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Abstract. In this paper we consider superconvergence and supercloseness in

the least-squares mixed finite element method for elliptic problems. The su-

percloseness is with respect to the standard and mixed finite element approx-

imations of the same elliptic problem, and does not depend on the properties

of the mesh. As an application, we will derive more precise a priori bounds for

the least squares mixed method. The superconvergence may be used to define

a posteriori error estimators in the usual way. As a by-product of the analysis,

a strengthened Cauchy-Buniakowskii-Schwarz inequality is used to prove the

coercivity of the least-squares mixed bilinear form in a straight-forward man-

ner. Using the same inequality, it can moreover be shown that the least-squares

mixed finite element linear system of equations can basically be solved with one

single iteration step of the Block Jacobi method.
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1. Introduction

Superconvergence in finite element methods is an important topic in current
research, as is reflected in the references in the classical overview paper [19] but
also in the proceedings [20] and of course this issue of this journal. In the past
decade, much progress has been made. On the one hand, the so-called Chinese
school [12, 29, 30] has made progress in developing suitable interpolants of the
exact solution of a PDE to which its finite element approximation is superclose.
This strategy became necessary since results in [21] (and earlier work by the same
author) showed that the nodal interpolant often lacks this property, in particular
for n-simplicial elements in dimension n ≥ 2 of degree d with d > n. On the other
hand, the so-called patch-recovery technique [28, 26, 27] allows for superconvergence
on irregular meshes at the cost of additional computations on a patch of elements
surrounding an element. Finally, progress has also been made in proving (and, in
fact, disproving) localized bounds [14, 15, 23, 24, 25] for standard and mixed finite
element methods.

1.1. Least squares mixed finite elements. In this paper we turn our attention
to supercloseness and superconvergence in least-squares mixed finite element meth-
ods [11, 22] for elliptic equations. These methods aim to provide approximations
for the potential and the flux separately, just as mixed finite element methods. The
difference is that instead of posing a Ritz-Galerkin condition to select approxima-
tions from the subspaces, which results in a saddle-point problem that is not trivial
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[9, 10] to discretize, it employs a least-squares approach. Just as in the standard
Galerkin method, this leads to a symmetric coercive bilinear form and straightfor-
ward discretization.

A drawback of the least-squares mixed finite element method is that the errors in
both the potential and the flux influence one another; as a result, the well-known
Lemma by Céa is only able to yield a bound for the largest error of the two. It
may however be the case that one of the two errors is of higher order than the
other. To prove that in some situations this is indeed the case, one needs to rely on
other techniques. In [5] it was proposed to use supercloseness of the least-squares
mixed finite element approximations to well-known and well-defined reference func-
tions from the approximating spaces in order to give separate results for both the
potential and the flux.

1.2. Outline of this paper. We start in Section 2 with defining our model prob-
lem and fix our notations for Sobolev spaces and norms, in particular for some
weighted norms on product spaces. In Section 2.2, we recall the strengthened
Cauchy-Buniakowskii-Schwarz (CBS) inequality from [6] and put it in a slightly
more general context. In Section 2.3 we describe the least-squares mixed finite
element method for our model problem and give a one-line proof of the coercivity
of the associated bilinear form. Due to the strengthened CBS inequality, block-
diagonal preconditioning of the linear system results in a condition number of the
preconditioned matrix that is bounded uniformly in the stepsize; as an illustra-
tion, we prove separately that the block-Jaboci method (which is equivalent to
the block-diagonally preconditioned Richardson iteration) has convergence factor γ
when measured in the appropriate norm. Then, in Section 3, we turn to the ap-
plication of supercloseness to derive a priori bounds for the separate variables that
improve the standard bounds by Céa’s Lemma in case both approximating spaces
have different approximation quality. Finally, we briefly discuss superconvergence
by post-processing as a consequence of the supercloseness.

2. Preliminaries

As our model serves the following second order elliptic problem. Given f ∈
H−1(Ω), where Ω ⊂ Rn is a convex polytope, find u ∈ H1

0 (Ω) such that

(1) −div (A∇u) = f in Ω, u = 0 on ∂Ω,

where A is uniformly symmetric positive definite with Lipschitz continuous coeffi-
cients and with eigenvalues in the interval [β2, β−2] for some β ∈ (0, 1]. The formu-
lation of (1) as a system of first-order equations lies at the basis of the least-squares
mixed finite element method. This formulation is to find functions u ∈ H1

0 (Ω) and
p ∈ H(div ; Ω) such

(2) p = −A∇u in Ω, divp = f in Ω.

Since the spaces H1
0 (Ω) and H(div ; Ω) play a central part in the analysis, we will

derive a useful but nevertheless simple result that involves both of them. First
however some notations.

