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Abstract. The issue of reliability of computer predictions of physical events

is examined as the goal of verification and validation processes. It is argued

that verification, both solution and code verification, can be carried out with a

high degree of confidence, even though much remains to be done to improve and

advance verification procedures. It is validation of mathematical models that

stands as the major bottleneck of reliable computer predictions. Uncertainty

of input data represents a major feature of validation processes and must be

quantified if models are to be judged valid or invalid. Examples are given

from solid mechanics and heat transfer that demonstrate validation processes

employing stochastic models and fuzzy set theories.
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1. Introduction

Computational Science (CS) is the discipline concerned with the use of computers
and computational methods to simulate physical events and to make quantitative
predictions of physical phenomena. Such predictions are often used as a basis for
critical decisions effecting the health, security, and well being of humankind. For
this reason, CS has had a major impact on many fields in engineering, physics,
chemistry, health sciences, economics, finance, politics, and other areas. The great
promise that CS will be of immense value to all areas of science and technology
depends on a crucial factor: the reliability of computer products and our ability to
measure in some way this reliability [34].

In a recent report, Post [38] speaks of the coming crisis in CS arising from three
major challenges: a) performance, b) programming, and c) prediction. We agree
with Post that the performance and programming challenges have been met or will
be met soon, but the prediction challenge will require considerable advancement
and maturity in the way that simulation is done and interpreted.

Concerning performance, a look at the history of computer performance over
the last one-and-a-half decades gives weight to the viewpoint that the so-called
”performance challenge” of CS is well in hand. Using the 11/780 VAX as a unit
measuring computer capabilities a decade before the end of the twentieth century
(1989), the unit involves one megabyte of memory, a half gigabyte of disk storage,
and one cpu with a speed of 0.1 megaflops. In 1992, three years later, the IBM
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RS580 had 54 times the memory of the VAX and its speed was 1000 times greater.
In 1997, eight years later, the SGI Power Challenge had 1000 times the memory
of a VAX, six cpu units with a theoretical speed of 18,000 times that of the 1989
VAX. In November of 2004, IBM’s Blue Gene/L supercomputer became operational
with an expected peak performance of 36.0 × 1012 flops, over a hundred million
times faster in unit capability than the VAX. Today, $1000 can buy a computer as
powerful as the biggest and most capable computer available at any cost in 1990.
Experts predict that Moore’s law will continue to hold for 15-20 years so that this
exponential growth in performance will continue [21]. These data convince us that
the performance challenge is being met.

The programming challenge, supplying the software to keep up with hardware
developments, is also being met, albeit at a slower pace. Significant progress in the
development of new languages and new devices gives confidence that the program-
ming challenge is being reasonably addressed and can be met even more vigorously
in the years ahead.

The prediction challenge, which is at the heart of CS, is viewed as the most
difficult challenge to be met in the future, and stands as a major bottleneck, perhaps
a crisis, in CS. Again, the major issue is the reliability of computer predictions and
their use as a basis for important decisions.

In the present paper, we will discuss the prediction challenge, comment on various
mathematical aspects of it, and point to some serious limitations of contemporary
methods of computer prediction. We will also address the question of what ma-
chinery must be developed in order to use such predictions to make meaningful
decisions.

2. Verification and Validation in CS

Verification and Validation (V & V) has emerged in recent years as the intellec-
tual and technological discipline that addresses the prediction challenge. Both are
processes, verification being the processes addressing the quality of the numerical
approximation of the mathematical model used as the basis for a prediction, and
validation being the process addressing the reliability of the mathematical model as
a faithful abstraction of reality. V & V has been the focus of much study and debate
in recent years and a relatively large literature exists and is expanding (e.g.,[19],
[23], [33], [39], [42]).

In [11], we present a detailed list of definitions and concepts related to V & V.
Worthy of mentioning here are the following:
• physical event : an occurrence in nature, a fundamental entity of physical reality
• simulate: to build a likeness; in our case, the likeness is produced by the inter-
pretation of prediction results produced by a computer
• mathematical model : a collection of mathematical constructions that provide ab-
stractions of physical events, based on scientific theories covering the event, and
available input information
• computational model : a discrete approximation of a mathematical model rendered
in a form manageable by a computer or an appropriate computing device.

A typical example of a mathematical model is the set of equations and conditions
characterized by a boundary value problem involving deterministic or stochastic
differential equations together with functionals defining quantities of interest. These
quantities of interest are the goals of the computer prediction, which, in turn, are
the basis for decisions.
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Figure 1. The scheme of the mathematical problem

The mathematical problem is described by its structure and its input data. The
structure of the mathematical problem comprises functional relations between the
input and the output. For example, the structure can be expressed by a system
of conservation laws. The input data is the set of all admissible data needed for
solving the mathematical problem. For example, input data includes the classic
boundary conditions and parameters used in the structure of the problem. The
data also include the characterization of the uncertainty as when it is part of the
mathematical problem. We will include as part of the mathematical problem the
quantitative characterization of the uncertainty in the predicted quantity of interest.

