
INTERNATIONAL JOURNAL OF c© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 3, Number 2, Pages 232–254

WAVEFORM RELAXATION METHODS
FOR STOCHASTIC DIFFERENTIAL EQUATIONS
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(Communicated by Edward J. Allen)

Abstract. Lp-convergence of waveform relaxation methods (WRMs) for nu-

merical solving of systems of ordinary stochastic differential equations (SDEs)

is studied. For this purpose, we convert the problem to an operator equation

X = >>X + G in a Banach space E of Ft-adapted random elements describing

the initial- or boundary value problem related to SDEs with weakly coupled,

Lipschitz-continuous subsystems. The main convergence result of WRMs for

SDEs depends on the spectral radius of a matrix associated to a decomposition

of >>. A generalization to one-sided Lipschitz continuous coefficients and a

discussion on the example of singularly perturbed SDEs complete this paper.
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1. Introduction

The solution of complex and large scale systems plays a crucial role in recent
scientific computations. In particular, large scale stochastic dynamical systems
represent very complex systems incorporating the random appearances of physi-
cal processes in nature. The development of efficient numerical methods to study
such large scale systems, which can be characterized as weakly coupled subsystems
with quite different behavior, is an important challenge. Under some conditions,
block-iterative methods are very efficient. One of these methods to solve large scale
systems is given by the waveform relaxation method. This method was first pro-
posed by Lelarasmee, Ruehli and Sangiovanni–Vincentelli [27] for the time-domain
analysis of large scale integrated circuits. For the waveform algorithm concerning
deterministic processes and related aspects, many research papers can be found, e.g.
Bremer and Schneider [4], Bremer [5], Burrage [6], in’t Hout [12], Jackiewicz and
Kwapisz [16], Jansen et al. [17], Jansen and Vandewalle [18], Leimkuhler [25, 26],
Miekkala and Nevanlinna [30], Nevanlinna and Odeh [32], Sand and Burrage [36],
Schneider [37, 38, 39], Ta’asan and Zhang [44], Zennaro [48], Zubik–Koval and
Vandewalle [50], among many others.

In what follows we present a theoretical foundation for the construction and
convergence of waveform iterations applied to systems of ordinary stochastic differ-
ential equations (SDEs) which are decomposable into weakly coupled subsystems.
The attention is restricted to Itô-interpreted SDEs and Lp-solutions (i.e. strong
solutions in the Banach space of Lp(Ω,F , IP)-integrable random processes). For
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original works on stochastic integration, see Itô [13, 14, 15]. For basic aspects on
the theory of SDEs in the spirit of Itô [13], see e.g. Arnold [1, 2], Dynkin [8], Gard
[10], Khas’minskij [19], Krylov [22], Mao [28], Protter [34] and Revuz and Yor [35].

We see our main contribution in deriving precise bounds for the Lipschitz-
constants of the related stochastic integral operator and in describing their influence
on the Lp-convergence of waveform iteration methods depending on the splitting
into subsystems. However, a qualitative comparison with other numerical tech-
niques for stochastic differential equations (SDEs) is left to the interested reader.

The paper is organized as follows. In Section 2 we describe the key idea of wave-
form relaxation method. Section 3 presents a proof for the existence and uniqueness
of an initial value problem for Itô-type stochastic differential equations (SDEs) using
fixed point techniques on appropriate Banach spaces in order to derive conditions
for the Lp-convergence of waveform relaxation methods with p ≥ 2. Section 4
generalizes this idea to the case of one-sided Lipschitz-continuity of the drift part,
restricted to drift coefficients satisfying an angle condition. An illustrative example
is given in Section 5. Section 6 closes this paper with some concluding remarks.

2. The general idea of waveform relaxation methods

At first we convert the initial-value problem problem related to Itô-interpreted
stochastic differential equations into a fixed point problem. Therefore, we can
consider

(1) x = >>x + g

where >> maps the function space U into itself, and g ∈ U . There are several
techniques to find appropriate conditions on the operator >> guaranteeing a unique
solution x∗ ∈ U of system (1) and resulting in an efficient algorithm to approximate
x∗. In the case that (1) represents a network of weakly connected subsystems with
quite different behavior, i.e. (1) carries the feature of a large scale system, the
waveform relaxation method is an efficient approach to approximate x∗, formulated
as follows:

(i) Decomposition step: Find a suitable representation of the space U as a
product of subspaces U1,U2, ...,Un, i.e.

(2) U = U1 × U2 × ...× Un ,

and a corresponding splitting of >> into >>1, ... , >>n and g into g1, ..., gn

such that the fixed point problem (1) is equivalent to the system

x(1) = >>1(x(1), ..., x(n)) + g1,

x(2) = >>2(x(1), ..., x(n)) + g2,

....... .. .................................(3)

x(n) = >>n(x(1), ..., x(n)) + gn

where x(k), gk ∈ Uk, and >>k maps U into the subspace Uk for k = 1, 2, ..., n.
(ii) Solution step: By an appropriate procedure, solve the k-th subsystem

(4) x(k) = >>k(x(1), ..., x(k−1), x(k), x(k+1), ..., x(n)) + gk .

Here, x(j), j = 1, 2, ..., n with j 6= k are the inputs from other subsystems.
(iii) Relaxation step: Derive conditions such that the successive solution of sub-

systems (4) leads to the unique solution of the large scale system (of SDEs,
specified later)
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An alternative approach based on monotone iteration techniques is described in
Ladde, Lakshmikantham and Vatsala [23] or Zhao [49]. We follow the fairly gen-
eral idea of waveform iterations as originally suggested by Lelarasmee, Ruehli and
Sangiovanni–Vincentelli [27], summarized by steps (i) - (iii) and specified for sys-
tems of SDEs. As commonly known, the work out of (iii) is strongly connected
with efficient proofs for the existence and uniqueness of solutions of related opera-
tor equations and heavily depends on their specific structure. Moreover, the steps
(ii) and (iii) can be also combined to some “diagonalized” iteration scheme (see
Schneider [39] for details). In the case of the Gauss–Jacobi procedure

x
(1)
i = >>1(x

(1)
i , x

(2)
i−1, x

(3)
i−1, ..., x

(n−1)
i−1 , x

(n)
i−1) + g1,

x
(2)
i = >>2(x

(1)
i−1, x

(2)
i , x

(3)
i−1, ..., x

(n−1)
i−1 , x

(n)
i−1) + g2,

....... .. ............................................................(5)

x
(n)
i = >>n(x(1)

i−1, x
(2)
i−1, x

(3)
i−1, ..., x

(n−1)
i−1 , x

(n)
i ) + gn

we get the diagonalized iteration scheme

x
(1)
i = >>1(x

(1)
i−1, x

(2)
i−1, . . . , x

(n)
i−1) + g1,

x
(2)
i = >>2(x

(1)
i−1, x

(2)
i−1, . . . , x

(n)
i−1) + g2,

....... .. ............................................(6)

x
(n)
i = >>n(x(1)

i−1, x
(2)
i−1, . . . , x

(n)
i−1) + gn

which represents a block Picard iteration. To prove the convergence of (6) we
assume

(H1) For k = 1, ..., n, Uk is a complete metric space with norm ||.||k.
(H2) For k = 1, . . . , n, >>k : U1 × U2 × · · · × Un → Uk is a globally Lipschitz

continuous, nonlinear mapping, i.e.

||>>k(x(1), . . . , x(n))−>>k(x̄(1), . . . , x̄(n))||k
≤ lk1||x(1) − x̄(1)||1 + · · ·+ lkn||x(n) − x̄(n)||n(7)

for all x(1), x̄(1) ∈ U1, . . . , x
(n), x̄(n) ∈ Un.

Let L := (lkj)1≤k,j≤n, be the matrix of Lipschitz constants lkj of operators >>k.

Theorem 2.1. We assume the hypotheses (H1) and (H2) to be satisfied. Under
the additional assumption that the spectral radius %(L) of matrix L is lesser than
one, the iteration scheme (6) converges in U with respect to an appropriate norm
|||.||| (for its definition, see (9) in the proof below).

