for a class of elliptic problems. The asymptotic error expan-

sion of finite volume element approximation is obtained under rectangle grids,

which in turn yields the error estimates and superconvergence of the averaged

derivatives. Numerical examples confirm our theoretical analysis.
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1. Introduction

Finite volume methods are a class of important numerical methods to solve PDEs
([2, 6, 8, 9, 14]), which can be viewed as a bridge between finite element methods and
finite difference methods. Due to being able to preserve some physical conservation
properties locally, such as mass, momentum and energy conservation, finite volume
methods are widely applied in many fields, such as computational fluid dynamics
and computational physics and so on.

The standard finite volume discretizations usually generate a linear systems with
asymmetric matrix for self-adjoint elliptic problems, in many cases, the symmetry is
the fundamental physical principle of reciprocity. This asymmetry leads to the fact
that many efficient iterative methods which are suitable for solving the symmetric
linear systems, such as the conjugate gradient method, can’t be employed. It is
interesting to see if there exist finite volume schemes that are symmetry preserving.
Recently, Aihui Zhou and Xiuling Ma([10, 11, 13]) proposed a class of symmetric
finite volume schemes under the triangular grids for solving the self adjoint elliptic
boundary value problems and parabolic problems, which gave a positive answer for
the triangular grids. However, the answer is still open for the quadrilateral grids so
far. For quadrilateral grids, the non-constant derivatives of finite volume element
makes the analysis more difficult since there is no convenient weak form.

In this paper, by choosing vertex-centered type control volume properly and
using finite volume element methods to discretize the balance equation, a symmet-
rical finite volume scheme on quadrilateral grids is established. Different from the
symmetrical finite volume scheme on the triangular grid, There is no weak form
available, so the convergence analysis is more difficult. Here we give a detailed
analysis for rectangle grids only. The main ingredients are the bound estimate of
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the minimum eigenvalue for the coefficient matrix of our scheme and asymptotic
expansions of the truncation error. The asymptotic error expansion of finite vol-
ume element approximation is obtained under rectangle grids, which in turn yields
the error estimates and superconvergence of the averaged derivatives. Numerical
examples confirm our theoretical analysis and show the efficiency of the method on
general quadrilateral grids.

2. Preliminary

In this paper, we consider the following model problem,
{ −∇(a(x)∇u) = f, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
(2.1)

where Ω ∈ R2 is a convex polygonal domain with boundary ∂Ω, x = (x1, x2), c1 ≤
a(x) ≤ c2 and c1, c2 are two positive real numbers.

For simplicity, we introduce the notation <∼, >∼ as same as that in paper ([3])
which means that when we write A <∼ B, A >∼ B then there exist two positive
constant c and C such that A ≤ cB,A ≥ CB respectively.

Let P1,1 = {a0 + a1ξ1 + a2ξ2 + a3ξ1ξ2 : al ∈ R, l = 0(1)3} be the set of bilinear
polynomial, and Wm,p(Ω) be the Sobolev space with the norms:

‖v‖m,p = (
∑

|α|≤m

‖Dαv‖Lp(Ω))
1
p , 1 ≤ p < ∞,

‖v‖m,∞ = max
|α|≤m

‖Dαv‖L∞(Ω), p = ∞,

where α = (α1, α1, ..., αn), |α| =
n∑

i=1

αi, αi > 0, 1 ≤ i ≤ n.

In addition, we assume that Ωh = {Ei, 1 ≤ i ≤ M} is any given quadrilateral
grid of Ω ( shown as Fig. 1(a) and (b)), and X = {Xi = (xi

1, x
i
2), 1 ≤ i ≤ N} is

the set of all nodes in Ωh, where M and N are the total numbers of all partition
elements and nodes respectively.

Figure 1. (a) uniform grids. (b) non-orthogonal grids.