In the literature the term mathematical problem and mathematical model are
not distinguished, although the term model is often used in a more generic sense
than mathematical problem, which involves all input data. We will not distinguish
between the problem and the model either. Symbolically, the mathematical problem
can be viewed as shown in Figure 1.

It is worthwhile to distinguish between the general mathematical problem and a
specific one which employs specific input data. This specific problem then leads to
the desired prediction. In this case, we speak of the prediction problem. Validation
problems, introduced later, are also specific problems for some input data, which
are different from the prediction problem. The validation problem, of course, must
have some features in common with the prediction problem.

A mathematical problem is a mapping of the space (set) of input into the out-
put space. From this point of view, every mathematical problem is, in a sense,
deterministic because any uncertainty is described in a deterministic way. This is
accomplished, for example, by using the parameters defining the probability den-
sity, by using Karhunen-Loeve expansions or characterizing ignorance by specifying
the membership functions of fuzzy set theory.

In the literature, simulation is sometimes presented without a reference to any
mathematical problem. Nevertheless, if the simulation of a physical event has to
be independent of various computational parameters and procedures which are not
directly related to the physical event of interest, then a mathematical problem
has to be in the background, so that it is always possible to speak of accuracy,
convergence, etc.

We would like to underline that in reality the input data always contain uncer-
tainties not taken into account in classical deterministic modeling.

Identification is the process of obtaining input data for a specific problem, for
example for the prediction problem. They are obtained by various means, for
example, by fitting the data from calibration experiments.
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Uncertainty, variability and ignorance. We have to distinguish between objec-
tive uncertainty, addressing variability (aleatoric uncertainty), and subjective (or
epistemic) uncertainty. We use the term ignorance to denote the partial incertitude
that arises because of the limits of knowledge. For example, variability in the coeffi-
cients of a partial differential equation can be described in a probabilistic way using
known probability fields obtained from experiments. We will speak of ignorance, if
the probability field is characterized by expert opinions. In most practical cases,
different levels of ignorance are always present. Insufficient input information is
often available due to, for example, the absence of experimental data, in which case
one must rely on the opinions of experts. Often the reliability of a prediction is
more influenced by ignorance than by variability. The quantitative characterization
of uncertainty, either variability or ignorance, is a major problem. In this paper,
we speak in general about uncertainty, but more precisely, we will use the terms
variability and ignorance when appropriate.

Verification is the process of determining if a computational problem and the
code implementing the computational problem leads to a prediction of sufficient
accuracy, i.e., the difference between the exact and computed quantity of interest
is sufficiently small. Hence, verification has two aspects, the approximation aspect
and the verification of the correctness of the code, i.e., the program developed
to implement the computational model can faithfully produce the intended results.
Although code verification is obviously essential, we will not address it in the present
paper. The first part of verification, so-called solution verification, is essentially a
problem of a-posteriori error estimation. It addresses not only classical methods
of error estimation of standard approximation methods (such as finite elements)
but also errors due to simplification of the problem. For example, errors due to
the linearization of a nonlinear problem or of dimensional reduction, or the error
in the simulation produced by Monte Carlo methods because, as said above, there
is always a mathematical problem in the background.

A posteriori error estimation is a fairly mature subject and many techniques for
developing a-posteriori error estimates have been proposed in the literature, e.g.,
[1], [12], [13], [35], [36]. A posteriori error estimation is a purely mathematical pro-
cess and, while many open problems remain, effective methods exist for addressing
solution verification for a large class of computational models.

Validation is the process of determining if the mathematical model of a physical
event (the prediction) represents the actual physical event with sufficient reliabil-
ity. In contrast to the verification, validation addresses the problem how well the
theory describes reality. This question is related to a major problem in philosophy,
especially in the philosophy of science. A first question is what is actually meant by
validation and whether validation is even possible. The related question of whether
a scientific theory can be validated was addressed by the eminent twentieth century
philosopher Karl Popper [37]. For more discussion of this point, see also [11]. In the
validation procedure, we consider a set of validation problems. These problems are
specific mathematical problems for which some of the input data are the same as
those in the prediction problem, but others may be different. For example, in the
elasticity problem, the domain and the boundary conditions are different for the
validation and the prediction problem, but the constitutive law is the same. These
validation problems are simpler than the prediction problems and can, in general,
be experimentally studied.
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Remark In addition to the relatively simple validation test, one very complex
and expensive validation test, called the accreditation test is sometimes used. We
note that it is still not so complex as the prediction problem. ¤

An issue of fundamental importance is to develop a plan for validation in the
absence of experimental data or for cases in which only incomplete data are avail-
able. In such cases, a systematic approach toward quantifying ignorance has to be
considered using, for example, fuzzy set theory or comparable approaches. Instead
of experimental data, expert opinion has to be used as a basis for assessing the
validity of models and quantifying uncertainty.