Proof. Without loss of generality we may assume that all entries of L are strictly
positive. Then, by a theorem of Perron (see [9]), the fact %(L) < 1 implies that %(L)
is an eigenvalue of L to which an eigenfunction e with strictly positive components
e1, . . . , en exists. From (6) and (7), for k = 1, . . . , n, we get to

||x(k)
i − x̄

(k)
i−1||k ≤ lk1||x(1)

i−1 − x̄
(1)
i−2||1 + · · ·+ lkn||x(n)

i−1 − x̄
(n)
i−2||n.

Hence, we have

e1||x(1)
i − x

(1)
i−1||1 + · · ·+ en||x(n)

i − x
(n)
i−1||n

≤ (e1l11 + e2l21 + · · ·+ enln1)||x(1)
i−1 − x

(1)
i−2||1 + . . .

+(e1ln1 + e2ln2 + · · ·+ enlnn)||x(n)
i−1 − x

(n)
i−2||n

= %(L) (e1||x(1)
i−1 − x

(1)
i−2||1 + · · ·+ en||x(n)

i−1 − x
(n)
i−2||n) .(8)
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Now we introduce a norm |||.||| on U := U1 × · · · × Un by

(9) |||x||| := e1||x(1)||1 + · · ·+ en||x(n)||n.

Using this norm we obtain from (8) that |||xi−xi−1||| ≤ %(L) |||xi−1−xi−2|||. Thus,
the iteration scheme (6) is convergent in U with respect to the norm (9), provided
that %(L) < 1. ¦ ¤

Similar convergence results can be derived for modified schemes. The iterative
methods to solve the subsystems can be applied in form of Gauss–Jacobi, Gauss–
Seidel, successive overrelaxation (SOR) or Picard iterations in general, where the
related spectral radii control the convergence of these algorithms in appropriate
Banach spaces. For example, if we replace the Gauss–Jacobi procedure (6) by the
Gauss–Seidel iteration

x
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i = >>1(x
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i−1, x
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(n)
i−1) + g1,
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i = >>2(x
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....... .. ............................................................(10)
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(n)
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i , x
(2)
i , x

(3)
i , ..., x

(n−1)
i , x

(n)
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then the corresponding matrix L̃ = (l̃k,j) of Lipschitz-constants can be determined
from the estimates

∆x
(1)
i ≤ l11∆x

(1)
i−1 + l12∆x

(2)
i−1 + · · ·+ l1n∆x

(n)
i−1,

∆x
(2)
i ≤ l21l11∆x

(1)
i + (l21l12 + l22)∆x

(2)
i−1 + · · ·+ (l21l1n + l2n)∆x

(n)
i−1,(11)

....... .. ............................................................

where ∆x
(k)
i = ||x(k)

i − x
(k)
i−1||k. For example, for the Gauss–Seidel iteration

x
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i = >>1(x

(1)
i−1, x
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(3)
i−1) + g1,
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(2)
i = >>2(x

(1)
i , x

(2)
i−1, x

(3)
i−1) + g2,

x
(3)
i = >>n(x(1)

i , x
(2)
i , x

(3)
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(12)

in the case n = 3, we obtain that the matrix L̃ is equal to



l11 l12 l13
l21l11 l21l12 + l22 l21l13 + l23
l31l11 + l32l21l11 l31l12 + l32(l21l12 + l22) l31l13 + l33 + l32(l21l13 + l23)


.

Thus, %(L̃) < 1 implies the convergence of the iteration scheme (12). Consequently,
Theorem 2.1 can be modified for this iteration scheme as well. General convergence
theorems for iteration methods are also found in standard references, e.g. Zeidler
[47].

Remark 2.1. Theorem 2.1 is applicable to operators describing deterministic as
well as stochastic processes. The main problem to be tackled in applying the wave-
form relaxation method to stochastic systems consists of estimating the influence
of stochastic terms on the Lipschitz-constants. A first approach is presented in the
next section.

Remark 2.2. It is worth noting that system (5) permits the application of mul-
ti-processor computers (parallel computing) – a fact which renders the waveform
algorithm to be very attractive for numerical solving of large scale systems.
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3. Waveform relaxation methods for SDEs

3.1. Notation and main assumptions. Let < ., . >d denote the Euclidean
scalar product defined by < x, y >d=

∑d
i=1 xiyi for vectors x, y in IRd, d ≥ 1

the current dimension, and ‖.‖d the Euclidean vector norm in IRd. Throughout
this paper Bd represents the set of all Borel-measurable sets of IRd. Let (Ω,F , IP)
be a given complete probability space, and T = [0, T ] a fixed finite time interval.
Suppose that (Ft)t∈T performs a filtration such that (Ω,F ,Ft∈T , IP) presents a
complete stochastic basis. In the following we consider only Ft-adapted stochastic
processes (Xt)t∈T defined on (Ω,F ,Ft∈T , IP), with finite p-th absolute moments
for all times t ∈ T , where p ≥ 1. Recall that a stochastic process is called “cadlag
(a.s.)” if and only if all trajectories are continuous from the right side, and left
hand limits exist almost surely (almost surely with respect to probability measure
IP).

Definition 3.1. The space Ep,d is defined to be
(13)

Ep,d :=



(Xt)0≤t≤T :

Xt = Xt(ω) is a cadlag (a.s.) stochastic process,
Xt(ω) : [0, T ]× (Ω,F , (Ft)0≤t≤T , IP) −→ (IRd,Bd),
Xt is Ft−adapted, IE sup0≤t≤T ‖Xt‖p

d < +∞





and the space E0
p,d

(14)

E0
p,d :=



(Xt)0≤t≤T :

Xt = Xt(ω) is a continuous (a.s.) stochastic process,
Xt(ω) : [0, T ]× (Ω,F , (Ft)0≤t≤T , IP) −→ (IRd,Bd),
Xt is Ft−adapted, IE max0≤t≤T ‖Xt‖p

d < +∞



 .

Proposition 3.1. The spaces Ep,d, E0
p,d are Banach spaces with respect to the norm

(15) ‖X‖Ep,d
=

(
IE sup

0≤t≤T
‖Xt‖p

d

)1/p

for X ∈ Ep,d or X ∈ E0
p,d, respectively.

Proof. The proofs of this assertion for Ep,d and E0
p,d are similar, hence we restrict

ourselves to the case of E0
p,d. The fact that E0

p,d is a normed linear space follows from
the linearity of IE -operation and properties of vector norm ‖.‖d in IRd. It remains to
show the completeness of E0

p,d. Let (X(n))n∈IN be a Cauchy sequence in E0
p,d. That

is that, we know that ∀ε > 0 ∃n0(ε) ∈ IN ∀n,m ≥ n0(ε) : ‖X(n)−X(m)‖E0
p,d

< ε.

Let X(n) converge to X̂. Then, for all n,m ≥ n0(ε), it follows that

‖X̂ −X(m)‖p
E0

p,d
= IE sup

0≤t≤T
‖X̂t −X

(m)
t ‖p

d ≤ sup
n≥m

(
IE sup

0≤t≤T
‖X(n)

t −X
(m)
t ‖p

d

)

≤ εp.

Hence, by the Lemma of Fatou (see Bauer [5], p. 92), we get X̂ −X(m) ∈ E0
p,d for

all m ≥ n0(ε). Therefore, the proof is completed by

X̂ = X̂ − X(m) + X(m) ∈ E0
p,d .¦

¤
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Remark 3.1. For p = 2, the function spaces Ep,d, E0
p,d form Hilbert spaces endowed

with the naturally induced scalar product. For fixed parameters p, d, one finds the
natural inclusion E0

p,d ⊂ Ep,d.

