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Abstract. This paper deals with discrete monotone iterative algorithms for

solving a nonlinear singularly perturbed parabolic problem. A block monotone

domain decomposition algorithm based on a Schwarz alternating method and

on a block iterative scheme is constructed. This monotone algorithm solves

only linear discrete systems at each time level and converges monotonically

to the exact solution of the nonlinear problem. The rate of convergence of

the block monotone domain decomposition algorithm is estimated. Numerical

experiments are presented.
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1. Introduction

We are interested in monotone Schwarz alternating algorithms for solving the
nonlinear reaction-diffusion problem

(1) −µ2 (uxx + uyy) + ut = −f(P, t, u),

P = (x, y), (P, t) ∈ Q = Ω× (0, T ], Ω = {0 < x < 1, 0 < y < 1} ,

fu(P, t, u) ≥ 0, (P, t, u) ∈ Q× (−∞,∞), (fu ≡ ∂f/∂u),
where µ is a small positive parameter. The initial-boundary conditions are defined
by

u(P, t) = g(P, t), (P, t) ∈ ∂Ω× (0, T ], u(P, 0) = u0(P ), P ∈ Ω,

where ∂Ω is the boundary of Ω. The functions f(P, t, u), g(P, t) and u0(P ) are
sufficiently smooth. Under suitable continuity and compatibility conditions on the
data, a unique solution u(P, t) of (1) exists (see [6] for details). For µ ¿ 1, prob-
lem (1) is singularly perturbed and characterized by the boundary layers of width
O(µ| ln µ|) at the boundary ∂Ω (see [1] for details).

In the study of numerical solutions of nonlinear singularly perturbed problems
by the finite difference method, the corresponding discrete problem is usually for-
mulated as a system of nonlinear algebraic equations. A major point about this
system is to obtain reliable and efficient computational algorithms for computing
the solution. In the case of the parabolic problem (1), the implicit method is usu-
ally in use. On each time level, this method leads to a nonlinear system which
requires some kind of iterative scheme for the computation of numerical solutions.
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A fruitful method for the treatment of these nonlinear systems is the method of
upper and lower solutions and its associated monotone iterations (in the case of
”unperturbed” problems see [8], [9] and references therein). Since the initial itera-
tion in the monotone iterative method is either an upper or a lower solution, which
can be constructed directly from the difference equation without any knowledge of
the exact solution (see [2] for details), this method eliminates the search for the
initial iteration as is often needed in Newton’s method. This elimination gives a
practical advantage in the computation of numerical solutions.

In [3], we proposed a discrete iterative algorithm which combines the monotone
approach and the iterative domain decomposition method based on the Schwarz
alternating procedure. In the case of small values of the perturbation parameter
µ, the convergence factor ρ̃ of the monotone domain decomposition algorithm is
estimated by

ρ̃ = ρ +O(τ),
where ρ is the convergence factor of the monotone (undecomposed) method and τ
is the step size in the t-direction.

The purpose of this paper is to extend the monotone domain decomposition
algorithm from [3] in a such way that computation of the discrete linear subsystems
on subdomains which are located outside the boundary layers is implemented by
the block iterative scheme (see [12] for details of the block iterative scheme). A
basic advantage of the block iterative scheme is that the Thomas algorithm can be
used for each linear subsystem defined on these subdomains in the same manner as
for one-dimensional problems, and the scheme is stable and is suitable for parallel
computing.

For solving nonlinear discrete elliptic problems without domain decomposition,
the block monotone iterative methods were constructed and studied in [10]. In [10],
the convergence analysis does not contain any estimates on a convergence rate of
the proposed iterative methods, and the numerical experiments show that these
algorithms applied to some model problems converge very slowly. In contrast, a
numerical algorithm based on a combination of the domain decomposition approach
and the block iterative method applied on subdomains outside the boundary layers
converges more quickly than the original block iterative method.

The structure of the paper is as follows. In Section 2, we consider a monotone
iterative method for solving the implicit difference scheme which approximates the
nonlinear problem (1). In Section 3, we construct and investigate a block monotone
domain decomposition algorithm. The rate of convergence of the block monotone
domain decomposition algorithm is estimated in Section 4. The final Section 5
presents results of numerical experiments for the proposed algorithm.