Remark. Experimentation also involves analogs of verification and validation.
The accuracy of measurements is analogous to verification while validation relates
to the question of whether the experiment measured what was intended. ¤

In the validation process, the computed predictions of the measured data are
compared with the actual measured data or the experts expectation. If they differ
too much in a given metric for the criterion used, then the (prediction) models are
rejected. If a sufficiently large set of validation problems is not rejected, then the
prediction problem is considered to be validated and it is assumed that the accuracy
(or likelihood) of the prediction is close to the accuracy of the predictions in the
validation problems. The metric used and the criterion for comparison has to be
closely related to the prediction problem and its goals.

The validation process can be broad and not confined to simply testing as-
sumptions made in the formulation of the mathematical model. For example, the
validation process could be designed to also assess the reliability of the techniques
for quantifying uncertainty in the context of the quantity of interest, as well as to
assess the robustness of the model regarding its sensitivity to uncertainties. The
selection of the validation problems and metrics is not an easy problem. It has
mathematical and experimental aspects and, because of the cost of experiments,
financial aspects that have to also be considered.

The prediction and validation problems are always different because the pre-
diction problem is not accessible to experiments. If experiments on the original
prediction problem are actually carried out, then their comparison with predic-
tions is referred to as a post-audit and the prediction reduces to another validation
problem.

Because of today’s powerful computers, verification is often an achievable pos-
sibility for an increased computational cost. Validation is then the bottleneck in
assessing the reliability of computer predictions.

In the following sections we address three specific problems which illustrate var-
ious basic possibilities occurring in prediction problems.

3. Examples of Models of Physical Events

(1) A problem in which experimental data are insufficient and ignorance is
present. We will demonstrate the use of quantitative fuzzy set characteri-
zations of the ignorance.

(2) A problem in which sufficient experimental data are available to lead to the
rejection of the most commonly used models of plasticity.

(3) A problem in which the variability is fully known by its probability field.

3.1. Quasi-Static Problems in Solid Mechanics. As a first example, we con-
sider events modeled as the quasi-static deformation of a deformable body with
material points x in a bounded domain Ω ⊂ R3 subject to time-independent or
cyclic boundary conditions. The quantities of interest are specified below. We will
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assume that the boundary data are sufficiently small so that the standard assump-
tion of small displacements is valid. The mathematical problem is to find certain
quantities of interest, which may depend upon the displacement field u, the stress
tensor σ and the strain tensor ε which satisfy

(3.1) div σ(x, t) = 0 σ = {σij},

(3.2) σ(x, t) = A(ε(x, τ)), 0 ≤ τ ≤ t,

ε = {εij}; εij = (∂ui /∂xj + ∂uj/∂xi)/2

x ∈ Ω ⊂ R3, t ∈ (0, T ),(3.3)

and boundary and initial conditions,

u = 0 on ΓD ⊂ ∂ Ω,

T(u) = T0(x, t) on ΓT ⊂ ∂Ω,(3.4)

where T0(x, t) are the prescribed tractions.

(3.5) u(x, 0) = u0(x), x ∈ Ω

Here, A represents a functional characterizing the constitutive law of the mate-
rial. In the case of linear elasticity, we have

(3.6) σij = Cijkl εkl ; 1 ≥ i, j, k, l ≤ 3

where Cijkl is the standard elliptic fourth-order tensor of elasticities and the usual
summation convention is employed.

In the case of the plasticity, we consider a family of constitutive laws based
on the use of the internal variables and two basic assumptions: the existence of
a convex yield surface and the normality condition (the plastic strain increment
during plastic flow is proportional to the outward normal to the yield surface).

We denote by T0 the traction vector defined on a portion ΓT of ∂Ω and the
quantities of interest, denoted, Q are functionals which specifically are defined
later.

3.2. The Heat Conduction Problem. Consider the boundary-value problem,

div a(x) grad u = f on D ⊂ R3,(3.7)
u = 0 on ∂D.(3.8)

When a(x) represents the thermal conductivity at a point x in a bounded domain
D, u(x) is the temperature at x, and f is a heat source, then (3.7) and (3.8)
represent the classical model of diffusive heat conditions in D. This is a generic
formulation of the mathematical problem wherein the assumptions on the input
data and the solution are not specified there. A specific problem will be addressed
in Section 6.

4. Specific Elasticity Problem. Uncertainty, Variability and Ignorance

There are many ways to address uncertainty, depending what information is
available. We will restrict ourselves to a few specific examples.
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4.1. The linear elasticity problem. The input data are:
(1) The domain
(2) The elasticity tensor - the constitutive law
(3) The tractions T

We will assume that the tractions are time-independent. All input data have
uncertainties. The significance of the uncertainty depends on the quantities of
interest.