In order to establish the finite volume scheme, we need to introduce the dual
partition Ωh

∗ = {bXi , 1 ≤ i ≤ N} of Ωh, where bXi be the dual element(control
volume) of the node Xi shown in Fig. 2(a). In this figure, Oil

, 1 ≤ l ≤ 4 is the
”center” of the l-th quadrilateral element neighboring to Xi, which is mapped from
the center of the reference unit square element E shown as in Fig. 2(b) by the
bilinear isoparametric transformation , and Mil

, 1 ≤ l ≤ 4 are midpoints of all
edges connected with Xi. Additionally, for any quadrilateral element Ek, we call
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the restriction region Dl of dual element bXkl
, 1 ≤ l ≤ 4 in Ek as the l-th control

sub-volume(shown as Fig. 2 (c) ) of Ek, and denote the area of Dl as Sl.
For any quadrilateral grids Ωh, we introduce the following bilinear isoparametric

finite element space

Vh = {v(x) : v(x) =
4∑

i=1

viNi(ξ1(x), ξ2(x)), x ∈ Ek, Ek ∈ Ωh, v(x) ∈ C(Ω)},

where vi = v(Xi) and Nl(ξ1, ξ2), 1 ≤ l ≤ 4 are shape functions on the reference unit
square element E shown in Fig. 2(b), such that

Nl(ξ1, ξ2) ∈ P1,1 and Nl(ξm) = δlm, 1 ≤ l, m ≤ 4. (2.2)

Figure 2. (a) dual element bXi of the node Xi. (b) reference unit
square element E. (c) quadrilateral element Ek and its control
sub-volumes.

3. The symmetric finite volume scheme on quadrilateral grids

In this section, we will give a symmetric finite volume scheme under the quadri-
lateral grid Ωh.

For any Xi, taking the integration of equation (2.1) on the control volume bXi

and using the Green’s formula, we get the standard finite volume scheme: Find
uh ∈ V h such that

−
∫

∂bXi

a(x)
∂uh(x)

∂−→n ds =
∫

bXi

fdx, ∀ bXi ∈ Ωh
∗ , (3.1)

where −→n is the unit outer normal vector on ∂bXi .
Similarly to the finite element method, we introduce the finite volume element

stiffness matrix AEk = (aEk

lm)4×4 and load vector fEk = (fEk

l )4×1 for any quadri-
lateral element Ek shown in Fig.2(c) where kl, 1 ≤ l ≤ 4 are indices of four nodes
on the element Ek, which express the restriction of equations (3.1) related to nodes
Xkl

, 1 ≤ l ≤ 4 in Ek.
Noting that for any quadrilateral element Ek, we have:

uh(x) :=
4∑

l=1

uh
kl

Nl(ξ1(x), ξ2(x)), x ∈ Ek, (3.2)

where uh
kl

= uh(xkl
) and Nl, 1 ≤ l ≤ 4 are defined by (2.2).

Substituting (3.2) into (3.1), we have

aEk

lm = −
∫

̂MlOkMl−1

a(x)
∂Nm(x)

∂−→n ds, fEk

l =
∫

Dl

fdx, 1 ≤ l,m ≤ 4, (3.3)

where Ml, 1 ≤ l ≤ 4, Ok are midpoints of corresponding edges and ”center” of Ek

defined in last section respectively, and let Xk5 = Xk1 , M0 = M4.
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Remark 3.1. We usually take the approximation fEk

l
.= f(Xkl

)Sl, 1 ≤ l ≤ 4.
The key problem to establish a symmetric finite volume scheme is how to obtain

the finite volume element stiffness matrix with symmetric property.
In the following, we take approximations on the edge MlOkMl−1, 1 ≤ l ≤ 4 for

the variable coefficient a(x), the gradient of Nm and the Jacobi matrix J(x) of the
bilinear isoparametric transformation from E to Ek as follows:

a(x) .= ak := a(Ok), ∇Nm(x) .= Nm,k := ∇Nm(Ok), J(x) .= Jk := J(Ok). (3.4)

Substituting (3.4) into (3.3), and by simple calculation, we get the following
approximation of aEk

lm

aEk

lm = ak
ql · qm

det(Jk)
, 1 ≤ l, m ≤ 4, (3.5)

where the vectors ql = (x
kl−1
2 −x

kl+1
2

2 ,−x
kl−1
1 −x

kl+1
1

2 ), 1 ≤ l ≤ 4.
From (3.5), we get the symmetric property of element stiffness matrix.

