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Abstract. For the nonconforming rotated Q1 element over a mildly distorted

quadrilateral mesh, we propose a superconvergence property at the element

center, the vertices and the midpoints of four edges. Numerics are presented

to confirm this observation.
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1. Introduction

Nonconforming rotated Q1 element [21] (NRQ1) with mean integral over edges
as degrees of freedom (NRQ a

1 ) has been widely used in several fields including the
computational fluids [21, 25], the crystalline microstructure [11, 13], the Chapman-
Ferraro problem [12], the Reissner-Mindlin plate bending problem [16], and the
streamline-diffusion problem [22, 24]. Compared with the standard bilinear element,
NRQ a

1 exhibits better stability in these problems.
A new NRQ1 element introduced by Ming and Shi leads to a truly locking-free

Reissner-Mindlin plate element over general quadrilateral meshes [19]. Compared
to NRQ a

1 , this element has an extra degree of freedom (we call it the five-point
NRQ1, see Definition 2.3). A similar element was presented in [4] to approximate
Navier-Stokes equations.

The convergence rate in the energy norm of both NRQ1 elements is of first order
over a rectangular mesh [11, 21]. As to the general quadrilateral mesh, the five-
point NRQ1 retains the first order convergence rate, while NRQ a

1 converges with
first order if the mesh is mildly distorted [15, 17]. An example is given to show the
first order optimality [15].

Meanwhile, a superconvergence property at element center on the rectangular
parallelopiped mesh was obtained for NRQ a

1 [11]. For the mildly distorted quadri-
lateral mesh, we proved [20] that the supercovergence property is valid not only for
the element center, but also for the vertices and midpoints of four edges. Therefore,
both elements share the same superconvergence points as the bilinear element [5].
Extensive numerics will be presented in this paper to confirm the theoretic pre-
diction. The same phenomenon was also numerically observed for another NRQ1

element that employs midpoints value of each edge as degrees of freedom, however,
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there is no theoretic support up to now. Some superclose results for the rectangular
NRQ1 element and its variants can be found in [2, 14, 15, 22].

The outline of this paper is as follows. In the next section, we introduce NRQ a
1 ,

NRQ p
1 , and the five-point NRQ1 element, the quadrilateral mesh conditions. The

main results are stated in § 3. Numerical results and discussion are given in the
last section.

2. Nonconforming Rotated Q1 Element

For any convex polygon Ω, we use the standard Sobolev space W k,p(Ω) [1].
Denote by

∫−
Ω1

f the mean value of a function f over the sub-domain Ω1 of Ω.
We consider the general second order elliptic boundary value problem

(2.1)

{
−∂x

(
a11∂xu

)− ∂x

(
a12∂yu

)− ∂y

(
a21∂xu

)− ∂y

(
a22∂yu

)
= f in Ω,

u = 0 on ∂Ω,

where {aij}2i,j=1 ∈ W 2,∞(Ω), and

λ| ξ |2 ≤
2∑

i,j=1

aijξiξj ≤ Λ| ξ |2 for all ξ ∈ R2.

Let Th be a partition of Ω by convex quadrilaterals K with the mesh size hK

and h := maxK∈Th
hK . We assume that Th is shape regular in the sense of Ciarlet-

Raviart [6, p. 247]. Namely, all quadrilaterals are convex and there exist constants
ρ1 ≥ 1 and 0 < ρ2 < 1 such that

hK/hK ≤ ρ1, | cos θi,K | ≤ ρ2, i = 1, 2, 3, 4 for all K ∈ Th.

Here hK , hK and θi,K denote the diameter, the shortest length of sides, and the
interior angles of K, respectively.

We introduce a mesh condition which quantifies the deviation of a quadrilateral
from a parallelogram.

Definition 2.1. (1 + α)-section condition (0 ≤ α ≤ 1) [18] The distance dK

between the midpoints of two diagonals of K ∈ Th is of order O(h1+α
K ) uniformly

for all elements K as h → 0.

The extreme case α = 0 represents an unstructured quadrilateral mesh subdivi-
sion. The mesh partition in Fig. 4 is a particular one, which consists of trapezoids
generating from a typical trapezoid with translation and dilation. In case of α = 1,
the mesh satisfies the Bi-section condition [23], which is also the 1-strongly regular
mesh [27].