2.1. Weighted Sobolev norms and other notations. We use standard nota-
tions for Sobolev spaces and their norms and semi-norms; the L2-norm and inner
product we denote by | · |0 and (·, ·)0. Additional to the usual norms on H(div ; Ω)
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and H1
0 (Ω) we will define norms by means of A-weighted inner products. Firstly,

let

(3) (q, r)div,A = (A−1q, r) + (divq,div r) and ‖q‖2div,A = (q,q)div,A.

Secondly, we set

(4) (v, w)1,A = (A∇v,∇w) and |v|21,A = (v, v)1,A.

Notice that (4) defines the usual energy norm on H1
0 (Ω). To conclude, the product

space H1
0 (Ω)×H(div ; Ω) will be equipped with the canonical product norm

(5) ‖(v,q)‖21×div,A = |v|21,A + ‖q‖2div,A.

Notice that if A = I, the weighted norms above reduce to the usual norms on those
spaces. It is not difficult to prove that they are equivalent to the usual norms if
A 6= I.

By the Poincaré-Friedrichs inequality and the assumption on the eigenvalues of A
we have that
(6)

sup
0 6=v∈H1

0 (Ω)

|v|0
|v|1,A

= dA < ∞, or equivalently, ∀v ∈ H1
0 (Ω), |v|0 ≤ dA|v|1,A.

The constant dA depends only on the diameter of Ω and on β.

2.2. A strengthened Cauchy-Buniakowskii-Schwarz inequality. In [6] it
was proved that ∇H1

0 (Ω) ⊂ [L2(Ω)]n and H(div ; Ω) ⊂ [L2(Ω)]n satisfy a strength-
ened Cauchy-Buniakowskii-Schwarz type inequality [18] in the sense that for all
v ∈ H1

0 (Ω) and q ∈ H(div ; Ω),

(7) (∇v,q)0 ≤ γ|v|1,A‖q‖div,A, where γ =

√
d2

A

d2
A + 1

< 1.

Since (∇v, r)0 = −(v, div r)0 = 0 for solenoidal vector fields r, this bound is not
always sharp. This can be fixed by stating that for all r ∈ H(div ; Ω) with div r = 0
we have that

(8) (∇v,q)0 = (∇v,q− r)0 ≤ γ|v|1,A‖q− r‖div,A.

In fact, the constant γ can be strictly less than one because the norm ‖q‖div,A is
stronger than the norm |q|0 that the direct application of the Cauchy-Buniakowskii-
Schwarz inequality would yield.

Remark 2.1. Inequality (7) can be written down in a more symmetric manner.
For this we also recall the space H(curl ; Ω) with norm ‖ · ‖curl. Since ∇H1

0 (Ω) ⊂
H(curl ; Ω) and curl∇v = 0 we may restate (7) as follows, where we set A = I for
simplicity: for all q ∈ H(div ; Ω) and all irrotational σ ∈ H(curl ; Ω),

(9) (σ,q)0 ≤ γ‖σ‖curl‖q‖div

Similarly, by reversing the role of both spaces, we find that (9) also holds for all
σ ∈ H(curl ; Ω) and all solenoidal q ∈ H(div ; Ω).
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2.3. Least-squares mixed finite elements. The least-squares mixed finite ele-
ment method applied to the elliptic problem (2) consists of minimizing the quadratic
functional J : H1

0 (Ω)×H(div ; Ω) → R defined by

(10) J(v,q) = (f − divq, f − divq)0 + (q + A∇v, A−1(q + A∇v))0,

over suitable subspaces Vh × Γh ⊂ H1
0 (Ω) ×H(div ; Ω). Setting the first variation

in (10) to zero boils down to the discrete problem to find (uh,ph) ∈ Vh × Γh such
that

(11) (ph,qh)div,A − (uh, divqh)0 = (f, divqh)0,

(12) −(vh, divph)0 + (uh, vh)1,A = 0,

for all vh ∈ Vh and qh ∈ Γh. Adding both equations together, the left-hand side
can be seen to be derived from the continuous and coercive bilinear form

(13) B(w, r; v,q) = (r,q)div,A + (w, v)1,A − (w, divq)0 − (v, div r)0
on the product space H1

0 (Ω)×H(div ; Ω). The proof for coercivity stems from [22]
but it was observed in [6] that it could be simplified considerably. Indeed, choosing
q = r and v = w and using Green’s formula in combination with (7) we get that

(14) B(w, r; w, r) = ‖(w, r)‖21×div,A − 2(w, divq) ≥ (1− γ)‖(w, r)‖21×div,A.

It can easily be verified that the continuity constant is not larger than 1 + γ. The
continuity and coercivity gives unique solvability of the discrete system according
to the Lax-Milgram Lemma and quasi-optimal convergence in H1

0 (Ω)×H(div ; Ω)
according to Céa’s Lemma.