2. Monotone iterative method

On Q introduce a rectangular mesh Ω
h × Ω

τ
, Ω

h
= Ω

hx × Ω
hy

:

Ω
hx

= {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi} ,

Ω
hy

=
{
yj , 0 ≤ j ≤ Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj

}
,

Ω
τ

= {tk = kτ, 0 ≤ k ≤ Nτ , Nτ τ = T} .

For a mesh function U(P, t), we use the implicit difference scheme

(2) LhU(P, t) +
1
τ

[U(P, t)− U(P, t− τ)] = −f(P, t, U), (P, t) ∈ Ωh × Ωτ ,

U(P, t) = g(P, t), (P, t) ∈ ∂Ωh × Ωτ , U(P, 0) = u0(P ), P ∈ Ω
h
,
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where LhU(P, t) is defined by

LhU = −µ2
(
Dx

+Dx
− + Dy

+Dy
−

)
U.

Dx
+Dx

−U(P, t), Dy
+Dy

−U(P, t) are the central difference approximations to the sec-
ond derivatives

Dx
+Dx

−Uk
ij = (~xi)

−1
[(

Uk
i+1,j − Uk

ij

)
(hxi)

−1 − (
Uk

ij − Uk
i−1,j

)
(hxi−1)

−1
]
,

Dy
+Dy

−Uk
ij = (~yj)

−1
[(

Uk
i,j+1 − Uk

ij

)
(hyj)

−1 − (
Uk

ij − Uk
i,j−1

)
(hyj−1)

−1
]
,

~xi = 2−1 (hxi−1 + hxi) , ~yj = 2−1 (hyj−1 + hyj) ,

where Uk
ij ≡ U (xi, yj , tk).

Remark 1. In this paper, we use the standard backward Euler approximation to
the first derivative ut. Our analysis can be extended to higher order schemes in
time [4].

Now, we construct an iterative method for solving the nonlinear difference scheme
(2) which possesses the monotone convergence. Represent the difference equation
from (2) in the equivalent form

(3) LU(P, t) = −f(P, t, U) + τ−1U(P, t− τ),

LU(P, t) ≡ LhU(P, t) + τ−1U(P, t).
We say that on a time level t ∈ Ωτ , V (P, t) is an upper solution of the difference

problem

(4) LV (P, t) + f(P, t, V )− τ−1V (P, t− τ) = 0, P ∈ Ωh,

V (P, t) = g(P, t), P ∈ ∂Ωh,

if it satisfies

LV (P, t) + f
(
P, t, V

)− τ−1V (P, t− τ) ≥ 0, P ∈ Ωh,

V (P, t) = g(P, t), P ∈ ∂Ωh.

Similarly, V (P, t) is called a lower solution on a time level t ∈ Ωτ with a given func-
tion V (P, t− τ), if it satisfies the reversed inequality and the boundary condition.

Additionally, we assume that f(P, t, u) from (1) satisfies the two-sided constraints

(5) 0 ≤ fu ≤ c∗, c∗ = const.

The iterative solution V (P, t) to (2) is constructed in the following way. On each
time level t ∈ Ωτ , we calculate n∗ iterates V (n)(P, t), P ∈ Ω

h
, n = 1, . . . , n∗ using

the recurrence formulas

LZ(n+1) (P, t) + c∗Z(n+1)(P, t) = −
[
LV (n)(P, t) + f

(
P, t, V (n)

)

−τ−1V (P, t− τ)
]
, P ∈ Ωh,(6)

Z(n+1)(P, t) = 0, P ∈ ∂Ωh, n = 0, . . . , n∗ − 1,

V (n+1)(P, t) = V (n)(P, t) + Z(n+1)(P, t), P ∈ Ω
h
,

V (P, t) ≡ V (n∗)(P, t), P ∈ Ω
h
, V (P, 0) = u0(P ), P ∈ Ω

h
,

where an initial guess V (0)(P, t) satisfies the boundary condition

V (0)(P, t) = g(P, t), P ∈ ∂Ωh.

The following theorem gives the properties of the iterative algorithm (6).
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Theorem 1. Let V (0)(P, t) be an upper or lower solution in the iterative method
(6), and let f(P, t, u) satisfy (5). Suppose that on each time level the number of
iterates n∗ satisfies n∗ ≥ 2. Then the following estimate on convergence rate holds

max
t∈Ωτ

‖V (t)− U(t)‖
Ω

h ≤ C(ρ)n∗−1,

where U(P, t) is the solution to (2), ρ = c∗/
(
c∗ + τ−1

)
, constant C is independent

of τ and ‖W (t)‖
Ω

h ≡ max
P∈Ω

h |W (P, t)|. Furthermore, on each time level the
sequence

{
V (n)(P, t)

}
converges monotonically.