Our goal is to study the class of Itô-interpreted stochastic differential equations
(SDEs) in conjunction with convergence of waveform relaxation methods. Let W 1

t ,
W 2

t , ..., Wm
t be m given independent, one-dimensional Wiener processes adapted

to the filtration Ft. Define W 0
t = t for all t ∈ [0, T ]. Consider the initial value

problem

dXt =
m∑

j=0

fj(t, Xt) dW j
t(16)

X0 = x0(ω) fixed and F0−measurable, 0 ≤ t ≤ T,

driven by the Wiener process Wt = (W 1
t ,W 2

t , ...,Wm
t ). We need to derive condi-

tions on the functions fj in order to guarantee the convergence of approximations
based on waveform relaxation methods to the unique solution of (16) within the
space E0

p,d. For this purpose, we take into account the following splitting of the
d-dimensional system (16) into n interacting subsystems of dimension dk

dX
(1)
t =

m∑

j=0

f1,j(t,X
(1)
t , X

(2)
t , ..., X

(n)
t ) dW j

t ,

dX
(2)
t =

m∑

j=0

f2,j(t,X
(1)
t , X

(2)
t , ..., X

(n)
t ) dW j

t ,

.... . ..........................................(17)

dX
(n)
t =

m∑

j=0

fn,j(t,X
(1)
t , X

(2)
t , ..., X

(n)
t ) dW j

t ,

(X(1)
0 , X

(2)
0 , ..., X

(n)
0 ) = (x(1)

0 (ω), x(2)
0 (ω), ..., x(n)

0 (ω)), 0 ≤ t ≤ T,

where fj = (f1j , f2j , ..., fnj)T , j = 0, 1, ..., m, with fkj : [0, T ] × IRd −→ IRdk ,
d =

∑n
k=1 dk, k = 1, 2, ..., n. Concerning the functions fj we assume that

(A0) fj , j = 0, 1, ..., m are Lebesgue-measurable.
(A1) fkj(t, x), j = 0, 1, ..., m; k = 1, 2, ..., n are globally Lipschitz continuous in x,

uniformly with respect to time t ∈ [0, T ], i.e. there are constants L
(i)
k,j ∈ IR1

(i = 1, 2, ..., n) such that

∀t ∈ [0, T ] ∀(x(1), ..., x(n)), (y(1), ..., y(n)) ∈ IRd1 × ...× IRdn

‖fk,j(t, x(1), ..., x(n))− fk,j(t, y(1), ..., y(n))‖dk
≤

n∑

i=1

L
(k)
i,j ‖x(i) − y(i)‖di .

(A2) For k = 1, 2, ..., n, and j = 0, 1, ...,m we have

sup
0≤t≤T

inf
y∈IRd

‖fk,j(t, y)‖ ≤ KB < +∞ .

3.2. On existence and uniqueness of the solution of (16) using contractive
operators. In this subsection we present a constructive proof for the existence
and uniqueness of the solution of the Cauchy problem (16) taking into account the
splitting (17). The goal of this procedure is to extract conditions for the convergence
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of waveform relaxation methods applied to SDEs. For this purpose, we make use
of the representation of the Banach space E0

p,d as the product space

E0
p,d = E0

p,d1
× E0

p,d2
× ...× E0

p,dn

with d =
∑n

k=1 dk. The spaces E0
p,dk

are equipped with the norm ‖.‖E0
p,dk

, hence
they are Banach spaces according to the Proposition 3.1. Later we shall introduce
an appropriate norm in E0

p,d which renders E0
p,d to be a Banach space (This new

norm is equivalent to the norm given by (15)). Now, define the random operators
>>k by
(18)

[>>k

(
X(1), X(2), ..., X(n)

)
]t = X

(k)
0 +

m∑

j=0

∫ t

0

fk,j(s,X(1)
s , X(2)

s , ..., X(n)
s ) dW j

s

for all X(k) ∈ E0
p,dk

, mapping E0
p,d into E0

p,dk
(k = 1, 2, ..., n). Then a solution of the

initial value problem (17) is understood as a solution of the integral equations

(19) [>>k

(
X(1), X(2), ..., X(n)

)
]t = X

(k)
t , k = 1, 2, ..., n.

Introducing the operator >> = (>>1, ...,>>n), a solution of (19) corresponds to a
fixed point of the operator >>. The proof of the following theorem relies on the
contractivity of operator >> in the product Banach space E0

p,d.

Theorem 3.1. Let p ≥ 1. Assume that the given functions fk,j satisfy the condi-
tions (A0) - (A2), and that IE ‖X(k)

0 ‖p
dk

< +∞ for all k = 1, 2, ..., n; j = 0, 1, ..., m.
Then the initial value problem (17) has an unique, Ft-adapted and continuous (a.s.)
solution in the space E0

p,d.

Proof. The proof is carried out in two main steps. First, we shall show that the
decomposed operator >> is a mapping from the Banach space E0

p,d into itself. Sec-
ond, the operator >> forms a contraction in E0

p,d with respect to appropriately
constructed norm. Then Banach’s fixed point theorem provides the conclusion of
Theorem 3.1.
Step 1 : We prove that ‖>>k(X)‖E0

p,dk

< +∞ for X ∈ E0
p,d whenever the functions

fk,j(t, x) fulfill assumptions (A0) - (A2). It is well-known that the linear-polynomial
boundedness of Lipschitz-continuous functions fkj can be verified under (A0) - (A2),
i.e. there exist corresponding constants c0(fkj) and c1(fkj) such that

∀t ∈ [0, T ] ∀x ∈ IRd : ‖f(t, x)‖d ≤ c0(f) + c1(f)‖x‖d.
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Using the latter fact, the norm of images of operators >>k is estimated by

‖[>>k(X)]t‖p
dk
≤

(
‖X(k)

0 ‖dk
+‖

∫ t

0

fk,0(s,Xs)ds‖dk
+

m∑

j=1

‖
∫ t

0

fk,j(s,Xs)dW j
s ‖dk

)p

≤ (m + 2)p−1
(
‖X(k)

0 ‖p
dk

+‖
∫ t

0

fk,0(s,Xs)ds‖p
dk

+
m∑

j=1

‖
∫ t

0

fk,j(s, Xs)dW j
s ‖p

dk

)

≤ (m + 2)p−1
(
‖X(k)

0 ‖p
dk

+tp−1

∫ t

0

‖fk,0(s,Xs)‖p
dk

ds+
m∑

j=1

‖
∫ t

0

fk,j(s,Xs)dW j
s ‖p

dk

)

≤ (m + 2)p−1
(
‖X(k)

0 ‖p
dk

+ 2p−1(tpcp
0(fk,0) + tp−1cp

1(fk,0)
∫ t

0

‖Xs‖p
dds)

)

+(m + 2)p−1
( m∑

j=1

‖
∫ t

0

fk,j(s,Xs)dW j
s ‖p

dk

)

≤ (m + 2)p−1
(
‖X(k)

0 ‖p
dk

+ 2p−1tp(cp
0(fk,0) + cp

1(fk,0) max
0≤u≤t

‖Xu‖p
d)

)

+(m + 2)p−1
( m∑

j=1

sup
0≤u≤t

‖
∫ u

0

fk,j(s,Xs)dW j
s ‖p

dk

)

≤ (m + 2)p−1
(
‖X(k)

0 ‖p
dk

+ 2p−1T p(cp
0(fk,0) + cp

1(fk,0) max
0≤t≤T

‖Xt‖p
d)

+(m + 2)p−1
( m∑

j=1

sup
0≤t≤T

‖
∫ t

0

fk,j(s,Xs)dW j
s ‖p

dk

)

with appropriate constants c0(fk,0) and c1(fk,0) as mentioned above (Remember
also Xt = (X(1)

t , ..., X
(k)
t , ..., X

(n)
t )). Using the Burkholder–Davis–Gundy inequality

and basic properties of quadratic variation of Itô integrals with respect to Brownian
motions W j

s (see Revuz and Yor [35]), there are constants cp,k,j such that

IE sup
0≤t≤T

∥∥∥∥
∫ t

0

fk,j(s,Xs)dW j
s

∥∥∥∥
p

dk

≤ cp,k,jIE

(∫ T

0

‖fk,j(s,Xs)‖2dk
d < W j , W j >s

)p/2

= cp,k,j IE

(∫ T

0

‖fk,j(s,Xs)‖2dk
ds

)p/2

where < M,M >s denotes the total quadratic variation of inscribed martingale M
on [0, s]. In fact, applying the Burkholder inequality as stated in Protter [34, p.
174–175] to continuous time, local martingales (here represented by stochastic Itô
integrals) and the constants cp,k,j can be chosen universally, e.g.

cp,k,j ≤
(( p

p− 1

)p
(

p(p− 1)
2

)) p
2

for p ≥ 2, see also Krylov [22, p. 160–163] for an alternative estimate with p ∈
(0, +∞). Note that a deterministic T naturally is a Ft-stopping time and that here
fk,j(s,Xs) are bounded in the sense of norm ‖.‖Ep,dk