Definition 2.2. For every element K ∈ Th, we call K satisfies the (1 + βK)-
uniform condition if for every elements K∗ ∈ S(K), there exist constants β1(K∗)
and β2(K∗) such that

(2.2)
| −−−−→M1M3 −−−−−→M3M6 | = O(h1+β1(K

∗)
K + h

1+β1(K
∗)

K∗ ),

| −−−−→M2M4 −−−−−→M5M7 | = O(h1+β2(K
∗)

K + h
1+β2(K

∗)
K∗ ).

We define βK as
βK : = min

K∗∈S(K)
min(β1(K∗), β2(K∗)),

where S(K) is the subset of Th with nonempty intersection with K, and we refer to
Fig. 1 for M1M3,M3M6 and M2M4,M5M7.
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We call Th satisfies the (1 + β)-uniform condition if every element K ∈ Th

satisfies the (1 + βK)-uniform condition, where β: = minK∈Th
βK .

M
1

M
2

M
3

M
4

M
5

M
6

M
7

K K∗

Figure 1. (1 + βK)-uniform mesh

Let K̂ be the unit square (−1, 1)2 and the bilinear function FK be an isomor-
phism from K̂ → K = FK(K̂).

Rannacher and Turek introduced NRQ1 element [21], which is defined as

Xh: = { v ∈ L2(Ω) | v|K ∈ Q1, v is continuous regarding Qe

and Qe(v) = 0 if e ⊂ ∂Ω },(2.3)

where
Q1: = { q ◦ F−1

K | q ∈ Span〈1, x̂, ŷ, x̂2 − ŷ2〉 },
and Qe(v): =

∫−
e
v for a smooth function v : K → R and e ⊂ ∂K.

For any v ∈ Xh, define

‖v‖2l,p,h =
∑

K∈Th

‖v‖2l,p,K , | v |2l,h =
∑

K∈Th

| v |2l,p,K , l = 1, 2 and 1 ≤ p ≤ ∞.

It is seen that | · |1,2,h is a norm on Xh.
Denote by Π the standard interpolation operator over Xh. If Th satisfies the

(1 + α)-section condition, then for each v ∈ H1
0 (Ω) ∩W 2,∞(Ω), using the general

theory in [3], we have the interpolation error estimate

(2.4) ‖v −Πv‖L∞(Ω) + h‖v −Πv‖1,∞,h ≤ C(h| v |2,∞ + hα| v |1,∞).

Observe that the interpolation error degenerates if α = 0. To avoid such degra-
dation, similar to [4], we define

Definition 2.3.

Xh: = { v ∈ L2(Ω) | v|K ∈ Q̂1, v is continuous regarding Qe and
∫

K̂

(v ◦ FK)x̂ŷ = 1

and Qe(v) = 0 if e ⊂ ∂Ω }(2.5)

with Q̂1: = { q ◦ F−1
K | q ∈ Span〈1, x̂, ŷ, x̂ŷ, x̂2 − ŷ2〉 }.

Another version of NRQ1 is also introduced in [21], which uses midpoints of
four edges as degrees of freedoms. We call this element as NRQ p

1 , the one defined
in (2.3) as NRQ a

1 and the one defined in (2.5) as the five-point NRQ1.
The variational problem of (2.1) is to find u ∈ H1

0 (Ω) such that

(2.6) a(u, v) = (f, v) for all v ∈ H1
0 (Ω),

where the bilinear form a is defined for each v, w ∈ H1
0 (Ω) as

a(v, w): =
∫

Ω

(a11∂xu∂xv + a12∂yu∂xv + a21∂yu∂xv + a22∂yu∂yv) dx dy.
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The finite element solution uh ∈ Xh satisfies

(2.7) ah(uh, v) = (f, v) for all v ∈ Xh,

where ah is defined piecewise for each v, w ∈ Xh as

ah(v, w): =
∑

K∈Th

∫

K

(a11∂xu∂xv + a12∂yu∂xv + a21∂yu∂xv + a22∂yu∂yv) dx dy,

where Xh is NRQ a
1 or the five-point NRQ1.