The proof of this theorem can be found in [3].

Remark 2. Consider the following approach for constructing initial upper and
lower solutions V

(0)
(P, t) and V (0)(P, t). Suppose that for t fixed, a mesh function

R(P, t) is defined on Ω
h

and satisfies the boundary condition R(P, t) = g(P, t) on
∂Ωh. Introduce the following difference problems

(7) LZ(0)
q (P, t) = q

∣∣LR(P, t) + f(P, t, R)− τ−1V (P, t− τ)
∣∣ , P ∈ Ωh,

Z(0)
q (P, t) = 0, P ∈ ∂Ωh, q = 1,−1.

Then the functions V
(0)

(P, t) = R(P, t)+Z
(0)
1 (P, t), V (0)(P, t) = R(P, t)+Z

(0)
−1 (P, t)

are upper and lower solutions, respectively. The proof of this result can be found in
[3].

Remark 3. Since the initial iteration in the monotone iterative method (6) is
either an upper or a lower solution, which can be constructed directly from the
difference equation without any knowledge of the solution as we have suggested in
the previous remark, this algorithm eliminates the search for the initial iteration as
is often needed in Newton’s method. This elimination gives a practical advantage
in the computation of numerical solutions.

Remark 4. In fact, it is sufficient that the condition (5) holds true only between
the upper and lower solutions defined by (7).

Remark 5. We can modify the iterative method (6) in the following way. The
monotone convergent property of the upper and lower sequences in Theorem 1 still
holds true if the coefficient c∗ in the difference equation from (6) is replaced by

c(n)(P, t) = max fu(P, t, U), V (n)(P, t) ≤ U(P ) ≤ V
(n)

(P, t), t = fixed.

To perform the modified algorithm we have to compute two sequences of upper and
lower solutions simultaneously. But, on the other hand, this modification increases
the rate of the convergence of the iterative method.

Remark 6. The implicit two-level difference scheme (2) is of the first order with
respect to τ . From here and since ρ ≤ c∗τ , one may choose n∗ = 2 to keep the
global error of the monotone iterative method (6) consistent with the global error of
the difference scheme (2).

3. Monotone domain decomposition algorithms

We consider decomposition of the domain Ω into M nonoverlapping subdomains
(vertical strips) Ωm, m = 1, . . . ,M :

Ωm = Ωx
m × (0, 1), Ωx

m = (xm−1, xm) , x0 = 0, xM = 1,

Γb
m = {x = xm−1, 0 ≤ y ≤ 1} , Γe

m = {x = xm, 0 ≤ y ≤ 1} ,
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Ωm−1 ∩ Ωm = Γb
m, Γb

m = Γe
m−1, m = 2, . . . , M.

Thus, we can write down the boundary of Ωm as

∂Ωm = Γb
m ∪ Γe

m ∪ Γ0
m, Γ0

m = ∂Ω ∩ ∂Ωm.

Additionally, introduce (M − 1) interfacial subdomains ωm,m = 1, . . . , M − 1:

ωm = ωx
m × (0, 1), ωx

m =
(
xb

m, xe
m

)
,

ωm−1 ∩ ωm = ∅, xb
m < xm < xe

m, m = 1, . . . ,M − 1.

The boundaries of ωm are denoted by

γb
m =

{
x = xb

m, 0 ≤ y ≤ 1
}

, γe
m = {x = xe

m, 0 ≤ y ≤ 1} , γ0
m = ∂Ω ∩ ∂ωm.

Figure 1 illustrates the x-section of the multidomain decomposition.

?? ??
6 6 6 6

Ωx
m−1

Ωx
m

Ωx
m+1

ωx
m−1 ωx

m

xb
m−1 xe

m−1 xb
m xe

m

xm−1 xm

Figure 1.

We now introduce meshes on Ωm, m = 1, . . . , M and on ωm, m = 1, . . . , M − 1.
Suppose that the following set of mesh points belongs to mesh Ω

h

{xb
m, xm, xe

m}M−1
m=1 ⊂ Ωhx,

then
Ω

h

m = Ωm ∩ Ω
h
, ωh

m = ωm ∩ Ω
h
,

Γhb,e,0
m = Γb,e,0

m ∩ Ω
h

m, γhb,e,0
m = γb,e,0

m ∩ ωh
m.