Property 3.1. The finite volume element stiffness matrix AEk defined by (3.5) is
a symmetric matrix.

Assembling all element stiffness matrices AEk , 1 ≤ k ≤ M and load vectors fEk

and dealing with the Dirichlet boundary condition, we get the linear system of finite
volume scheme of problem (2.1) on quadrilateral grids Ωh as follows

AU = f, (3.6)

where the global finite volume stiffness matrix A and load vector f are defined by

A =
M∑

k=1

IT
k AEkIk, f =

M∑

k=1

IT
k fEk , (3.7)

and Ik : RN → R4 is the nature inclusion related to the quadrilateral element Ek

(see Fig.2(c)) such that for any v = (v1, v2, · · · , vN ) ∈ RN , Ikv = (vk1 , vk2 , vk3 , vk4)
T ,

and IT
ij is the adjoint of Iij with respect to the inner product (·, ·).

By (3.7), it is obvious that the total stiffness matrix A is symmetric, so our finite
volume scheme (3.6) of problem (2.1) is symmetric.

4. Error analysis on uniform rectangle grids

Different from the symmetric finite volume scheme on the triangulation([10, 11,
13]), the finite volume scheme on quadrilateral grids proposed here does not fall
into some convenient weak form. We need to develop some new techniques for the
error analysis.

For simplicity, we only consider the following model problem
{ −4u = f, x ∈ Ω = [0, 1]× [0, 1],

u|∂Ω = 0.
(4.1)

Let Ωh = {Ei,j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} be uniform rectangular grids with
step sizes hl = 1

nl
where h = max{h1, h2}, nl, l = 1, 2 are partition numbers in the

direction of xl respectively. We denote that X = {Xi,j = (xi,j
1 , xi,j

2 )}n1+1,n2+1
i=1,j=1 is

the set of all nodes where xi,j
1 = (i − 1)h1, xi,j

2 = (j − 1)h2, and supp φij is the
compact support set of the canonical base function of Xi,j .

By (3.5), for rectangular grids, we can write the corresponding element stiffness
matrices and load vectors according to the following cases.
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Figure 3. (a) a rectangular element Ei,j . (b) all nodes on the
close set of supp φij

Case 1. For any given ”inner” rectangle element Ei,j , 2 ≤ i ≤ n1 − 1, 2 ≤ j ≤
n2 − 1,

AEi,j =
1
2




ρ δ −ρ −δ
δ ρ −δ −ρ
−ρ −δ ρ δ
−δ −ρ δ ρ


 , fEi,j =




sf i,j

sf i+1,j

sf i+1,j+1

sf i,j+1


 , (4.2)

where

ρ =
1
2
(
h1

h2
+

h2

h1
) , δ =

1
2
(
h1

h2
− h2

h1
) , s =

h1h2

4
, f i,j = f(Xi,j).

Case 2. For any given rectangle element along the boundary, say E1,1 (corner
element, with three nodes on the boundary) or E1,2(edge element, with two nodes
on the boundary) for examples. Dealing with the corresponding Dirichlet boundary
condition, we have

AE1,1 =
1
2




1 0 0 0
0 1 0 0
0 0 1

2ρ 0
0 0 0 1


 , fE1,1 =




0
0
sf i+1,j+1

0


 . (4.3)

AEi,1 =




1 0 0 0
0 1 0 0
0 0 1

2ρ 1
2δ

0 0 1
2δ 1

2ρ


 , fEi,1 =




0
0
sf i+1,j+1

sf i,j+1


 . (4.4)

A direct calculation yields the following lemma.
Lemma 4.1 AEi,j , 2 ≤ i ≤ n1, 2 ≤ j ≤ n2 are semi-positive definite, and its four
eigenvalues are

λ1 = λ2 = 0, λ3 =
h1

h2
, λ4 =

h2

h1
.