2.4. Optimal preconditioning of the linear system. The discrete problem
(11) can, after a suitable choice of a basis for Vh × Γh, be written as a two-by-two
block linear system of equations of the form,

(15)
(

D C
C∗ S

)(
pN

uM

)(
fN

0

)
.

Here, D corresponds to the term (ph,qh)div,A and S to (uh, vh)1,A. The matrix C
contains the interaction between the spaces Vh and Γh represented by the terms
−(uh, divqh)0 and −(vh, divph)0. A standard consequence of the strengthened
Cauchy-Buniakowskii-Schwarz inequality (7) and its discrete counterpart, which is
that for all vectors v and z of the appropriate lengths,

(16) |v∗Cz| ≤ γ
√

v∗Dv
√

z∗Sz,

is that block diagonal preconditioning of a linear system with the matrix from (15)
results in a preconditioned matrix with condition number (see [2])

(17) κ =
1 + γ

1− γ
.

Since γ does not depend on the discretization at all, we see that the number of
iterations of the preconditioned conjugate gradient method that is needed to solve
(15), is independent of problem parameters. In fact, convergence independent of
problem parameters of the block Jacobi method can be established as well, by con-
sidering the following equivalent formulation of the block-diagonally preconditioned
iteration,

(18) given u0
h and p0

h, iterate

{
(pj+1

h ,qh)div,A = (f, divqh)0 + (uj
h,divqh)0,

(uj+1
h , vh)1,A = −(vh, divpj

h)0.
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Proposition 2.2. The iterates (uj
h,pj

h) defined in (18) satisfy

(19) ‖(uh − uj+1
h ,ph − pj+1

h )‖1×div,A ≤ γ‖(uh − uj
h,ph − pj

h)‖1×div,A.

Proof. Subtract (18) from the least-squares mixed discrete equations (11) and sub-
stitute qh = ph − pj

h and vh = uh − uj+1
h . Adding the resulting two equations

gives
(20)
‖(uh−uj+1

h ,ph−pj+1
h )‖21×div,A = (uh−uj

h ,div (ph−pj+1
h ))−(uh−uj+1

h ,div (ph−pj
h)).

Applying Green’s formula and (7) shows that

‖(uh − uj+1
h ,ph − pj+1

h )‖21×div,A

(21) ≤ γ
(
|uh − uj

h|1,A‖ph − pj+1
h ‖div,A + |uh − uj+1

h |1,A‖ph − pj
h‖div,A

)
.

Applying the Cauchy-Schwarz inequality for 2-vectors proves the statement. ¤
Of course, each preconditioning step involves solving two linear systems: one

with D and one with S. For these systems there exist, however, optimal complexity
multigrid methods. See in particular [1] for solving sytems with D.

3. Supercloseness and applications

Notice that although Céa’s Lemma gives quasi-optimal convergence in the weighted
product norm on H1

0 (Ω) ×H(div ; Ω) in the sense that for all (vh,qh) ∈ H1
0 (Ω) ×

H(div ; Ω),

(22) ‖(u− uh,p− ph)‖1×div,A ≤ 1+γ

1−γ
‖(u− vh,p− qh)‖1×div,A,

it does not give bounds for norms of the individual errors p− ph and u− uh other
than that each one of them is bounded by the right-hand side of (22). In fact,
the product norm kills the approximation quality of the best of Vh and Γh, as is
depicted in Figure 1 below.

X
hΓhV hΓ

hV

O h( ) 5)h(O

)h(O

Figure 1. Illustration of Céa’s Lemma in the weighted product norm.

In this figure, as an illustration, the space Vh has approximation order O(h), and
Γh has approximation order O(h5). Then from Céa’s Lemma (22) it can only be
concluded that

(23) ‖p− ph‖div,A ≤ 1+γ

1−γ
O(h).

There is good reason to believe that this result can be improved, since we know
that the coupling between the diagonal blocks in (15) is weak in some sense; after
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all, the weakest possible coupling C = 0 would result in both approximations uh

and ph getting the approximation quality of the space in which it is approximated.

3.1. Improved a priori bounds due to supercloseness. Let us for the moment
assume that πhu is an interpolant of u such that for all vh ∈ Vh,

|u− πhu|1,A ≤ C|u− vh|1,A.

Moreover, let Πhp be an interpolant of the vector field p such that for all qh ∈ Γh,

‖p−Πhp‖div,A ≤ C‖p− qh‖div,A.

Then (uh,ph) is called superclose to (πhu,Πhp) in the product norm if

(24) ‖(uh − πhu,ph −Πhp)‖1×div,A ≤ Ch‖(u− πhu,p−Πhp)‖1×div,A.