3. Main Results

The main results of this paper are

Theorem 3.1. Let u be the solution of (2.6), and uh ∈ Xh(NRQ a
1 ) be the solu-

tion of (2.7). We assume that u ∈ W 3,∞(Ω) and Th satisfies the (1 + α)-section
condition.

If z is the element center, then

(3.1) | ∇(u− uh)(z) | ≤ Ch2α| ln h | ‖u‖3,∞.

If z are vertices or midpoints of each edges of the element K, and if K satisfies
the (1 + βK)-uniform condition, then

(3.2) |∇(u− uh)(z) | ≤ C
(
h2α| ln h |+ hα+βK

)‖u‖3,∞,

where ∇ refers to taking average over all neighboring elements around z.

This theorem is proved in [20, Theorem 2.5], which also holds for many variants
of other quadrilateral nonconforming elements, e.g. [7, 9]1

As to the five-point NRQ1, we have

Theorem 3.2. Under the same condition of Theorem 3.1 and uh belongs to the
five-point NRQ1, we have

If z is the element center, then

(3.3) |∇(u− uh)(z) | ≤ Ch1+α| ln h |‖u‖3,∞.

If z are vertices or midpoints of each edges of the element K, and if K satisfies
the (1 + βK)-uniform condition, then

(3.4) | ∇(u− uh)(z) | ≤ C
(
h1+α| ln h |+ h1+βK

)‖u‖3,∞.

This theorem is proved in [20, Theorem 2.6].
Another standard measurement of the error is the discrete `2 norm ‖ · ‖`2 , which

is defined as

‖∇(u− uh)(Z)‖`2 : = (#Z)−1/2
(∑

z∈Z

| ∇(u− uh)(z) |2
)1/2

,

where Z may be the element center, the vertices and the midpoints of each edges,
and #Z denotes the number of elements in Z.

Theorem 3.1 and Theorem 3.2 require the (1 + βK)-uniform condition around
the points of interest. For an unstructured mesh, an adaptive mesh refinement
will usually bring in such kind of local structure (e.g. diagonal swapping and
Lagrange smoothing). However, such local structure usually cannot be retained over
the whole triangulation, in particular for elements near the boundary or near the
discontinuous line of the coefficients. It is thus reasonable to assume the following
condition:

1Notice that elements proposed in [7, 9] are rectangular, which can be directly extended to a
quadrilateral mesh.
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Definition 3.3. The triangulation Th = T1,h ∪T2,h is said to satisfy the Condition
(β, σ) if there exist nonnegative constants β and σ such that every element inside
T1,h satisfies the (1 + β)-uniform condition and

Ω1,h ∪ Ω2,h = Ω, |Ω2,h | = O(hσ), Ωi,h =
∑

K∈Ti,h

K, i = 1, 2.

Remark 3.4. A similar condition for a triangular mesh was appeared in [26].

Corollary 3.5. If Th satisfies the (1 + α)-section condition, then

‖∇(u− uh)(z)‖`2 ≤
{

Ch2α| ln h | NRQ a
1 ,

Ch1+α| ln h | five-point NRQ1

for z being the element center.
If, in addition, Th satisfies the Condition (β, σ), then

‖∇(u−uh)(z)‖`2 ≤
{

C(h2α| ln h |+ hα+β + h1+σ/2| ln h |) NRQ a
1 ,

C(h1+α| ln h |+ h1+β + h1+σ/2| ln h |) five-point NRQ1

for z being the vertex or midpoint of each edge.

Proof. We only prove the case for NRQ a
1 , the case for the five-point NRQ1 may be

proceeded similarly.
For z being the element center, the estimate is a direct consequence of Theo-

rem 3.1.
While for z being the vertex or midpoint of each edge, since Th satisfies the

Condition (β, σ), we may decompose Z = Z1 ∪ Z2, where

Zi: = { z ∈ Z | z ∈ Ω1,h } i = 1, 2.

Therefore, using Theorem 3.1, we have

‖∇(u− uh)(z)‖`2 = (#Z)−1/2
( ∑

z∈Z1

| ∇(u− uh)(z) |2 +
∑

z∈Z2

|∇(u− uh)(z) |2
)1/2

≤ C(#Z1/#Z)1/2(h2α| ln h |+ hα+β) + C(#Z2/#Z)1/2
h| ln h |

≤ C(h2α| ln h |+ hα+β + h1+σ/2| ln h |),
where we have used (#Z1/#Z) ≤ C and (#Z2/#Z) ≤ Chσ. ¤

Remark 3.6. We did not prove a similar result for NRQ p
1 , however, we are apt to

conclude that Theorem 3.1 and Corollary 3.5 are also valid for NRQ p
1 by numerics

in the next section.