By (3.6) and (3.7), we write the linear system of finite volume scheme of problem
(4.1) on the rectangle grids Ωh as follows

AhUh = Fh, (4.5)

where

Ah =
n1∑

i=1

n2∑

j=1

IT
ijA

Ei,j Iij , Fh =
n1∑

i=1

n2∑

j=1

IT
ijf

Ei,j , (4.6)

and Iij : RN → R4 is the nature inclusion related to the rectangle element Ei,j .
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Now we are going to the lower bound estimate of λmin(Ah). For this purpose,
we introduce the following auxiliary matrix

Ãh =
n1∑
i=1

n2∑
j=1

IT
ijÃ

Ei,j Iij , (4.7)

where

(ÃEi,j )lm :=
{

0, when (AEi,j )lm = δ or δ/2,
(AEi,j )lm, otherwise, 1 ≤ l,m ≤ 4. (4.8)

Definition 4.1.([12]) For any two matrices A := (aij), B := (bij) ∈ Rn×n and
vectors x := (x1, · · · , xn)T , y := (y1, · · · , yn)T ∈ Rn, the tensor production matrix
C := A⊗B ∈ Rn2×n2

and tensor production vector z := x⊗ y ∈ Rn2
is defined as

C = (aijB) and z = (x1y
T , · · · , xnyT ) respectively.

Lemma 4.2 (see [12]) For any two matrices A, B ∈ Rn×n, let λ(A) and λ(B) be
eigenvalues of A and B, xA and xB be eigenvectors corresponding to λ(A) and λ(B)
respectively, then λ(A)λ(B) and xC := xA⊗xB is the eigenvalue and corresponding
eigenvector of the tensor product matrix C := A⊗B.

Using Lemma 4.2, we can transfer the estimate of λmin(Ah) to that of λmin(Ãh).
In the following, we always assume that Ωh is quasi-uniform, that is, h1 = O(h2).
Lemma 4.3. There holds

λmin(Ah) >∼ λmin(Ãh).

Proof. It is easy to see that the conclusion of this lemma holds if and only if

λmin(AEi,j ) >∼ λmin(ÃEi,j ), 2 ≤ i ≤ n1 − 1, 2 ≤ j ≤ n2 − 1. (4.9)

Since AEi,j and ÃEi,j are positive definite for any ”boundary” element Ei,j , in order
to prove (4.9), we only need to prove that there exists a positive constant c, such
that for ”inner” element Ei,j ,

AEi,j − cÃEi,j ≥ 0,

where matrix A ≥ 0 means that A is semi-positive definite.
In fact

AEi,j − cÃEi,j =
1
2




(1− c)ρ δ −(1− c)ρ −δ
δ (1− c)ρ −δ −(1− c)ρ
−(1− c)ρ −δ (1− c)ρ δ
−δ −(1− c)ρ δ (1− c)ρ


 = Ae⊗Be,

where 2× 2 matrices

Ae =
1
2

(
(1− c)ρ δ
δ (1− c)ρ

)
, Be =

(
1 −1
−1 1

)
.

By simple calculation, we get λ1(Be) = 0, λ2(Be) = 2, and

λ1,2(Ae) =
1
2
(1− c)ρ± δ = (1− c)

1
2
(
h1

h2
+

h2

h1
)± 1

2
(
h1

h2
− h2

h1
).

The assumption h1 = O(h2) leads to that there exist positive constants C1, C2,
such that C1 ≤ hx

hy
≤ C2, so it is easy to see that

λ1,2(Ae) ≥ 0, if 0 < c < 2min{ C2
1

1 + C2
1

,
C2

2

1 + C2
2

}.

According to the fact above, we know that there exists the positive constant c
such that all eigenvalues λl(Be)λk(Ae), 1 ≤ k, l ≤ 2 of the matrix AEi,j − cÃEi,j are
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nonnegative, i.e., AEi,j − cÃEi,j is semi-positive definite, this completes the proof
of the lemma. ¤

The formula (4.7) can be equivalently written as follows

Ãh =
n1∑

i=1

Ãi, Ãi =
n2∑

j=1

IT
ijÃ

Ei,j Iij .