, thus one has the right to
apply the Burkholder–Davis–Gundy inequality. Using this fact, returning to the
estimation of ‖[>>k(X)]t‖p

dk
, taking supremum and expectation IE , one arrives at
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‖>>k(X)‖p
Ep,dk

= IE sup
0≤t≤T

‖[>>k(X)]t‖p
dk

≤ (m + 2)p−1
(

IE ‖X(k)
0 ‖p

dk
+ 2p−1T p(cp

0(fk,0) + cp
1(fk,0)‖X‖p

Ep,d
)
)

+(m + 2)p−12p/2−1
( m∑

j=1

cp,k,j IE

(∫ T

0

(c2
0(fk,j) + c2

1(fk,j)‖Xs‖2d)ds

)p/2 )

≤ (m + 2)p−1
(

IE ‖X(k)
0 ‖p

dk
+ 2p−1T p(cp

0(fk,0) + cp
1(fk,0)‖X‖p

E0
p,d

)
)

+(m + 2)p−12p/2−1T p/2
( m∑

j=1

cp,k,j(c
p
0(fk,j) + cp

1(fk,j)‖X‖p
E0

p,d
)
)

< +∞ ,

with appropriate constants c0(fk,j) and c1(fk,j) (see above), since X ∈ E0
p,d. That

is, the images of operators >>k cannot blow up (a.s.) at finite times t ∈ [0, T ].
Therefore, and thanks to integral construction of operators >>k, the non-blowing
up (a.s.) images of operators >>k are continuous (a.s.) and Ft-adapted stochastic
processes >>k(X) ∈ E0

p,dk
whenever the domain element X to which the operator

>>k is applied lies in the space E0
p,d, and the functions fk,j are globally Lipschitz

continuous (A1). As a consequence, the decomposed operator>> = (>>1, ...,>>n)
represents a mapping from the closed space E0

p,d into itself.
Step 2 : It remains to show the property of contractivity of the operator >> with
respect to an appropriate norm of the product space E0

p,d. Assume that X
(k)
0 = Y

(k)
0

(a.s.), k = 1, 2, ..., n. Set ∆>>k(t) := [>>k(X(1), ..., X(n)) − >>k(Y (1), ..., Y (n))](t)
for all t ∈ [0, T ], and ∆fk,j(s) := fk,j(s,X

(1)
s , ..., X

(n)
s )− fk,j(s, Y

(1)
s , ..., Y

(n)
s ) for

all s ∈ [0, T ]. For any fixed (X(1), ..., X(n)), (Y (1), ..., Y (n)) ∈ E0
p,d one has

‖∆>>k(t)‖p
dk
≤




∥∥∥∥
∫ t

0

∆fk,0(s)ds

∥∥∥∥
dk

+
m∑

j=1

∥∥∥∥
∫ t

0

∆fk,j(s)dW j
s

∥∥∥∥
dk




p

≤ (m + 1)p−1




∥∥∥∥
∫ t

0

∆fk,0(s)ds

∥∥∥∥
p

dk

+
m∑

j=1

∥∥∥∥
∫ t

0

∆fk,j(s)dW j
s

∥∥∥∥
p

dk




≤ (m + 1)p−1


tp−1

∫ t

0

‖∆fk,0(s)‖p
dk

ds +
m∑

j=1

∥∥∥∥
∫ t

0

∆fk,j(s)dW j
s

∥∥∥∥
p

dk




using the triangle inequality and using the Hölder inequality several times. We may
estimate ‖∆fk,j(s)‖p

dk
≤ np−1

∑n
i=1(L

(k)
i,j )p‖X(i)

s − Y
(i)
s ‖p

di
under global Lipschitz-

continuity of fk,j for p ≥ 1. Therefore it follows that

‖∆>>k(t)‖p
dk

≤ (m + 1)p−1np−1tp
n∑

i=1

(L(k)
i,0 )p max

0≤s≤t
‖X(i)

s − Y (i)
s ‖p

di

+(m + 1)p−1
m∑

j=1

‖
∫ t

0

∆fk,j(s)dW j
s ‖p

dk
,



WAVEFORM RELAXATION METHODS FOR SDES 241

hence

‖∆>>k(t)‖p
dk

≤ (m + 1)p−1np−1T p
n∑

i=1

(L(k)
i,0 )p max

0≤t≤T
‖X(i)

t − Y
(i)
t ‖p

di

+(m + 1)p−1
m∑

j=1

sup
0≤t≤T

‖
∫ t

0

∆fk,j(s)dW j
s ‖p

dk
.

Now, by taking the operation of expectation IE on both sides, this implies

‖∆>>k‖p
Ep,dk

= IE sup
0≤t≤T

‖∆>>k(t)‖p
dk

≤ (m + 1)p−1np−1T p
n∑

i=1

(L(k)
i,0 )p‖X(i) − Y (i)‖p

E0
p,di

+(m + 1)p−1
m∑

j=1

IE sup
0≤t≤T

‖
∫ t

0

∆fk,j(s)dW j
s ‖p

dk
.

The herein occurring terms
∫ t

0
∆fk,j(s)dW j

s form continuous and Ft-adapted mar-
tingales started at initial value 0 under the global Lipschitz-continuity (A1) of
functions fk,j and for X(k) ∈ E0

p,dk
, where k = 1, 2, ..., n; j = 1, 2, ...,m. This can be

shown in the same way as in step 1. Using the Burkholder–Davis–Gundy inequality
and basic properties of quadratic variation of Itô integrals with respect to Brownian
motions W j

s (see Revuz and Yor [35, p. 153]), there are constants Cp,k,j such that

IE sup
0≤t≤T

∥∥∥∥
∫ t

0

∆fk,j(s)dW j
s

∥∥∥∥
p

dk

≤ Cp,k,jIE

(∫ T

0

‖∆fk,j(s)‖2dk
d < W j ,W j >s

)p/2

= Cp,k,j IE

(∫ T

0

‖∆fk,j(s)‖2dk
ds

)p/2

where < M,M >s denotes the total quadratic variation of inscribed martingale M
on [0, s]. As already stated, we can find an universal estimate of Cp,k,j arising from
the Burkholder inequality (see Protter [34, p. 174–175], as before), e.g. with

Cp,k,j ≤
(( p

p− 1

)p
(

p(p− 1)
2

)) p
2

for p ≥ 2, which still depends on p. Note that a deterministic T naturally is a
Ft-stopping time, and ∆fk,j(s) are bounded in the sense of norm ‖.‖Ep,dk

, thus
one has the right to apply the Burkholder–Davis–Gundy inequality. Using the last
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observations and returning to the estimation of ‖∆>>k‖p
Ep,dk

, we have

‖∆>>k‖p
Ep,dk

≤ (m + 1)p−1np−1T p
n∑

i=1

(L(k)
i,0 )p‖X(i) − Y (i)‖p

E0
p,di

+(m + 1)p−1
m∑

j=1

Cp,k,j IE

(∫ T

0

‖∆fk,j(s)‖2dk
ds

)p/2

≤ (m + 1)p−1np−1T p
n∑

i=1

(L(k)
i,0 )p‖X(i) − Y (i)‖p

E0
p,di

+(m + 1)p−1np/2
m∑

j=1

Cp,k,j IE

(
n∑

i=1

(L(k)
i,j )2

∫ T

0

‖X(i)
s − Y (i)

s ‖2di
ds

)p/2

≤ (m + 1)p−1np−1T p
n∑

i=1

(L(k)
i,0 )p‖X(i) − Y (i)‖p

E0
p,di

+(m + 1)p−1(nT )p/2
m∑

j=1

Cp,k,j IE

(
n∑

i=1

(L(k)
i,j )2 sup

0≤t≤T
‖X(i)

t − Y
(i)
t ‖2di

)p/2

≤ (m + 1)p−1np−1T p
n∑

i=1

(L(k)
i,0 )p‖X(i) − Y (i)‖p

E0
p,di

+(m + 1)p−1np−1T p/2
m∑

j=1

Cp,k,j

n∑

i=1

(L(k)
i,j )p‖X(i) − Y (i)‖p

E0
p,di

under Lipschitz-continuity of fk,j . Hence, by taking the p-th root, we have

‖∆>>k‖Ep,dk
≤ (m + 1)(p−1)/pn(p−1)/p

√
T

n∑

i=1

ki,k‖X(i) − Y (i)‖E0
p,di

where the coefficients ki,k are given by ki,k =
√

TL
(k)
i,0 +

∑m
j=1(Cp,k,j)1/pL

(k)
i,j .