(1) The domain. The definition of the domain invariably includes uncertain-
ties; for example, when the domain is given by the digital image with a pixel
representation of the boundary [7], or if the domain is generated using a
CAD system. Another example involves models of thin shells, where in the
actual fabrication, the variation in the thickness is uncertain and can be
a major part of the uncertainty in the prediction (see [42]). Here we will
assume that the uncertainty in the domain has negligible influence on the
quantity of interest.

(2) The constitutive law. For the elasticity example, we assume that the
material is the aluminum alloy, 5454 in the H 32 temper. It is essentially
isotropic, although depending on the manufacturing process and rolling,
some anisotropy is always present. We will assume that the material is
isotropic and that the elasticity properties are characterized by only the
modulus of elasticity E and the Poisson ratio ν.

In the standard literature on mechanical properties of aluminum, only
the values of the modulus of elasticity and Poisson ratio are given without
any information about their statistics. See, for example, [2], [3], [31], [43].
We will assume that the published values of E and ν are mean values of
some statistical distribution. In Table 1, data taken from [8] are repro-
duced. Here the sheet has a nominal thickness of 0.2 inches and the plate
has a nominal thickness of 0.4 inches.

Table 1. Basic Properties of Aluminum Alloy 5454 in H32 Temper.

Sy psi Su psi Elong % RA % E psi %
Plate 25.5 40.0 17.6 28.1 10,000 1.6
Sheet 31.1 42.6 15.7 26.6 10,400 1.4

In Table 1,

Sy is the tensile yield strength

Su is the ultimate strength

Elong is the elongation

RA is the reduction in area

E is the modulus of elasticity
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Figure 2. The membership function for Aα

% is the ratio Su/Sy which is a rough indicator of the strength harden-
ing.

The Poisson ratio is not reported in [43]. From [31], data suggest that
it is not too dependent on the thickness and has a value, ν = 0.33.

Remark. The modulus of elasticity and the Poisson ratio are usually
determined from classical dog-bone experiments. Measuring Poisson ratio
is more difficult than the modulus of elasticity because it is defined as the
ratio of two strains. Hence, the Poisson ratio could have, in general, a larger
uncertainty due to the measurement error. ¤

Because the data variability in (E, ν) is not known, uncertainty must
be treated as ignorance. We will describe it here using fuzzy set theory,
specifically through the use of so-called α cuts; see, for example, [4], [20],
[24], [29].

Denoting the nominal values of the modulus of elasticity and Poisson
ratio by E0 and ν0, we will assume that in our specific problem the α cuts
are given by

Aα =

{
(E, ν)

∣∣∣∣∣

∣∣E − E0
∣∣

E0
≤ βE ,

∣∣ν − ν0
∣∣

|ν0| ≤ βν for α = 1;

∣∣E − E0
∣∣

|E0| ≤ βE(2− α),

∣∣ν − ν0
∣∣

|ν0| ≤ βν(2− α) for 0 ≤ α ≤ 1

}
(4.1)

where βE = 0.01 and βν = 0.04. In Figure 2, we show the associated
membership function. The value α expresses quantitatively the likelihood
that (E, ν) is in the set Aα.

We have no information about the correlation between the values of
E and ν at different points of the material. Hence we will assume these
parameters have α cuts independent of the positions of material points.

(3) The tractions. Tractions represent the effects of the outside environment
on the boundaries of the body. These data are determined by independent
tests, codes, other numerical calculations, or, as is often the case, they
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are specified within standard regulation documents such as construction-
design codes. In many cases, they are specified by the analyst. Typically,
several sets of different tractions are considered in a simulation. Thus, in
general, tractions can include large uncertainty and ignorance. Very often
the reliability of a prediction is heavily influenced by the ignorance in the
boundary conditions.

In this example, we characterize the ignorance in tractions once more
by fuzzy theory. Let ΓT = ∪3

`=1Γ
`
T . We will assume that the membership

functions set of the traction T is

Aα
{〈
‖T‖L2(Γ1

T ) ≤ 30, with α = 0.3
〉

,
〈
‖T‖L2(Γ2

T ) ≤ 10, with α = 1.0
〉

,
〈
‖T‖H1(Γ3

T ) ≤ 50 with α = 0.7
〉}

(4.2)

where α is the degree of membership which quantities the likelihood. For
simplicity we will address two cases separately:

(1) The nominal traction T is completely known and the uncertainty is only in
the material properties E, ν.

(2) The material properties with nominal values E0, ν0 are completely known
and the uncertainty is only in the traction T.