By (4.8), (4.2), (4.3), (4.4) and noting ρ = O(1), we can get the following
conclusion.
Conclusion 4.1. All matrices ÃEk,j , 1 ≤ j ≤ n2, k = 1, n1 are positive definite
and λmin(ÃEk,j ) >∼ 1.

In the following, we want to re-organize Ãi, 2 ≤ i ≤ n1 − 1 as follows

Ãi =
n2∑

j=1

IT
ijÂ

Ei,j Iij , 2 ≤ i ≤ n1 − 1, (4.10)

where all ÂEi,j , 1 ≤ j ≤ n2 are positive definite.
For simplicity, we only give the collocating process for the case of i = 2. By

direct verifying, we have

Ã2 =
n2∑

j=1

IT
ijÂ

E2,j Iij ,

where

ÂE2,0 =




1 0 0 0
0 1 0 0
0 0 ρ− 1

2
β0 0

0 0 0 ρ− 1
2
β0


 , ÂE2,n2 =




ρ− 1
2
αn2−2 0 0 0
0 ρ− 1

2
αn2−2 0 0

0 0 1 0
0 0 0 1


 ,

(4.11)

ÂE2,j =
1
2




βj−1 0 −ρ 0
0 βj−1 0 −ρ
−ρ 0 αj 0
0 −ρ 0 αj


 , 2 ≤ j ≤ n2 − 1, (4.12)

and
αj =

j

j + 1
ρ + 2(j + 2)h2, βj = ρ +

1
j + 1

ρ− 2(j + 2)h2. (4.13)

Conclusion 4.2. All matrices ÂE2,j defined by (4.11) and (4.12) are positive
definite and λmin(ÂE2,j ) >∼ h2 , 1 ≤ j ≤ n2.

In fact,
(i) When j=1, by (4.13), we have

ÂE2,1 =




1 0 0 0
0 1 0 0
0 0 ρ− 1

2β0 0
0 0 0 ρ− 1

2β0


 =




1 0 0 0
0 1 0 0
0 0 2h2 0
0 0 0 2h2


 ,

it obvious that ÂE2,1 is positive definite and λmin(ÂE2,1) >∼ h2.
(ii) When j = n2 , we have

ÂE2,n2 =




ρ− 1
2αn2−2 0 0 0
0 ρ− 1

2αn2−2 0 0
0 0 1 0
0 0 0 1


 =




ω 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 1


 ,
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where ω = 1
2 (ρ− ρ

n2−1 − 2n2h
2).

Noting that ρ = O(1), ρ
n2−1 = O(h), n2h

2 = O(h), so ÂE2,n2 is positive definite
and λmin(ÂE2,n2 ) >∼ h2.

(iii) When 2 ≤ j ≤ n2 − 1, we have

ÂE2,j =
1
2




βj−1 0 −ρ 0
0 βj−1 0 −ρ
−ρ 0 αj 0
0 −ρ 0 αj


 = G⊗D,

where G = 1
2

(
βj−1 −ρ
−ρ αj

)
, D =

(
1 0
0 1

)
.

By computing, we have

λ1,2(D) = 1, λ1,2(G) = αjβj−1−ρ2

αj+βj−1
2 ±(ρ2−αjβj−1+(

αj+βj−1
2 )2)

1
2
.

Noting that

αjβj−1 − ρ2 =
3j + 2

j
h2 + (j + 1)(j + 2)h4 = O(h2),

αj + βj−1

2
= O(1),

thus
λ1,2(G) >∼ h2.

which together with Lemma 4.2 implies that ÂE2,j is positive definite and λmin(ÂE2,j ) >∼
h2. So the conclusion 4.2 holds.

Same results can be obtained by taking similar collocating processes for matrices
Ãi, 3 ≤ i ≤ n1 − 1 . Hence together with the conclusion 4.1, we get
Lemma 4.4. The matrix Ãh can be decomposed into

Ãh =
n1∑

i=1

n2∑

j=1

IT
ijÂ

Ei,j Iij ,

where ÂEi,j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 are positive definite, and λmin(ÂEi,j ) >∼ h2.
The following lemma can be directly derived from Lemma 4.4.