Summarizing, we have the relation



‖∆>>1‖E0
p,d1‖∆>>2‖E0
p,d2

........
‖∆>>n‖E0

p,dn


 ≤ (m + 1)(p−1)/pn(p−1)/p

√
T K




‖X(1) − Y (1)‖E0
p,d1

‖X(2) − Y (2)‖E0
p,d2

........
‖X(n) − Y (n)‖E0

p,dn


 ,

for any X(k), Y (k) ∈ E0
p,dk

with X
(k)
0 = Y

(k)
0 (a.s.), where the inequality sign ≤

is understood componentwise, and where K is the n × n-matrix defined by K =
(ki,l)1≤i,l≤n. Under the assumption that T is sufficiently small we can conclude that
the spectral radius %(L) of the matrix L := (m + 1)(p−1)/pn(p−1)/p

√
T K is lesser

than one. Thus, %(L) is an eigenvalue of L to which an eigenvector (e1, ..., en) with
strictly positive components ei corresponds. Now we introduce the norm

(20) |||X|||E0
p,d

:=

(
n∑

k=1

ek‖X(k)‖p
Ep,dk

)1/p
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in the Banach space E0
p,d. Then the vector-valued operator >> mapping the closed

set E0 into itself is strictly contractive with the contraction constant %(L). Conse-
quently, the sequence generated by iterative application of operator >> converges
with respect to norm |||.|||E0

p,d
of E0

p,d to an unique element of E0
p,d which is a solution

of original system (17). Since the norm |||.|||E0
p,d

of E0
p,d is equivalent to the norm

‖.‖E0
p,d

of E0
p,d, we know that the solution of system (17) also lies in the original

Banach space E0
p,d.

We have seen that >> is contractive in E0
p,d for sufficiently small T . To get the

result for any T we divide [0, T ] in a finite number of sufficiently small subintervals
and repeat the prior proof-steps successively. This completes the proof. ¦ ¤

Remark 3.2. For p = 2, thanks to Doob’s maximum inequality (see Revuz and
Yor [35]), we can choose c2,k,j = C2,k,j = 4 in the estimation above. Following
Protter [34, p. 174–175] we may apply the Burkholder inequality to continuous time,
local martingales (here represented by stochastic Itô integrals), and the universal
estimation

(21) max(cp,k,j , Cp,k,j) ≤
(( p

p− 1

)p
(

p(p− 1)
2

)) p
2

is established for p ≥ 2. Krylov [22] and Mao [28] have also proved some estimates
for p ∈ (0, +∞).

Remark 3.3. To get rid of dividing the interval [0, T ] in sufficiently small subin-
tervals one may take weighted random norms on Banach spaces. One easily verifies
that the appropriately weighted random norms are equivalent to the original norm
(note that we make use of deterministic weights!).

Remark 3.4. In the case m = 0 (i.e. no stochastic terms) with p = 1, Theorem 3.1
yields a convergence criterion for the case of ordinary differential equations (here
there is no dependence on the splitting parameter n).

3.3. Convergence of waveform relaxation methods. The proof of Theorem
3.1 is based on general contraction principles and can be used to derive a sufficient
condition for the convergence of the waveform relaxation method. If we consider
the block Picard iteration as a special waveform relaxation technique for the fixed
point problem (18), then we get the following sufficient condition for its convergence
from the proof of Theorem 3.1.

Theorem 3.2. Assume the hypotheses of Theorem 3.1 hold. Define L = (lik) by

lik := (m + 1)(p−1)/pn(p−1)/p
√

T
(√

TL
(k)
i,0 +

m∑

j=1

(Cp)1/pL
(k)
i,j

)

with corresponding universal constants Cp occurring at the right hand side of the
Burkholder–Davis–Gundy inequality (or substituted by estimates as in (21)).
Then %(L) < 0 implies the convergence of the waveform relaxation algorithm based
on the block Picard iterations (6) for the initial value problem (16) in the Banach
space U = U1 × U2 × · · · × Un with norm ||| · ||| defined by (20), where Uk = E0

p,dk
.

If we modify this algorithm with Gauss–Seidel iterations (10) applied to the initial
value problem (16), then the condition %(L̃) < 0 implies its convergence with respect
to corresponding norm ||| · |||.
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Proof. For the completion of the proof, it only remains to determine the matrix
of Lipschitz-constants L. These constants can be extracted from the last steps of
the proof of previous Theorem 3.1 directly. Finally, one applies Theorem 2.1 to
establish the claimed convergence with respect to the specifically constructed norm
of U . ¦ ¤
4. The case of one-sided Lipschitz continuous and anticoercive drift

The conditions for convergence of waveform relaxation methods can be relaxed
as follows. The global Lipschitz-continuity of drift coefficients of SDEs is replaced
by local one, but, additionally, the one-sided Lipschitz-continuity and anticoercivity
(latter also originally called geometric or angle condition) of the drift is required.
We shall combine the idea of monotonicity of coefficients of SDEs, as indicated
by Krylov [21, 22] for the analytical solution, and as used by Bremer [5] for the
convergence of waveform relaxation methods for ODEs.

Definition 4.1. A function f0 : [0, T ]× IRd −→ IRd is said to be (uniformly) one-
sided Lipschitz continuous if for the splitting f0 = (f1,0, ..., fk,0, ..., fn,0)T there are
constants L̂

(k)
i,0 ∈ IR1(i, k = 1, 2, ..., n) such that

(A3) ∀x = (x(1), ..., x(n)), y = (y(1), ..., y(n)) ∈ IRd1 × ...× IRdn

< fk,0(t, x(1), ..., x(n))− fk,0(t, y(1), ..., y(n)), x(k)− y(k) >dk
≤

n∑

i=1

L̂
(k)
i,0 ‖x(i)− y(i)‖2di

for all t ∈ [0, T ]. A function f : [0, T ]×IRd −→ IRd is called (uniformly) anticoercive
(or to satisfy the autonomous angle condition) if

(A4) ∃ca ∈ IR1 ∀t ∈ [0, T ] ∀x ∈ IRd : < f(t, x), x >d ≤ ca

(
1 + ‖x‖2d

)
.

4.1. On existence and uniqueness of the solution of (16). One encounters
the following result. Assume measurebility (A0) of all coefficients fj .

Theorem 4.1. Fix an exponent p ≥ 2. Let the drift function f0 = f0(t, x) be local
and uniformly one-sided Lipschitz continuous (i.e. (A3) holds), and the diffusion
functions fk,j = fk,j(t, x), j = 1, 2, ..., m; k = 1, 2, ..., n satisfy the conditions (A1)
of global Lipschitz-continuity and boundedness (A2). Additionally, assume that f0

possesses the property (A4) of uniform anticoercivity, and IE ‖X(k)
0 ‖p

dk
< +∞, k =

1, 2, ..., n.
Then the initial value problem (16) has an unique, Ft-adapted and continuous (a.s.)
solution in the space E0

p,d.