3.1. Statement and convergence of monotone domain decomposition al-
gorithm. Consider a parallel domain decomposition algorithm for solving prob-
lem (2). On each time level t ∈ Ωτ , we calculate n∗ iterates V (n)(P, t), P ∈
Ω

h
, n = 1, . . . , n∗. To find V (n), firstly, we solve problems on the nonoverlapping

subdomains Ω
h

m,m = 1, . . . , M with Dirichlet boundary conditions passed from the
previous iterate. Then Dirichlet data are passed from these subdomains to the
interfacial subdomains ωh

m, m = 1, . . . ,M − 1, and problems on the interfacial sub-
domains are computed. Finally, we piece together the solutions on the subdomains.
Step 0. Initialization: On the mesh Ω

h
, choose an upper or lower solution

V (0)(P, t), P ∈ Ω
h

satisfying the boundary condition V (0)(P, t) = g(P, t) on ∂Ωh.
For n = 1 to n∗ do Steps 1-3
Step 1. For m = 1 to M do
On the subdomain Ω

h

m, compute the mesh function Z
(n)
m (P, t), satisfying the differ-

ence scheme

LZ(n)
m (P, t) + c∗Z(n)

m (P, t) = −
[
LV (n−1)(P, t) + f

(
P, t, V (n−1)

)

−τ−1V (P, t− τ)
]
, P ∈ Ωh

m,(8)

Z(n)
m (P, t) = 0, P ∈ ∂Ωh

m,

and denote
V (n)

m (P, t) = V (n−1)(P, t) + Z(n)
m (P, t), P ∈ Ω

h

m.
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Step 2. For m = 1 to M − 1 do
On the interfacial subdomain ωh

m, compute the difference problem

LZ̃(n)
m (P, t) + c∗Z̃(n)

m (P, t) = −
[
LV (n−1)(P, t) + f

(
P, t, V (n−1)

)

−τ−1V (P, t− τ)
]
, P ∈ ωh

m,(9)

Z̃(n)
m (P, t) =





0, P ∈ γh0
m ;

Z
(n)
m (P, t), P ∈ γhb

m ;
Z

(n)
m+1(P, t), P ∈ γhe

m ,

and denote
Ṽ (n)

m (P, t) = V (n−1)(P, t) + Z̃(n)
m (P, t), P ∈ ωh

m.

Step 3. Compute the solution V (n)(P, t), P ∈ Ω
h

by piecing the solutions on the
subdomains

(10) V (n)(P, t) =

{
V

(n)
m (P, t), P ∈ Ωh

m \ (ωh
m−1 ∪ ωh

m), m = 1, . . . ,M ;
Ṽ

(n)
m (P, t), P ∈ ωh

m,m = 1, . . . ,M − 1.

Step 4. Set up

(11) V (P, t) = V (n∗)(P, t), P ∈ Ω
h
.

Remark 7. We note that the original Schwarz alternating algorithm with over-
lapping subdomains is a purely sequential algorithm. To obtain parallelism, one
needs a subdomain coloring strategy, so that a set of independent subproblems can
be introduced. The proposed modification of the Schwarz algorithm is very suitable
for parallel computing. Algorithm (8)-(11) can be carried out by parallel processing,
since the M problems (8) for V

(n)
m (P, t),m = 1, . . . , M and the (M−1) problems (9)

for Ṽ
(n)
m (P, t),m = 1, . . . , M − 1 can be implemented concurrently.

Remark 8. Remark 2 on the initial iteration holds true for algorithm (8)-(11), i.e.
an upper or lower solution can be constructed directly from the difference equation
without any knowledge of the solution.

On mesh Ω
h

∗ = Ω
hx

∗ × Ω
hy

:

Ω
hx

∗ = {xi, i = 0, 1, . . . , N∗
x ; x0 = xa, xN∗

x
= xb},

where xa < xb, consider the following difference problems:

(12) LΦs(P ) + c∗Φs(P ) = 0, P ∈ Ωh
∗ ,

Φs(P ) = 1, P ∈ Γhs, Φs(P ) = 0, P ∈ ∂Ωh
∗\Γhs, s = 1, 2, 3, 4,

where L from (3) and Γhs is the s-th side of the rectangular mesh Ω
h

∗ . We suppose
that

Γh1 = {x = xa; y = yj , 0 ≤ j ≤ Ny}, Γh2 = {x = xb; y = yj , 0 ≤ j ≤ Ny},
Γh3 = {x = xi, 0 ≤ i ≤ N∗

x ; y = 0}, Γh4 = {x = xi, 0 ≤ i ≤ N∗
x ; y = 1}.