Lemma4.5. There exists
λmin(Ãh) >∼ h2.

Combining Lemma 4.3 and Lemma 4.5, we can obtain the estimate of λmin(Ah).
Lemma 4.6. There exists

λmin(Ah) >∼ h2.

In the following, we give the convergence analysis for the finite volume solution
Uh of equation (4.5).

Let Uh = (uh
1,1, · · · , uh

n1+1,1, · · · , uh
1,n2+1, · · · , uh

n1+1,n2+1)
T , by (4.2) and (4.6),

for any node Xi,j , 2 ≤ i ≤ n1, 2 ≤ j ≤ n2, the equation (4.5) can be rewritten by

Lh
ij(U

h) = −ρ

2
(4uh

i,j+
∑

l,m=±1

uh
i+l,j+m)+δ(−uh

i,j−1−uh
i,j+1+uh

i−1,j+uh
i+1,j) = fi,jh1h2,

(4.14)
where f i,j = f(Xi,j), ρ = 1

2 (h1
h2

+ h2
h1

) and δ = 1
2 (h1

h2
− h2

h1
).
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Lemma 4.7. If the exact solution of the problem (4.1) u ∈ Ck(Ω), k = 3, 4 , then
for any node Xi,j , 2 ≤ i ≤ n1, 2 ≤ j ≤ n2,

Lh
ij(U

h − U) = O(hk)‖u‖k,∞,

where the solution vector U = (u1,1, · · · , un1+1,1, · · · , u1,n2+1, · · · , un1+1,n2+1)T

and ui,j := u(Xi,j).

Proof. By the definition (4.14) of the discretization operator Lh
ij and taking the

Taylor expansion, we have

Lh
ij(U) = −h1h2(ux1x1 + ux2x2)(Xi,j) + O(hk)‖u‖k,∞, k = 3, 4. (4.15)

Using (4.14), (4.15) and noting that f i,j = −h1h2(ux1x1 + ux2x2)(Xi,j), we can
derive

Lh
ij(U

h − U) = O(hk)‖u‖k,∞,

i.e., Lemma 4.7 holds. ¤

Theorem 4.1. Let u ∈ Ck(Ω), k = 3, 4, then

‖Uh − U‖ = O(hk−2)‖u‖k,∞,

where ‖ · ‖ is the average norm defined by

‖W‖ = (
1
N

N∑

i=1

w2
i )

1
2 , ∀ W ∈ RN. (4.16)

Proof. Using Lemma 4.6 and Lemma 4.7, we have

‖Uh − U‖ = ‖(Ah)−1
Ah(Uh − U)‖ <∼ h−2‖Ah(Uh − U)‖

<∼ h−2( 1
N

n1+1∑
i=1

n2+1∑
j=1

|Lh
ij(U

h − U)|2) 1
2 <∼ O(hk−2)‖u‖k,∞.

So, the proof of Theorem 4.1. is completed. ¤

So far, we have obtained the optimal estimate O(h2) of the finite volume ap-
proximation solution of equation (4.5) on rectangular grids in the average norm.
Remark 5.1. Although our analysis only applied for uniform grids but the optimal
convergence rate can be observed for more general grids. See numerical example in
section 6(Table 2).

5. Asymptotic error expansion and superconvergence result

In this section, we discuss superconvergence property of the finite volume ap-
proximation solution vector Uh of equation (4.5).
Lemma 5.1. Under the assumption of Theorem 4.1, we have

‖Uh‖ <∼ ‖F‖,
where F = (f1,1, · · · , fn1+1,1, · · · , f1,n2+1, · · · , fn1+1,n2+1)T and f i,j := f(Xi,j),
Uh is the finite volume solution vector defined in the last section and ‖.‖ is the
average norm.

Proof. By (4.5), Lemma 4.6 and the Cauchy inequality, we have

h2(Uh)T Uh <∼ (Uh)T AhUh <∼ h2((Uh)T (Uh))
1
2 (FT F )

1
2 ,

i.e.,
(Uh)T (Uh)

1
2 <∼ (FT F )

1
2 ,
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which leads to
‖Uh‖ <∼ ‖F‖.