Proof. Again, the proof is carried out in two main steps. First, we shall show that
the decomposed operator >> is a mapping from the Banach space E0

p,d into itself.
Second, >> forms a contraction in Ep,d with respect to an appropriately constructed
norm. Then standard fixed point principles provide the conclusion of Theorem 4.1.
Step 1 : Obviously, the existence of the unique solution of system (17) in any ball of
IRd with finite radius r > 0 follows from the proof of Theorem 3.1 while assuming
local Lipschitz-continuity of the components of f0. That is that we can justify the
unique solvability of the stopped system

(22) dXr
t = χ{sup0≤s≤t ‖Xr

s‖d<r}(t)
m∑

j=0

fj(t,Xr
t ) dW j

t

in the space E0
p,d, where χ{.}(t) represents the characteristic function of the sub-

scribed set {.} evaluated at time t. Here Xr
t denotes the solution of the system
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(22) truncating the system (16) such that the solutions Xr
t of (22) and Xt of (16)

coincide up to the first exit time from the ball of radius r. It remains to show an
aposterori estimate of the sequence (Xr)r>0 of local and continuous (a.s.) solu-
tions Xr of truncated system (22) such that its uniform limit uniquely exists in
E0

p,d as the radius r tends to infinity. Using the well-known Itô formula, the local
Lipschitz-continuity and anticoercivity (A4) of drift coefficient f0 and the Lipschitz-
continuity (A1) of diffusion coefficients fk,j of the considered system of SDEs (17),
one recognizes that the stopped solution processes Xr

t must satisfy

‖Xr
t ‖p

d = ‖Xr
0‖p

d +
m∑

j=0

∫ t

0

Lj
(
‖Xr

s‖p
d

)
dW j

s

with the operators Lj originating from the Itô formula. Thus, we have

L0
(
‖x‖p

d

)
= p g(x)‖x‖p−2

d ,

g(x) = < f0(t, x), x >d +
1
2

m∑

j=1

‖fj(t, x)‖2d +
p− 2

2

m∑

j=1

< fj(t, x), x >2
d

‖x‖2d

≤ < f0(t, x), x >d +
p− 1

2

m∑

j=1

‖fj(t, x)‖2d ,

Lj
(
‖x‖p

d

)
= p < fj(t, x), x >d ‖x‖p−2

d ≤ p ‖fj(t, x)‖d‖x‖p−1
d

where x ∈ IRd and j = 1, 2, ..., m. For technical reasons, at first assume that we
have IE ||Xr

0 ||2p
Ep,d

< +∞. Taking the supremum, taking into account the uniform
anticoercivity (A4) of drift f0 and the linear-polynomial boundedness of globally
Lipschitz continuous diffusion functions fj(j = 1, 2, ...,m) under condition (A2),
and using the elementary inequality

(c0 + c1‖x‖2)‖x‖p−2 ≤ c0 + (c0 + c1)‖x‖p

(a slightly more efficient estimate by application of the Hölder inequality would also
be applicable here with (c0 +c1‖x‖2)‖x‖p−2 ≤ c0

2
p +(c0

p−2
p +c1)‖x‖p) implies that

‖Xr‖p
Ep,d

≤ IE ‖Xr
0‖p

d + p IE sup
0≤t≤T

∫ t

0

(
ca(f0)(1 + ‖Xr

s‖2d) +

+
p− 1

2

m∑

j=1

(c0(fj) + c1(fj)‖Xr
s‖d)2

)
‖Xr

s‖p−2
d ds

+
m∑

j=1

IE sup
0≤t≤T

∫ t

0

Lj(‖Xr
s‖p

d)dW j
s
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and hence

‖Xr‖p
Ep,d

≤ IE ‖Xr
0‖p

d + pT
(
ca(f0) + (p− 1)

m∑

j=1

c2
0(fj)

)

+p
(
ca(f0) + (p− 1)

m∑

j=1

(c2
0(fj) + c2

1(fj))
) ∫ T

0

IE ‖Xr
t ‖p

ddt

+p2
√

2
m∑

j=1

(
IE

∫ T

0

(c2
0(fj) + c2

1(fj)‖Xr
t ‖2d)‖Xr

t ‖2p−2dt

)1/2

≤ IE ‖Xr
0‖p

d + pT
(
ca(f0) + (p− 1)

m∑

j=1

c2
0(fj)

)

+p
(
ca(f0) + (p− 1)

m∑

j=1

(c2
0(fj) + c2

1(fj))
) ∫ T

0

IE ‖Xr
t ‖p

ddt

+p2
√

2
m∑

j=1

(√
Tc0(fj) + (c0(fj) + c1(fj))

(∫ T

0

IE ‖Xr
t ‖2pdt

)1/2
)

for all radii r > 0, where we have applied Doob’s maximum inequality to the
occurring integrals (as in proof above). Note that ca(f0) represents the constant of
anticoercivity (A4) of drift f0 and c0(fj), c1(fj) the constants of linear-polynomial
growth of globally Lipschitz continuous diffusion functions fj , respectively. Now,
one can show that∫ T

0

IE ‖Xr
t ‖pdt ≤ T sup

r>0
sup

0≤t≤T
IE ‖Xr

t ‖p < +∞ and

∫ T

0

IE ‖Xr
t ‖2pdt ≤ T sup

r>0
sup

0≤t≤T
IE ‖Xr

t ‖2p < +∞

by applying Dynkin’s formula (see Dynkin [9] or Khas’minskij [15]) to the function-
als IE ‖Xr

t ‖p
d and IE ‖Xr

t ‖2p
d , respectively, while supr>0 IE ‖Xr

0‖2p
d < +∞. After

that step and using Gronwall–Bellman inequality, one finds that

lim
r→+∞

‖Xr‖Ep,d
≤ sup

r>0
‖Xr‖Ep,d

< +∞ .

Now, by use of standard localization procedures, one may relax the assumption
IE ||Xr

0 ||2p < +∞ to the weaker requirement IE ||Xr
0 ||p < +∞.

Thus, from uniform anticoercivity (A4) of functions fj and IE ‖Xr
0‖p

d < +∞,
we know that the uniform limit of continuous (a.s.) stochastic processes Xr as
the radius r tends to +∞ must exist with finite norm ‖.‖Ep,d

. Therefore, by the
completeness of space E0

p,d, the limit process limr→+∞Xr which also solves the
original system (16) must exist, be continuous (a.s.), be Ft-adapted and have a
finite norm ‖.‖Ep,d

. Consequently, the decomposed operator >> is a mapping from
E0

p,d into itself.

Step 2 : Contractivity of operator >> on the space E0
p,d. Assume that X

(k)
0 = Y

(k)
0

(a.s.). Take ∆X
(k)
s = X

(k)
s − Y

(k)
s for k = 1, 2, ..., n, and ∆Xs = Xs − Ys. Set

∆>>k(t) := [>>k(X(1), ..., X(n))−>>k(Y (1), ..., Y (n))](t)

for all t ∈ [0, T ], and

∆fk,j(s) := fk,j(s,X(1)
s , ..., X(n)

s )− fk,j(s, Y (1)
s , ..., Y (n)

s )
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for all s ∈ [0, T ]. Fix any (X(1), ..., X(n)), (Y (1), ..., Y (n)) ∈ E0
p,d, where X(k) 6= Y (k)

(a.s.). Define

gk(x, y) := <fk,0(t, x)− fk,0(t, y), x(k)−y(k) >dk
+

1
2

m∑

j=1

‖fk,j(t, x)− fk,j(t, y)‖2dk

+
p− 2

2

m∑

j=1

< fk,j(t, x)− fk,j(t, y), x(k) − y(k) >2
dk

‖x− y‖2dk

and estimate gk = gk(x, y) by

gk ≤ < fk,0(t, x)− fk,0(t, y), x(k)−y(k) >dk
+

p− 1
2

m∑

j=1

‖fk,j(t, x)− fk,j(t, y)‖2dk

where x = (x(1), ..., x(k), ..., x(n))T , y = (y(1), ..., y(k), ..., y(n))T ∈ IRd. In the fol-
lowing let [.]+ denote the nonnegative part of the inscribed expression. Then one
has

‖∆>>k(t)‖p
dk

=
∫ t

0

L0
(
‖∆X(k)

s ‖p
dk

)
ds +

m∑

j=1

∫ t

0

Lj
(
‖∆X(k)

s ‖p
dk

)
dW j

s

= p

∫ t

0

gk(Xs, Ys)‖∆X(k)
s ‖p−2

dk
ds

+p

m∑

j=1

∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s

≤ p

∫ t

0

( n∑

i=1

L̂
(k)
i,0 ‖∆X(i)

s ‖2di
+

p− 1
2

m∑

j=1

(
n∑

l=1

L
(k)
l,j ‖∆X(l)

s ‖)2
)
‖∆X(k)

s ‖p−2
dk

ds

+p

m∑

j=1

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

≤ p

∫ t

0

( n∑

i=1

(L̂(k)
i,0 + n

p− 1
2

m∑

j=1

(L(k)
i,j )2)‖∆X(i)

s ‖2di

)
‖∆X(k)

s ‖p−2
dk

ds(23)

+p

m∑

j=1

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

≤ p

∫ t

0

( n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+

) n∑

i=1

‖∆X(i)
s ‖p

di
ds

+p

m∑

j=1

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

≤ pt
( n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+

) n∑

i=1

sup
0≤s≤t

‖∆X(i)
s ‖p

di

+p

m∑

j=1

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |.
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Therefore

‖∆>>k(t)‖p
dk

≤ pT
( n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+

) n∑

i=1

sup
0≤t≤T

‖∆X
(i)
t ‖p

di

+p

m∑

j=1

sup
0≤t≤T

|
∫ t

0

< ∆fk,j(s),∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

using the Itô lemma applied to ‖∆Xs‖p
dk

, triangle inequality, the Hölder inequality,
and the Lipschitz conditions (A1) and (A3), respectively. Note that the operators
L0 and Lj are those operators arising at the application of Itô formula. Now, by
taking the operation of expectation IE on both sides, this implies

‖∆>>k‖p
Ep,dk

= IE max
0≤t≤T

‖∆>>k(t)‖p
dk

≤ pT
( n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+

) n∑

i=1

‖∆X(i)‖p
Ep,di

+p




m∑

j=1

IE max
0≤t≤T

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

 .