The supercloseness helps us to improve the a priori bounds for the variable that is
approximated in the space of highest order approximation quality; here we think
of the usual type of finite element spaces in which the quality of approximation is
expressed as a power of the meshsize h. First, observe that by a simple triangle
inequality we have that

|u− uh|1,A ≤ |u− πhu|1,A + Ch‖(u− πhu,p−Πhp)‖1×div,A.

Now there are two options:

(A) Γh has a higher approximation order then Vh, which results in

|u− uh|1,A ≤ |u− πhu|1,A + Ch|u− πhu|1,A.

Clearly, this gives no improvement over Céa’s Lemma, and this is not surprising,
since Céa’s Lemma is sharp for the variable that is approximated in the space of
lowest approximation order. The second option is however of more interest:

(B) Vh has a higher approximation order then Γh, which results in

|u− uh|1,A ≤ |u− πhu|1,A + Ch|p−Πhp|1,A.

This improves the bound that results from Céa’s Lemma, because the influence of
the second term in the right-hand side is diminished by the supercloseness factor
h. Of course, similar observations hold for ‖p− ph‖div,A.

In [5] it was proved that by choosing for πhu the standard finite element approxi-
mation us

h ∈ Vh of the Poisson problem, or in other words, the elliptic projection,
and by choosing for Πhp the mixed finite element approximation pm

h ∈ Γh of p,
the supercloseness is indeed present as given in (24). Sufficient conditions for this
result are:

• Elliptic regularity of the model problem

• BBL stability for the pair Γh,div (Γh)

• The space Γh satisfies the property that for all r ∈ H1(Ω)]2,

inf
qh∈Γh

|r− qh|0 ≤ Ch|r|1.

• The piecewise constants are in div (Γh) and the continuous piecewise linears are
in Vh.

The proof of (24) in [5] contains duality arguments of both the standard [13] and the
mixed [16] finite element method. Notice that the result does not require uniform
meshes.
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3.2. Superconvergence after post-processing. As mentioned above, the su-
percloseness does not require uniform meshes. However, it is well known that if
the meshes are uniform, like for example the three-directional mesh in two space
dimensions, or uniform simplicial meshes in higher dimensions as defined in [7], the
standard finite element solution us

h and the mixed finite element solution pm
h can

be superclose to local interpolants of the exact solution. See for instance [3] and [4]
for supercloseness of Raviart-Thomas approximations pm

h to the Fortin interpolant
Πhp of p in case of three-directional planar meshes or [17] in case of rectangular
meshes, and [8] for supercloseness of us

h to the quadratic nodal interpolant Qhu in
the context of tetrahedral quadratic standard elements. In the papers just men-
tioned, it is explained how the discrete solutions can be post-processed into higher
order (or in other words superconvergent) approximations.

The same techniques can be used to post-process the least-squares mixed finite
element approximations, since a simple triangle inequality shows that they too are
superclose to the local interpolants, in case the standard and mixed finite element
approximations are superclose to those local interpolants.
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[8] J.H. Brandts and M. Kř́ıžek. Superconvergence for tetrahedral quadratic finite element meth-
ods for elliptic equations. J. Comp. Math. Accepted.

[9] F. Brezzi (1978). On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. RAIRO, R2:129–151.

[10] F. Brezzi and M. Fortin (1991). Mixed and Hybrid Finite Element Methods. Springer Verlag.
[11] Z. Cai, R. Lazarov, T.A. Manteuffel, and S.F. McCormick (1994). First-order system least

squares for second-order partial differential equations: Part I. SIAM J. Numer. Anal.
31(6):1785–1799.

[12] C.M. Chen and Y.Q. Huang (1995). High accuracy theory of finite elements. Hunan Science
and Technique Press, Changsha.

[13] P. Ciarlet (2002). The finite element method for elliptic problems. SIAM Classics in Appl.
Math. Second Edition.



310 JAN BRANDTS AND YANPING CHEN

[14] A. Demlow (2002). Suboptimal and optimal convergence in mixed finite element methods.
SIAM J. Numer. Anal. 39(6):1938–1953 (electronic).

[15] A. Demlow (2004). Piecewise linear finite element methods are not localized. Math. Comp.
73(247):1195–1201 (electronic).

[16] J. Douglas and J.E. Roberts. Global Estimates for Mixed Methods for 2nd order Eliptic
Problems. Math. of Comp., 44(169):39–52, 1985.

[17] R. Duran. Superconvergence for Rectangular Mixed Finite Elements. Numerische Mathe-
matik, 58(3):2–15, 1990.

[18] V.P. Eijkhout and P.S. Vassilevski (1991). The role of the strengthened Cauchy-Buniakowskii-
Schwarz inequality in multilevel methods. SIAM Rev., 33:405–419.
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