Let

(4.3) Ω = {|x1| < 4 = `1, 0 < x2 < 20 = `2, |x3| < 2 = `3} (inches)

and denote by Q1 and Q2 the quantities of interest,

(4.4) Q1 =
1
|S1|

∫

S1

u3 dx1dx3, S1 = {0 < x1 < 4, x2 = 20, |x3| < 2}

(4.5) Q2 =
1
|S2|

∫
u2 dx1dx3, S2 = {0 < x1 < 4, x2 = 20, 0 < x3 < 2}

where ui are the components of displacement.
Let E0 = 10, 400 psi, ν0 = 0.33 and (E, ν) belong to the α cuts defined by (4.1)

with βν = 0.04 and βE = 0.01. Further let

ΓD = {x| |x1| < 4, x2 = 0, |x3| < 2} , ΓT = ∂Ω− ΓD

Γ∗T = {x| |x1| < 4, x2 = 20, |x3| < 2}(4.6)

and

T0 = (t1, t2, t3), t1 = t2 = 0, t3 = 1 on Γ∗T
T0 = 0 on ΓT − Γ∗T

u = 0 on ΓD(4.7)

Then the mathematical problem reads: based on the weak solution of the bound-
ary value problem (3.1)-(3.6) and (4.1)-(4.6), find the α cuts for the quantities of
interest Q1 and Q2. We observe that the problem is an optimization problem (in
this context, the term anti-optimization could also be used) because we seek the
range of values of Q when (E(x), ν(x)) belong to the α-cut for every x ∈ Ω.

This problem, its theoretical properties and its numerical solution was analyzed
in detail in [10]. The numerical treatment was based on first-order perturbation
theory with an estimate of the influence of this approximation. The p-version of
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finite element method was used and an a-posteriori error estimation was computed,
so that the verification was also addressed.

Denoting by Qi, i = 1, 2, the values of the quantity of interest functional for the
nominal elasticity properties, it is shown in [10] that the α cuts for qi = Qi/Qi are

Aα
i =

{ {qi‖1− qi| ≤ γi, α = 1}
{qi‖1− qi| ≤ γi(2− α), 0 ≤ α ≤ 1}

where
γ1 = 0.0153, γ2 = 0.0159

Because the perturbation approach was used, reasonable accuracy can be ob-
tained when the ignorance is not too large, as in our prediction problem.

Remark. The approach used here is obviously very close to the worst case
scenario approach. This is addressed in [27]. ¤

In the second case, when the elasticity parameters are completely known and
ignorance pertains only to the tractions, the problem is similar but is much simpler.
For example, it is not necessary to assume that ignorance is small. We refer to [10]
for more details.

5. Summary Observations for the Elasticity Example

We list as follows several key remarks on validation of the linear elasticity model:
(1) Because we did not have enough information available on the modulus of

elasticity and the Poisson ratio, we assumed that they could range ar-
bitrarily and independently at every point x. It can be shown that the
pair (E(x), ν(x)) which gives the value of Qi at the boundary of Aα are
piecewise constant functions [10]. Of course, other admissible sets could
be used. For example, instead |E−E0|

E0 < βE in (4.1) we could consider
‖E − E0‖L∞ + c‖E − E0‖W∞

1
, ≤ βEE0.

(2) The uncertainty in the prediction is mainly influenced by the large uncer-
tainty in the tractions.

(3) We have assumed a homogeneous Dirichlet boundary condition on ΓD.
Obviously, this is generally an approximation because, in reality, boundary
constraints against motion are almost always deformable in some sense.
This could have a large effect on the quantity of interest when `2/`1 >>
1. Hence, a more detailed analysis of this approximation is needed either
experimentally or by computational virtual experimentation. Obviously, in
this case the uncertainty will also be mainly ignorance.

(4) We do not see here a standard validation process because essentially no
experimental data are available. Nevertheless, the α cuts give a very good
indication of the likelihood of variations in data and of the possible need
for additional experimental data or for the necessity of increasing the safety
factor when making decisions.

(5) We could also have statistical information about the coefficients and the
tractions which can also be combined with the ignorance. We will discuss
this in Section 6 for the heat conduction problem when the conductivity
coefficient will be a stochastic function.

(6) We used fuzzy set theory for the characterization of ignorance. There are
other possibilities; for example evidence theory or possibility theory can be
used (see e.g. [26]).

(7) There are many open mathematical problems related to the mathematical
and computational models addressed here. These include the treatment
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of various classes of uncertainties in the elastic properties and tractions,
which could be large, a posteriori estimates of modeling error, formulation
and analysis of the boundary condition treated as a Dirichlet boundary
condition, and modeling the environment from which traction boundary
conditions are produced.

5.1. The elasto-plasticity problem for cyclic loads. We will consider here
plasticity problems based on the constitutive laws satisfying the assumptions spelled
out in Section 3.1. The constitutive law is the major source of uncertainty in the
prediction. There are many constitutive laws proposed in the literature; see for
example [17] and [44]. We will address here only the validation of the constitu-
tive law in one dimension when experimental data and computational analysis are
accessible. Even in this case, relatively little statistical data is generally available.