The occurring terms
∫ t

0
< ∆fk,j(s), ∆X

(k)
s >dk

‖∆X
(k)
s ‖p−2

dk
dW j

s form continu-
ous and Ft-adapted martingales started at initial value 0 under the global Lip-
schitz-continuity (A1) of diffusion functions fk,j and for X(k) ∈ Ep,dk

, where k =
1, 2, ..., n; j = 1, 2, ..., m. As in proof of Theorem 3.1, using the Burkholder–Davis–
Gundy inequality and basic properties of quadratic variation of Itô integrals with
respect to Brownian motions W j

s , there are constants Ĉp,k,j such that

IE max
0≤t≤T

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

≤ Ĉp,k,j IE

(∫ T

0

| < ∆fk,j(s), ∆X(k)
s >dk

|2∆X(k)
s ‖2(p−2)

dk
d < W j ,W j >s

)1/2

= Ĉp,k,j IE

(∫ T

0

| < ∆fk,j(s), ∆X(k)
s >dk

|2‖∆X(k)
s ‖2(p−2)

dk
ds

)1/2

≤ Ĉp,k,j IE

(∫ T

0

‖∆fk,j(s)‖2‖∆X(k)
s ‖2p−2

dk
ds

)1/2

≤ Ĉp,k,j IE

(∫ T

0

(
n∑

i=1

L
(k)
i,j ‖∆X(i)

s ‖di)
2‖∆X(k)

s ‖2p−2
dk

ds

)1/2

≤ Ĉp,k,j

√
n IE

(∫ T

0

n∑

i=1

(L(k)
i,j )2‖∆X(i)

s ‖2di
‖∆X(k)

s ‖2p−2
dk

ds

)1/2

(24)

≤ Ĉp,k,j

√√√√n(
n∑

i=1

(L(k)
i,j )2) IE

(∫ T

0

n∑

i=1

‖∆X(i)
s ‖2p

di
ds

)1/2

.
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Hence

IE max
0≤t≤T

|
∫ t

0

< ∆fk,j(s), ∆X(k)
s >dk

‖∆X(k)
s ‖p−2

dk
dW j

s |

≤ Ĉp,k,j

√√√√nT (
n∑

i=1

(L(k)
i,j )2) IE

(
n∑

i=1

max
0≤t≤T

‖∆X
(i)
t ‖2p

di

)1/2

≤ Ĉp,k,j

√√√√nT (
n∑

i=1

(L(k)
i,j )2)

n∑

i=1

IE max
0≤t≤T

‖∆X
(i)
t ‖p

di

= Ĉp,k,j

√√√√nT (
n∑

i=1

(L(k)
i,j )2)

n∑

i=1

‖∆X(i)‖p
Ep,di

.

Using the last estimate and returning to the estimation of ‖∆>>k‖p
Ep,dk

, we have

‖∆>>k‖p
Ep,dk

≤ pT
( n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+

) n∑

i=1

‖∆X(i)‖p
Ep,di

+p




m∑

j=1

Ĉp,k,j

√√√√nT (
n∑

i=1

(L(k)
i,j )2)

n∑

i=1

‖∆X(i)‖p
Ep,di




under one-sided Lipschitz-continuity (A3) of fk,0. Hence, one finds

‖∆>>k‖Ep,dk
≤ p

√
p

2p
√

T

n∑

i=1

k̂i,k‖∆X(i)‖Ep,di

by taking the p-th root, where the coefficients k̂i,k are given by

k̂i,k = 2p
√

T

n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]1/p

+ +
m∑

j=1

(Ĉp,k,j)1/p 2p

√√√√n(
n∑

l=1

(L(k)
l,j )2) .

Summarizing the main result, we have shown the relation



‖∆>>1‖Ep,d1‖∆>>2‖Ep,d2

........
‖∆>>n‖Ep,dn


 ≤ p

√
p

2p
√

T K̂




‖X(1) − Y (1)‖Ep,d1

‖X(2) − Y (2)‖Ep,d2

........
‖X(n) − Y (n)‖Ep,dn


 ,

for all X(k), Y (k) ∈ Ep,dk
with X

(k)
0 = Y

(k)
0 (a.s.), where the inequality sign ≤

is understood componentwise, and where the n × n-matrix K̂ is given by K̂ =
(k̂i,l)1≤i,l≤n. For sufficiently small T , we can conclude that the spectral radius
%(L̂) of L̂ := p

√
p 2p
√

T K̂ is less than one. Thus, %(L̂) is an eigenvalue of L̂ to which
an eigenvector with strictly positive components (e1, ..., en) corresponds. Now, we
introduce the norm

(25) |||X|||E0
p,d

:=

(
n∑

k=1

ek‖X(k)‖p
Ep,dk

)1/p

in the Banach space E0
p,d. Then the vector-valued operator >> mapping the closed

set E0
p,d into itself is strictly contractive with the contraction constant %(L̂). Con-

sequently, the sequence generated by iterative application of operator >> converges
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with respect to norm |||.|||E0
p,d

of E0
p,d to an unique element of E0

p,d which is a so-
lution of the original system (17). Since the norm |||.|||E0

p,d
of E0

p,d is equivalent to
the norm ‖.‖E0

p,d
of E0

p,d, we know that the solution of system (17) also lies in the
original Banach space E0

p,d.
We have seen that >> is contractive in E0

p,d for sufficiently small T . To get the
result for any T we divide [0, T ] in a finite number of sufficiently small subintervals
and repeat the prior proof-steps successively. This completes the proof. ¦ ¤
4.2. Convergence of waveform relaxation methods. The contractivity of op-
erator >> can be used to establish a theorem on the convergence of waveform re-
laxation methods. Analogous to Theorem 3.2 we have

Theorem 4.2. Assume the hypotheses of Theorem 4.1 are valid. Define L̂ = (l̂ik)
by

l̂ik :=


p
√

T


√T

n∑

l=1

[L̂(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+ +

m∑

j=1

Ĉp

√√√√n(
n∑

l=1

(L(k)
l,j )2)







1/p

with corresponding universal constants Cp occurring at the right hand side of the
Burkholder–Davis–Gundy inequality (or substituted by estimates as in (21)).
Then %(L̂) < 0 implies the convergence of the waveform relaxation algorithm based
on the block Picard iterations (6) for the initial value problem (16) in the Banach
space U = U1 × U2 × · · · × Un with norm ||| · ||| defined by (25), where Uk = E0

p,dk
.

If we modify this algorithm with Gauss–Seidel iterations (10) applied to the initial

value problem (16), then the condition %( ˜̂
L) < 0 implies its convergence with respect

to corresponding norm ||| · |||.
The proof of Theorem 4.2 is omitted as an immediate conclusion of Theorem 4.1.