4. Numerical Results and Discussion

In this section, we report on numerical results for NRQ a
1 , NRQ p

1 and the five-
point NRQ1 element on three sequences of meshes: the Bi-section mesh, which is
obtained by applying the bisection refined strategy to the domain, the Kershaw
mesh [10]; and a pedagogic trapezoid mesh. For the Kershaw mesh and the trape-
zoid mesh, we solve the Dirichlet problem (2.1) in the unit square [0, 1]2 with the
coefficients

(4.1) a11 = 1 + x2, a12 = a21 = xy, a22 = 1 + y2,

and f is chosen so that the exact solution is

u(x, y) = x(1− x) sin(πy).
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As to the Bi-section mesh, we solve the problem (2.1) in

Ω = { (x, y) | 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1 } ∪ { 1/2 ≤ x ≤ 1 | 2x− 1 ≤ y ≤ 1 }

with the same coefficients as (4.1), and f is taken so that the exact solution is

u(x, y) = x(y − 2x + 1) sin(πy).

Here follows are three sequences of meshes we employed in the computation.

Figure 2. Bi-section Mesh

Figure 3. Kershaw Mesh

Figure 4. Trapezoid Mesh

We list the corresponding values of α, β and σ for three meshes in the following
table.

mesh α β σ

Bi-section 1 1 +∞
Kershaw 1 1 1

Trapezoid 0 0 0

Table 1. Mesh quality indicators for three meshes
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error n = 4 n = 8 n = 16 n = 32 n = 64 rate

vertex 1.19e− 1 3.44e− 2 9.06e− 3 2.32e− 3 5.85e− 4 1.98

midpoint 6.69e− 2 1.81e− 2 4.63e− 3 1.17e− 3 2.95e− 4 1.99

center 2.63e− 2 6.51e− 3 1.63e− 3 4.07e− 4 1.02e− 4 1.99

Table 2. NRQ a
1 on Bi-section mesh

error n = 6 n = 12 n = 24 n = 48 n = 96 rate

Vertex 1.90e− 1 8.95e− 2 3.44e− 2 1.24e− 2 4.43e− 3 1.49

midpoint 1.57e− 1 6.81e− 2 2.53e− 2 8.98e− 3 3.1653e− 3 1.50

center 9.97e− 2 3.30e− 2 9.20e− 3 2.39e− 3 6.04e− 4 1.98

Table 3. NRQ a
1 on Kershaw mesh

4.1. Numerics in discrete `2 norm. In this subsection, we measure the error
by the `2 norm. The numerical results for NRQ a

1 are presented in Table 2, Table 3
and Table 8, respectively. Using the corresponding values of α, β and σ in Table 1,
these results confirm the theoretic prediction: Corollary 3.5.

As to the five-point NRQ1, we list the results on the Bi-section mesh and the
Kershaw mesh in Table 4 and Table 5, respectively. By Table 1, these results confirm
Corollary 3.5: For the element center, a second order convergence is observed for
both meshes, while for the vertex and the mid-point of each edge, a second order
convergence is retained over the Bi-section mesh, whereas 3/2−order convergence
is obtained for the Kershaw mesh.

error n = 4 n = 8 n = 16 n = 32 n = 64 rate

vertex 1.15e− 1 3.28e− 2 8.59e− 3 2.19e− 3 5.54e− 4 1.98

midpoint 6.46e− 2 1.71e− 2 4.37e− 3 1.10e− 3 2.77e− 4 1.99

center 2.71e− 2 6.68e− 3 1.67e− 3 4.17e− 4 1.04e− 4 2.00

Table 4. five-point NRQ1 on Bi-section mesh

error n = 6 n = 12 n = 24 n = 48 n = 96 rate

vertex 2.21e− 1 9.39e− 2 3.58e− 2 1.30e− 2 4.69e− 3 1.48

midpoint 1.72e− 1 7.17e− 2 2.65e− 2 9.47e− 3 3.35e− 3 1.49

center 7.79e− 2 2.80e− 2 7.74e− 3 2.01e− 3 5.08e− 4 1.98

Table 5. five-point NRQ1 on Kershaw mesh

Our theoretic results do not cover NRQ p
1 , however, the following numerics sug-

gest that this element shares the same superconvergence property as NRQ a
1 , which

we shall explore in a forthcoming paper. We list the results on the Bi-section mesh,
and the Kershaw mesh in Table 6 and Table 7 below. Table 8 shows the numerics
on the trapezoid mesh.