The theory and numerical treatment of plasticity problems without uncertainties
in two- and three-dimensions is addressed in the literature (e.g., [25], [28], [30], [32]).
We will now report on the basic data from [8] where many more data and details
are given. The validation problems are the standard dog-bone domains which are
used for experiments for determining mechanical properties of materials.

Consider an aluminum alloy 5454 in H32 temper dog-bone specimen, clamped at
each end, and suppose that a strain ε(t) is imposed and the associated stress σ(t)
(which is the quantity of interest in the validation problem) is measured and com-
putationally predicted when a particular constitutive law is used. Strain histories
are recorded corresponding to quasi-static behavior. The following strain histories
are prescribed:

a. cyclic constant-amplitude piecewise-linear strain functions with 1000 rever-
sals, with means -0.006, -0.004, ..., 0.006 and the range 0.01.

b. a random-amplitude piecewise-linear strain function with the same mean
levels and peaks selected as random numbers with uniform probability distribution
in the interval [-0.005, 0.005] and 1000 reversals.

Always two samples with the identical histories are used and all together 84
samples are investigated.

The prediction problem is two- or three-dimensional with a given quantity of
interest. The selection of the validation metric defines on the prediction problem.
It has to be such that the accuracy of the prediction is similar to the accuracy of
the validation measured in the particular metric used.

We select a metric which is related to the L∞-norm. The reason is that in the
linear case, which is a special case, we validate the errors in the elasticity coefficients;
then the error in the solution measured in the H1-norm is directly related to the
errors in the coefficients measured in the L∞-norm. The metric used has to be
robust in the sense that it leads to a reasonable reproducibility measure. Of course,
various metrics could be used when there is an expectation (proof) that the error
in the constitutive law measured in the metric will lead to the error in the quantity
of interest of approximately the same size.

Denoting by ε the strain, σm the measured stress and, σc the computed stress,
(the stress is the quantity of interest), we define the metric for accuracy in the
constitutive law k in the window ΓI as follows:

(5.1) Θ(i)
k =

‖σm(ε(t))− σc(ε(t))‖L∞(Γi)

1
2‖σm(ε(t)) + σc(ε(t))‖L∞(Γi)
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Here Γi denote the windows of different strain histories of the cycles range, (0,10),
(0,20), ..., (0,200), (0,500), (10,20),..., (200,500). The denominator in (4.8) is chosen
to define the metric relative to an average of σm and σc in L∞(Γi). σm and σc

are close together. The given model is also used as a reproducibility measure.
Obviously, a relative measure has to be used. It should express that for small σ,
respectively ε, below the yield, the theory represents reality well while for large σ
the reliability is small. This measure is in some way related to the error in the
effective elasticity modulus, which is the equivalent relation between strain and
stress when they exceed the yield. It is also used for iteration purposes.

The same metric is used to measure the reproducibility accuracy when two mea-
surements with the identical strains are compared. In [8], the mean, min., max.,
and standard deviation of the reproducibility metric are reported. They are in the
ranges 4.15-5.15, 2.4-4.3, 6.00-6.70, and 0.96-1.33. These ranges describe the vari-
ability of the material and, among other things, show that the metric is robust. In
[8], four constitutive laws are analyzed:

a. The kinematic hardening law. This law is characterized by four numerical
parameters: modulus of elasticity E, the modulus of plasticity EP , the yield stress
σy and one internal variable α with its initial value. This law is very often used.

b. The isotropic hardening law. This law is also characterized by the three
parameters and one internal variable as in case (a). Usually the kinematic law is
preferred because it respects Bauschinger effects.

c. The Chaboche law [18]. This law has six numerical parameters and four
internal variables with their initial values.

d. The B-L law. This law has six numerical parameters and two internal variables
with their initial values.

All of the constitutive laws except the Chaboche law can be extended into higher
dimensions. The B-L law is similar to the Chaboche law. The exact mathematical
formulation of the four constitutive laws is given [8].

We will validate the above constitutive laws for the input data computed from
the published data and zero initial conditions for internal variables. How these
values were determined is explained in [8]. In the Table 2, we report the statistics
of the metric Θ(i)

k for the window (0,500) for the first three of the above mentioned
constitutive laws. Data for the B-L law was not available in the literature

Table 2. Statistics of Θ(i)
k for the parameters determined

from published data.

a b c
CONST RAND CONST RAND CONST RAND

AVER 33.24 33.28 36.59 33.12 21.37 23.21
MIN 29.46 29.05 32.42 27.90 17.35 18.05
MAX 39.92 38.55 41.42 37.59 29.01 29.19

STD. DEV. 2.60 2.23 3.05 2.57 2.69 2.87

These data have to be compared with the metric for the reproducibility. We see
that the errors are very large, especially for the standard kinematic and isotropic
hardening law. The question arises: Are these large errors caused by the numerical
values of the parameters or by the structure of the law. It is possible to analyze this
question by the selection of the optimal parameters leading to the minimal metric.
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The statistics for the optimal parameters for constant amplitude strain is given in
Table 3.