Thus, we complete the proof of Lemma 5.1. ¤
Using the similar process of Lemma 4.7, we can get the following Lemma:

Lemma 5.2. Let the exact solution of the problem (4.1) u ∈ Ck(Ω), k = 5, 6, then
for any node Xi,j , 2 ≤ i ≤ n1, 2 ≤ j ≤ n2, we have

Lh
ij(U

h − U) = h2
1h

2
2g(Xi,j) + O(hk)‖u‖k,∞,

where
g =

−2

4!h2
1h

2
2

(h4
1

∂4u

∂x4
1

+ h4
2

∂4u

∂x4
2

+ 6h2
1h

2
2

∂4u

∂x2
2∂x2

1

)

=
−2

4!h2
1h

2
2

((h4
1 − 3h2

1h
2
2)

∂4u

∂x4
1

+ (h4
2 − 3h2

1h
2
2)

∂4u

∂x4
2

− 3h2
1h

2
2∆f). (5.0)

In the following, we first give the error asymptotic expansion of the finite volume
solution Uh in the average norm. For this purpose, we introduce the following
auxiliary problem { −4w = g, x := (x1, x2) ∈ Ω,

w = 0, x ∈ ∂Ω.
(5.1)

One assumption is as follows
(A0) f ∈ C2(Ω) and ∆f equals to zero at all corners of Ω.

The assumption (A0) together with the Dirichlet boundary condition u|∂Ω = 0
implies that the function g also equals to zero at all corners of Ω, so by the regularity
theory of the elliptic PDE, we know that if g ∈ C2−ε(Ω), then

w ∈ C4−ε(Ω) and ‖w‖4−ε,∞ ≤ ‖g‖2−ε,∞,∀ε > 0.

In particular, we have

w ∈ C3(Ω) and ‖w‖3,∞ ≤ ‖g‖1,∞. (5.2)

Similar to (4.5), the finite volume solution vector Wh of problem (5.1) satisfies

AhWh = h1h2G, (5.3)

where G = (g1,1, · · · , gn1+1,1, · · · , g1,n2+1, · · · , gn1+1,n2+1)T and gi,j = g(Xi,j).
By Theorem 4.1, (5.0) and (5.2), we have

‖W −W h‖ = O(h)‖w‖3,∞ = O(h)‖g‖1,∞

= O(h)(‖u‖5,∞ + ‖∆f‖1,∞). (5.4)

Combining Lemma 5.2 with (5.3), when u ∈ C5(Ω), we have:

Ah(U − Uh − h1h2W
h) = O(h5)Ψ‖u‖5,∞, (5.5)

where Ψ = (1, ..., 1)T .
Lemma 4.6 together with (5.5) implies that

‖U − Uh − h1h2W
h‖ = O(h3)‖u‖5,∞. (5.6)

Applying (5.4) and (5.6), we can get the following asymptotic error expansion.
Theorem 5.1. Under the assumption (A0), let u ∈ C5(Ω) and f ∈ C3(Ω), then
we have

‖U − Uh − h1h2W‖ = O(h3)(‖u‖5,∞ + ‖∆f‖1,∞).

Furthermore, using this asymptotic error expansion, we will give superconver-
gence results of the averaged derivatives by proper combinations of the finite volume
solution Uh.
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For this purpose, we introduce the center difference operators δl, l = 1, 2 along
directions of xl respectively,

δ1vi,j =
vi+1,j − vi−1,j

2h1
, δ2vi,j =

vi,j+1 − vi,j−1

2h2
,

where vl,m = v(Xl,m).
Let (ui,j)xl

:= ∂u
∂xl
|x=Xi,j , and

Uxl = ((u2,2)xl , · · · , (un1,2)xl , · · · , (u2,n2)xl , · · · , (un1,n2)xl)
T ,

δlU = (δlu2,2, · · · , δlun1,2, · · · , δlu2,n2 , · · · , δlun1,n2)
T .