4.2. Numerics in maximum norm. In this subsection, we present the numerics
in the maximum norm. We still consider problem (2.1) with coefficients (4.1). The
right-hand side f is taken such that the exact solution is sin(πx) sin(πy)y(1− y)
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error n = 4 n = 8 n = 16 n = 32 n = 64 rate

vertex 1.39e− 1 4.12e− 2 1.09e− 2 2.77e− 3 6.98e− 4 1.98

midpoint 7.66e− 2 2.17e− 2 5.63e− 3 1.43e− 3 3.59e− 4 1.99

center 4.95e− 2 1.24e− 2 3.10e− 3 7.76e− 4 1.94e− 4 2.00

Table 6. NRQ p
1 on Bi-section mesh

error n = 6 n = 12 n = 24 n = 48 n = 96 rate

vertex 1.84e− 1 8.80e− 2 3.41e− 2 1.24e− 2 4.42e− 3 1.49

midpoint 1.52e− 1 6.71e− 2 2.51e− 2 8.93e− 3 3.15e− 3 1.50

center 9.69e− 2 3.35e− 2 9.43e− 3 2.46e− 3 6.25e− 4 1.98

Table 7. NRQ p
1 on Kershaw mesh

error n = 4 n = 8 n = 16 n = 32 n = 64 rate
NRQ1a 1.87e− 1 9.53e− 2 4.98e− 2 2.87e− 2 2.03e− 2
NRQ1p 1.90e− 1 9.64e− 2 5.04e− 2 2.90e− 2 2.04e− 2

five-point 1.85e− 1 9.28e− 2 4.65e− 2 2.33e− 2 1.17e− 2 0.99

Table 8. Numerics on trapezoid mesh

We employ the following maximum norm to measure the error:

| ∇(u− uh)(p) | = | ∂x(u− uh)(p) |+ | ∂y(u− uh)(p) |.
We choose nine special points in Figure 5. This mesh is refined by the bisection
strategy, so it automatically satisfies the Bi-section condition, i.e., α = 1. Moreover,
for points 1, 2, 4, 5 and 7, we have βK = 0, while for points 3, 6, 8 and 9, we have
βK = 1. Table 10, Table 12 and Table 14 confirm the theoretic prediction (3.2): a
first order convergence is observed for points 1, 2, 4, 5 and 7, while a second order
convergence is observed for points 3, 6, 8 and 9.

error n = 12 n = 24 n = 48 n = 96 n = 192

P1 1.14e− 1 8.00e− 3 8.53e− 3 5.52e− 3 3.09e− 3

P2 4.22e− 1 2.86e− 1 1.54e− 1 7.87e− 2 3.93e− 2

P3 5.95e− 2 1.57e− 2 3.97e− 3 9.94e− 4 2.49e− 4

P4 3.36e− 1 1.46e− 1 6.70e− 2 3.13e− 2 1.52e− 2

P5 1.64e− 1 6.38e− 2 2.86e− 2 1.44e− 2 7.43e− 3

P6 6.44e− 3 2.47e− 3 6.66e− 4 1.70e− 4 4.36e− 5

P7 4.68e− 2 2.15e− 2 1.57e− 2 9.09e− 3 4.93e− 3

P8 3.64e− 2 9.78e− 3 2.46e− 3 6.17e− 4 1.32e− 4

P9 1.90e− 1 4.92e− 2 1.28e− 2 3.18e− 3 8.07e− 4

Table 9. NRQ a
1 : |∇(u− uh)(p)| on Kershaw mesh
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rate 12− 24 24− 48 48− 96 96− 192