4.3. Further remarks. One could think of slight improvements in the estimation
of the coefficients k̂ik from the proof of Theorem 4.1 and l̂ik from the Theorem 4.2.
For this purpose one returns to inequalities (23) and (24), respectively. Now, make
use of the inequalities

n∑

i=1

cik xi xp−1
k ≤ 1

p

n∑

i=1:i6=k

cik xp
i +


p− 1

p

n∑

i=1:i 6=k

cik + ckk


 xp

k, p ≥ 1, and

n∑

i=1

cik x2
i xp−2

k ≤ 2
p

n∑

i=1:i 6=k

cik xp
i +


p− 2

p

n∑

i=1:i 6=k

cik + ckk


 xp

k, p ≥ 2,

where cik, xi, xk are nonnegative numbers. In passing note that these inequalities
are obtained by the application of well-known Young’s inequality. Let [.]+ denote
the nonnegative part of the inscribed expression. So one would arrive at coefficients

(k̂ik)p =
√

T
[(2

p

)1−δi,k

[L(k)
i,0 + n

p− 1
2

m∑

j=1

(L(k)
i,j )2]++

+δi,k
p− 2

2

n∑

l=1:l 6=k

[L(k)
l,0 + n

p− 1
2

m∑

j=1

(L(k)
l,j )2]+

]
+

+
√

n
[
(1− δi,k)

√
1
p

m∑

j=1

Ĉp,k,jL
(k)
i,j + δi,k

m∑

j=1

Ĉp,k,j

(√
p− 1

p

n∑

l=1:l 6=k

L
(k)
l,j + L

(k)
k,j

)]
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occurring at ‖∆>>k‖Ep,dk
≤ (p

√
T )1/p

∑n
i=1 k̂i,k ‖∆X(i)‖Ep,di

, where δi,k repre-
sents the Kronecker symbol. However, the evaluation of this result leads to more
complex expressions for the spectral radius of the matrix L̂ = (l̂ik) with l̂ik =
(p
√

T )1/p k̂i,k controlling the convergence of the waveform iterations for SDEs with
one-sided Lipschitz continuous drift part. This is the reason why we preferred to
use the more elementary estimates

∑n
i=1 cik x2

i xp−2
k ≤ ∑n

l=1 clk ·
∑n

i=1 xp
i with

p ≥ 2 after the inequality (23), and
∑n

i=1 cik xi xp−1
k ≤ ∑n

l=1 clk ·
∑n

i=1 xp
i with

p ≥ 1 after the inequality (24), where cik, xi, xk ≥ 0.
The assertions of Theorems 4.1, 4.2 remain valid in case 1 ≤ p < 2. In that case

one needs slight modifications in some estimations of corresponding proof-steps.
The crucial point in all generalizations with locally Lipschitz continuous coeffi-

cients is to find an appropriate aposteriori estimation such that the limit process
limr→+∞Xr, where Xr = (Xr,(1), ..., Xr,(n))T represents the solution of the cor-
responding truncated system (22), cannot blow up (a.s) at finite times. However,
generically, the solutions do not lie in the original Banach space Ep,d anymore.

As a by-product, we have shown that solutions of (16) posess finite moments
sup0≤t≤T IE‖Xt‖2p

d <+∞ under assumptions of Theorem 4.1 and IE ‖X0‖2p<+∞.

5. An illustrative example with different time scales

There are a lot of real-life processes containing several time scales. For example, a
rich class is given by biochemical processes. The presence of fast and slow variables
can be expressed by singularly perturbed differential equations of the type

dx

ds
= f(x, y, s), ε

dy

ds
= g(x, y, s).(26)

By introducing the fast time t = s/ε we get the system
dx

dt
= ε f(x, y, εt),

dy

dt
= g(x, y, εt).(27)

Now, suppose that system (27) is randomly perturbed in its x-component by a
stochastic term

√
εh(x, y, εt)dWt where W = (Wt)t∈[0,T/ε] is a standard Brownian

motion. The system we obtain, which is to be understood in integral sense, is

dXt = εf(Xt, Yt, εt) dt +
√

εh(Xt, Yt, εt) dWt,
dYt = g(Xt, Yt, εt) dt .

(28)

Stochastic singularly perturbed systems have been considered by many authors.
For example, a qualitative theory is found by [29] and a block diagonalization pro-
cedure is exploited in [24]. In contrast to analytical techniques, it is much lesser
known on their numerical approximations. Golec and Ladde [11] have studied
Euler-type approximations in the mean square sense. It is worth stressing that sin-
gularly perturbed differential equations (28) with their naturally inherited splitting
into slowly and fastly varying components form a suitable class for an application
of waveform iteration techniques as a further numerical method. The waveform
iteration technique can be applied to approximate the solution of the initial value
problem to (28) as follows. First, fix some initial guess X

(0)
t for Xt, e.g. X

(0)
t = X0.

Second, compute an approximation for Y = (Yt)t∈[0,T/ε] satisfying the initial value
problem for

dY
(k)
t = g(X(k−1)

t , Y
(k)
t , εt) dt

while freezing the first component, for example, pathwise by deterministic numerical
methods. Afterwards, by plugging Y

(k)
t into the first equation one solves the system

dX
(k)
t = εf(X(k)

t , Y
(k)
t , εt) dt +

√
εh(X(k)

t , Y
(k)
t , εt) dWt
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by stochastic-numerical methods. This procedure will be repeated iteratively until
a required accuracy has been reached.

To guarantee the convergence of the waveform algorithm applied to systems (28)
one has to check the spectral radius criterion of corresponding matrix of Lipschitz-
coefficients. Concerning the functions f, g, h, we assume that they are continuous
and globally Lipschitz continuous in x and y uniformly with respect to t, i.e.

‖f(x, y, t)− f(x̄, ȳ, t)‖1 ≤ L1
1,0‖x− x̄‖1 + L1

2,0‖y − ȳ‖2,
‖g(x, y, t)− g(x̄, ȳ, t)‖2 ≤ L2

1,0‖x− x̄‖1 + L2
2,0‖y − ȳ‖2,(29)

‖h(x, y, t)− h(x̄, ȳ, t)‖1 ≤ L1
1,1‖x− x̄‖1 + L1

2,1‖y − ȳ‖2
for all x, x̄ ∈ IRd1 , y, ȳ ∈ IRd2 , t ∈ [0, T ], where ‖.‖i represents the Euclidean norm
in IRdi . Taking into account L2

1,1 =L2
2,1 =0 we arrive at 2×2 matrix L = (li,k) with

(30)

L = 4(p−1)/p
√

T

(
(ε
√

TL1
1,0 +

√
εC

1/p
p L1

1,1) (ε
√

TL1
2,0 +

√
ε C

1/p
p L1

2,1)√
TL2

1,0

√
TL2

2,0

)

as found at the end of the proof of Theorem 3.1. Recall that the constant Cp

arises as the constant on the right side of the well-known Burkholder–Davis–Gundy
inequality and can be replaced by any of their majorants, e.g.

C̃p = Cp
1
p ≤

√( p

p− 1

)p
(

p(p− 1)
2

)

where p ≥ 1. Finally, the condition %(L) < 1 on the spectral radius %(L) controls
the convergence of corresponding Picard iterations. Correspondingly, the condition
%(L̃) < 1 (L̃ belonging to (12)) on the spectral radius %(L̃) of matrix

L̃ =
(

l11 l12
l21l11 l21l12 + l22

)

guarantees the convergence of waveform methods based on Gauss–Seidel iteration.

6. Conclusions, summary and remarks

This paper is an continuation of [37] - [43] concerning the approximation of
the solution of initial value problems for systems of explicit stochastic differential
equations. Here, we extended the standard idea of waveform iteration method
to nonlinear ordinary stochastic differential equations (SDEs) driven by Wiener
processes. It turns out that the Lipschitz-continuity of the coefficients of SDEs and
the form of its splitting into subsystems are crucial to establish the convergence
of waveform relaxation methods. In particular, the Lipschitz-coefficients determine
the length of integration intervals to which the waveform iterations are applied
(windowing techniques). We have shown its convergence with respect to the metric
on the Banach space of Lp(Ω,F , IP)-integrable, adapted, cadlag processes (p ≥ 2).

Waveform iteration methods provide an alternative approach to approximating
the solution of a system of stochastic differential equations. Compared with the
traditional time-incremental methods as described in [20], [31] or [45], the waveform
relaxation technique forms a global iteration scheme on a given time interval. Its
efficiency depends on an appropriate decomposition of the large original system into
weakly interacting subsystems. These methods are particularly designed to treat
very large scale systems by parallel computations.

It is worth emphasizing that there are other attempts to treat stochastic large-
scale systems in the literature. However, a systematic comparison study of the
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performance of waveform iteration techniques compared to those attempts exceeds
the intention and length of this paper. Therefore this is omitted here.
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[13] K. Itô, Stochastic integral, Proc. Imperial Acad. Tokyo 20 (1944) 519–524.
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