Table 3. The statistics of the metric Θ(i)
k for the optimal parameters.

a b c d
AVER 32.37 30.28 13.37 11.24
MIN 26.36 24.35 10.10 8.68
MAX 39.02 36.36 18.47 15.10

STD. DEV. 3.35 3.71 1.96 1.53

We observe that the kinematic and isotropic hardening laws are not acceptable
because of the structure of the law and not because of the numerical values of the
parameters. The Chaboche law is better, especially when the optimal parameters
are used. The determination of all 6 parameters from the available published data
was very heuristic. Nevertheless, in comparison to the reproducibility, this law is
a poor characterization for the optimal parameters. Obviously, the quality of the
constitutive law could be still poorer if some other validation problems, especially
in higher dimensions, were considered.

Remarks 1. In [8], many more results are presented. For example, the statistics
of the values of the optimal parameters are given for each of the constitutive laws.
These values are reasonably stable (of course, the modulus of plasticity has a much
larger spread than the modulus of elasticity).

2. The experiments determine the stresses from the given strains. Although
every law has its inverse, the prediction for the strains, if stresses are given is much
worse. It is interesting that this deterioration is larger for the Chaboche law than
the kinematic law, which indicates that the Chaboche law is less robust. This
conclusion relates well to the application of the information gap theory [16]. ¤

We conclude that all the constitutive laws for plasticity in [8], inclusive of the
kinematic law which is often used in computational mechanics, have to be rejected
and a larger effort must be made to obtain laws for which the accuracy and the
reproducibility metric is comparable or the errors are in a reasonable (by the analyst
opinion) range.

We note that there is a large uncertainty in the yield stress which is the basic
parameter in the plasticity. For example, Table 1 shows its large sensitivity due
to manufacturing. In [3], Volume 1, a large dispersion in the yield stress for steel
(iron) is reported.

6. The Stochastic Heat Conduction Problem

In Section 3.2, we introduced the stationary heat problem (3.5). In real-life
predictions, all input data (i.e. the conductivity coefficients and the source term)
always contain uncertainties. In contrast to Section 3, we will now assume that
the uncertainty is due to completely known variability. This variability will be
characterized in a probabilistic way by a known probability field. Then the problem
becomes a stochastic PDE problem. We will follow here [15] where details and
precise mathematical formulations are given.

6.1. The stochastic function in the domain D. The Karhunen-Loeve
expansion. Let (Ω,F ,P) be a complete probability space. Here Ω is the set of all
outcomes, F is the σ-algebra and P : F → [0, 1] is the probability measure. Let
a be a stochastic function, which is the thermal conductivity coefficient in (3.7)
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with the continuous covariance function cov[a]. Define the corresponding compact
operator Ta : L2(D) → L2(D) given by

(6.1) (Tav)(y) =
∫

D

cov[a](x · y)v(x)dx

and let (λi, bi) be the eigenpairs of Tav = λv. Then the truncated Karhunen-Loeve
expansion aN is

(6.2) aN (ω,x) = E[a](x) +
N∑

i=1

√
λi bi(x)Yi(ω)

where Yi are uncorrelated real random variables with mean zero and unit variance.
The random variables Yi are uniquely determined by

Yi(ω) =
1√
λi

∫

D

(a(ω,x)− E[a](x))bi(x)dx

and

lim
N→∞

{supE[a− a2
N ]} = lim

N→∞

( ∞∑

`=N+1

λib
2
i (x)

)
= 0

Hence aN in (6.2) with a fixed N is an approximation of the stochastic function
a. We will assume in addition:

a. the random variables Yi are independent and have probability density %i so
that the joint probability is

(6.3) %(y) =
N∏

i=1

%i(yi), y = (y1, · · · , yN )

b. the images of Yi(Ω) satisfy Yi(Ω) ⊂ Γi ⊂ (−γ, γ) and denote Γ =
∏N

i=1 Γi.
Further, we assume that % ≥ α > 0 on Γ.

c. the eigenfunctions bi are smooth on D and are uniformly bounded.

d. the eigenvalues decay as λi = O( 1
(1+i) )

s for some s > 1.

The stochastic function aN can now be identified with a function defined on
Γ×D.

aN (y,x), y = (y1, · · · , yN ) ∈ Γ, x ∈ D

We will discuss these assumptions below.