P1 3.8367 −0.0923 0.6289 0.8349

P2 0.5614 0.8884 0.9719 1.0038

P3 1.9252 1.9810 1.9964 1.9990

P4 1.2029 1.1235 1.0980 1.0400

P5 1.3598 1.1582 0.9841 0.9589

P6 1.3833 1.8893 1.9724 1.9637

P7 1.1237 0.4533 0.7877 0.8833

P8 1.8980 1.9891 1.9987 2.2212

P9 1.9496 1.9414 2.0074 1.9806

Table 10. NRQ a
1 : superconvergence rate on Kershaw mesh

error n = 12 n = 24 n = 48 n = 96 n = 192

P1 2.81e− 1 8.82e− 2 3.60e− 2 1.68e− 2 8.09e− 3

P2 5.43e− 2 6.31e− 2 3.83e− 2 2.04e− 2 1.01e− 2

P3 5.25e− 2 1.35e− 2 3.40e− 3 8.53e− 4 2.13e− 4

P4 2.88e− 1 9.97e− 2 4.10e− 2 1.81e− 2 8.44e− 3

P5 1.42e− 1 6.57e− 2 3.13e− 2 1.47e− 2 7.29e− 3

P6 9.86e− 3 2.19e− 3 5.62e− 4 1.41e− 4 3.54e− 5

P7 6.56e− 2 5.63e− 2 3.61e− 2 2.02e− 2 1.07e− 2

P8 2.64e− 2 7.25e− 3 1.84e− 3 4.60e− 4 1.02e− 4

P9 1.20e− 1 3.47e− 2 8.89e− 3 2.21e− 3 5.61e− 4

Table 11. five-point NRQ1: |∇(u− uh)(p)| on Kershaw mesh

rate 12− 24 24− 48 48− 96 96− 192

P1 1.6716 1.2952 1.0973 1.0540

P2 −0.2166 0.7187 0.9123 1.0065

P3 1.9611 1.9869 1.9971 1.9997

P4 1.5319 1.2837 1.1747 1.1043

P5 1.1149 1.0686 1.0923 1.0122

P6 2.1673 1.9643 1.9990 1.9901

P7 0.2204 0.6405 0.8359 0.9136

P8 1.8669 1.9817 1.9964 2.1759

P9 1.7868 1.9676 2.0048 1.9781

Table 12. five-point NRQ1: superconvergence rate on Kershaw mesh
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0
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Figure 5. Location of the above nine points on Kershaw mesh
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error n = 12 n = 24 n = 48 n = 96 n = 192

P1 1.54e− 1 1.20e− 2 7.00e− 3 5.98e− 3 3.49e− 3

P2 4.35e− 1 2.88e− 1 1.55e− 1 7.86e− 2 3.95e− 2

P3 4.82e− 2 1.28e− 2 3.25e− 3 8.15e− 4 2.04e− 4

P4 3.59e− 1 1.50e− 1 6.72e− 2 3.11e− 2 1.51e− 2

P5 1.34e− 1 6.27e− 2 3.57e− 2 1.81e− 2 9.05e− 3

P6 6.66e− 3 2.65e− 3 7.42e− 4 1.91e− 4 4.96e− 5

P7 6.62e− 2 3.82e− 2 2.28e− 2 1.23e− 2 6.39e− 3

P8 3.69e− 2 1.02e− 2 2.60e− 3 6.54e− 4 1.64e− 4

P9 1.78e− 1 4.67e− 2 1.22e− 2 2.98e− 3 7.42e− 4

Table 13. NRQ p
1 : |∇(u− uh)(p)| on Kershaw mesh

Rate 12− 24 24− 48 48− 96 96− 192

P1 3.6847 0.7735 0.2267 0.7767

P2 0.5939 0.8981 0.9750 0.9948

P3 1.9134 1.9770 1.9952 1.9978

P4 1.2443 1.1567 1.1132 1.0452

P5 1.0976 0.8113 0.9782 1.0027

P6 1.3305 1.8356 1.9556 1.9469

P7 0.7936 0.7421 0.8893 0.9462

P8 1.8551 1.9713 1.9937 1.9975

P9 1.9279 1.9392 2.0323 2.0052

Table 14. NRQ p
1 : superconvergence rate on Kershaw mesh
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