It is obvious that

‖Uxl − δlU‖ = O(h2)‖u‖3,∞, ‖δlW‖ = ‖w‖1,∞. (5.7)

where the average norm ‖.‖ is different from the average norm defined by (4.16),
which satisfies that for any W = (w2,2, · · · , w2,n2 , · · · , wn1,2, · · · , wn1,n2)

T ∈ RN,

‖W‖ = (
1
N

n1∑

i=2

n2∑

j=2

w2
i,j)

1
2 ,

where N = (n1 − 1)(n2 − 1) is the total number of all inner nodes.
Using Theorem 5.1, we draw the conclusion on superconvergence.

Theorem 5.2. Under the assumption (A0), let u ∈ C5(Ω) and f ∈ C3(Ω), then
we have

‖Uxl − δlU
h‖ = O(h2)(‖u‖5,∞ + ‖∆f‖1,∞), l = 1, 2.

Proof. Using Theorem 5.1 and (5.7), we have

‖Uxl
− δlU + δlU − δlU

h‖ <∼ ‖Uxl
− δlU‖+ ‖δlU − δlU

h‖
<∼ h2‖δlW‖+ O(h2)(‖u‖5,∞ + ‖∆f‖1,∞)
<∼ h2(‖u‖5,∞ + ‖∆f‖1,∞).

¤

6. Numerical experiments

In this section, we give some numerical experiments for the convergence and
superconvergence rate in the average norm.

Firstly, we take Ω = [0, 1]× [0, 1] and quadrilateral grids which are shown in Fig.
1(a)(uniform grids ) and (b)(nonorthogonal grids). Let a(x1, x2) = x1 +x2 +1 and
u(x1, x2) = sin(πx1) sin(πx2) + 2 be the exact solution of problem(2.1).

Now we present some numerical results of convergence order in Table 1 and
Table 2 where γ = ‖u−u2h‖

‖u−uh‖ and PCG methods are used to solve the corresponding
discrete system, which can improve the efficiency.

n1 × n2 ‖u− uh‖(uniform grid) γ

8× 16 2.117925e-2

16× 32 5.451602e-3 3.9

32× 64 1.389064e-3 3.9

64× 128 3.509974e-4 4.0

Table 1
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n1 × n2 ‖u− uh‖(nonorthogonal grids) γ

8× 16 3.130141e-2

16× 32 7.820736e-3 4.0

32× 64 1.976474e-3 3.9

64× 128 4.983725e-4 4.0

Table 2

Next for problem (4.1), we consider rectangle grids shown in Fig. 1(a), in table
3, we present numerical results about one order forward difference approximation

∆lu
h
i,j to approximate uxl

(Xi,j) where ∆1u
h
i,j = uh

i+1,j−uh
i,j

h1
and ∆2u

h
i,j = uh

i,j+1−uh
i,j

h2
.

In Table 4, we use the superconvergence formula δlu
h
i,j(one order center difference

approximation) to approximate uxl
(Xi,j).

n1 × n2 ‖ux1 −∆1u
h‖ γ1 ‖ux2 −∆2u

h‖ γ1

8× 16 3.473220e-1 1.803291e-1

16× 32 1.626199e-1 2.1 8.214462e-1 2.2

32× 64 7.905709e-2 2.0 3.963300e-2 2.0

64× 128 3.902271e-2 2.0 1.952444e-2 2.0

Table 3

n1 × n2 ‖ux1 − δ1u
h‖ γ̃1 ‖ux2 − δ2u

h‖ γ̃1

8× 16 9.622503e-3 4.238013e-2

16× 32 2.475406e-3 4.0 1.029606e-2 4.0

32× 64 6.252850e-4 4.0 2.546117e-3 4.0

64× 128 1.570580e-4 4.0 6.334658e-4 4.0

Table 4

Table 1 and Table 2 show the second order convergence for the finite volume
approximate solution and Table 3 and Table 4 show the first order convergence of
the derivatives and second order convergence of averaged derivatives respectively,
which confirms our theoretical analysis.
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