6.2. The formulation of the stochastic problem and its numerical solu-
tion. The classical deterministic formulation was given in (3.7). Its weak form
reads. Find u ∈ H1

0 (D) such that

(6.4)
∫

D

a∇u · ∇v dx =
∫

D

fv dx, ∀v ∈ H1
0 (Ω)

and the quantity of interest Q (for example Q = 1
|ω|

∫
ω

u dx). The coercivity
assumption

(6.5) 0 < a0 ≤ a(x) ≤ a1 < ∞
is essential for the existence and uniqueness of the solution.
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In [15] (see also for example [14] and [22] and references therein) it was shown
that the stochastic formulation is: Find u(y,x) ∈ H = L2(Γ) × H1

0 (D), which
satisfies

∫

D

∫

Γ

%(y)aN (y,x)∇xu(y,x)∇xv(y,x)dxdy =
∫

D

∫

Γ

f(x)%(y)v(y,x)dxdy ∀ v(y,x) ∈ H(6.6)

and find the quantity of interest Q (for example Q = 1
|S|

∫
Γ
(
∫

S
u(y,x)dx)%(y)dy,

S ⊂ D).
In addition to the coercivity condition (6.5) we also assume that

(6.7) 0 < a0 ≤ aN (y,x) ≤ ai < ∞, ∀ y ∈ Γ, x ∈ D, ∀N
For simplicity, we assume that the right hand side f is a deterministic function.

We will comment on this later.
The solution u(y,x) which depends on N exists and is unique and for N → ∞

it converges to a limit, which is exact solution of the problem. The form (6.6)
suggests immediately the finite element method as one numerical approach to this
problem. Most natural is to use tensor product h-p elements. For this case ([14],
[15]) a-priori error estimates have been proven. Among other results, it was proven
that p-version approximation in Γ leads to exponential rates of convergence. This
is important because Γ has high dimension. An adaptive procedure for selecting
degrees p for the approximation in Γ and adaptive selection of N was also presented
in [14]. This adaptive procedure is based on a simple a-posteriori estimation. An
illustrative numerical example is presented in [15].

Because the dimension of Γ can be large, it makes sense to also consider a Monte
Carlo approach. In [15], an estimate of the complexities of various numerical pro-
cedures is given. In [6], a successive approximation (with guaranteed convergence)
approach was studied. Such approaches are effective when the covariance function
is small.

So far we have assumed that the right hand side f is deterministic. If the
coefficient a and the right hand side f are independent, then the problem splits
into two parts, one for stochastic a and deterministic f , and the other when a is
deterministic and f is stochastic. This is usually the case in practice. If a and f
are correlated, then we can proceed analogously, but the process is more complex.

The second case, when only f is stochastic, is much simpler, especially if we are
interested in only the mean and the covariance function of the solution. The mean
is the solution of the prediction problem when the right hand side is the mean of
f . The covariance function cov[u] is the solution of a boundary value problem on
D×D with the covariance function of f at the right hand side ([5]). For an effective
numerical treatment, we refer to [41], [22]. This approach can be generalized for
determination of higher probabilistic moments; see [40].

Assumptions a - d, in Section 6.1 can be weakened. This could influence the reg-
ularity of the solution and the rate of the convergence. Nevertheless, condition c)
is essential. If the covariance function cov[a] is not sufficiently smooth, for example
when cov[a] = e−|x−y|, then it was shown in [6] that for sufficiently large N coer-
civity of the bilinear form is always violated with a small but positive probability.
It is also violated if the images yi(Ω) are not bounded. Then the solution also does
not exist with small but positive probability. Conditions (c) and (d) above are fully
determined by the covariance function.
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There are many open mathematical problems when the dimension of Γ is large
and/or the covariance length is small. The numerical solution can be very expensive
and very effective procedures have to be used.

Another significant problem is the determination of the Karhunen-Loeve expan-
sion from experimental results. This problem was studied in [9] when the exper-
iments were created virtually as the realizations of a particular Karhunen-Loeve
expansion. The question was how to reconstruct the data in the expansion with a
reasonable accuracy. It was seen that any reasonable accuracy of the Karhunen-
Loeve expansion needs so many experiments that it is practically unfeasible. Be-
cause large sets of experiments need to be done, expert opinions dealing with the
ignorance are unavoidable. For example, it is possible to treat all inputs in the
Karhunen-Loeve expansion as data with an uncertainty-ignorance, as in Section
3. Approaches such as Bayesian probability will likely have to be used. Without
solving this problem, the stochastic approach cannot lead to a reliable prediction.

7. Conclusion

We have shown that reliable computer predictions of physical events of interest
is a very complex problem. The modeling which has to take into consideration the
unavoidable uncertainty is very often the bottleneck of a reliable prediction,

The verification of the numerical treatment (a posteriori error estimation) is a
necessary but not sufficient process for reliable prediction. Many mathematical
problems in CS are open. Without addressing them, CS remain not reach its great
potential.
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[8] Babuška, I., Jerina, K., Li, Y., and Smith, P. Quantitative Assessment of the Accuracy of
Constitutive Laws for Plasticity with Emphasis on Cyclic Deformation, Material Parameter
Estimation for Modern Constitutive Equations, Bertram, L.A., Brown, S.B., and Freed, A.D.
(Eds.), American Society of Mechanical Engineers, pp. 113-171, 1993.
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