Introduce the notation

~b
m = 2−1

(
hb−

m + hb+
m

)
, ~e

m = 2−1
(
he−

m + he+
m

)
,
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where hb−
m , hb+

m are the mesh step sizes on the left and on the right from point xb
m,

respectively, and he−
m , he+

m are the mesh step sizes on the left and on the right from
point xe

m, respectively,

κb
m =

µ2

(c∗ + τ−1) ~b
mhb+

m

, κe
m =

µ2

(c∗ + τ−1) ~e
mhe−

m
,

qb
m =

∥∥ΦII
m

∥∥
γhb+

m
, qe

m =
∥∥ΦI

m

∥∥
γhe−

m
, ‖W‖γhb+,he− ≡ max

P∈γhb+,he−
|W (P )|,

γhb±
m =

{
x = xb

m ± hb±
m , 0 ≤ y ≤ 1

}
, γhe±

m =
{
x = xe

m ± he±
m , 0 ≤ y ≤ 1

}
,

where ΦII
m (P ) is the solution to (12) on ϑ

hb

m = Ωh
m ∩ ωh

m with s = 2 and ΦI
m(P ) is

the solution to (12) on ϑ
he

m = Ωh
m+1 ∩ ωh

m with s = 1.
The following theorem contains the properties of algorithm (8)-(11), and the

proof of this theorem can be found in [3].

Theorem 2. Let V (0)(P, t) be an upper or lower solution in the domain decompo-
sition algorithm (8)-(11), and let f(P, t, u) satisfy (5). Suppose that on each time
level, the number of iterates n∗ satisfies n∗ ≥ 2. Then the following estimate on
convergence rate holds

(13) max
1≤k≤Nτ

‖V (tk)− U(tk)‖
Ω

h ≤ C (c∗ + ν) (ρ + λ)n∗−1
,

λ = max
1≤m≤M−1

{
κb

mqb
m;κe

mqe
m

}
, ν =

(
c∗ + τ−1

)
λ,

where U(P, t) is the solution to (2), ρ = c∗/(c∗ + τ−1) and constant C is inde-
pendent of τ . Furthermore, on each time level the sequence

{
V (n)(P, t)

}
converges

monotonically.

Remark 9. We mention here that the monotone domain decomposition algorithm
(8)-(11) is a particular case of the block monotone domain decomposition which will
be constructed in the next section. In Remark 15 and Section 4.2 below, we present
sufficient conditions to guarantee the inequality ρ + λ < 1 required in Theorem 2,
and in Section 4.2 we study how constant C depends on the small parameter µ and
the space mesh.

Remark 10. Remarks 4 and 5 to Theorem 1 hold true for algorithm (8)-(11) in
Theorem 2.

3.2. Block monotone domain decomposition algorithm. On time level tk,
write down the difference scheme (2) at an interior mesh point (xi, yj) ∈ Ωh in the
form

dijU
k
ij − lijU

k
i−1,j − rijU

k
i+1,j − bijU

k
i,j−1 − tijU

k
i,j+1 = −f

(
xi, yj , tk, Uk

ij

)

+τ−1Uk−1
ij + Gk

ij ,

dij = lij + rij + bij + tij + τ−1, lij = µ2 (~xihx,i−1)
−1

, rij = µ2 (~xihxi)
−1

,

bij = µ2 (~yjhy,j−1)
−1

, tij = µ2 (~yjhyj)
−1

,

where Gk
ij is associated with the boundary function g(P, tk). Define vectors and

diagonal matrices by

Uk
i =

(
Uk

i1, . . . , U
k
i,Ny−1

)′
, Gk

i =
(
Gk

i1, . . . , G
k
i,Ny−1

)′
,

F k
i

(
Uk

i

)
=

(
fk

i1

(
Uk

i1

)
, . . . , fk

i,Ny−1

(
Uk

i,Ny−1

))′
,

Li = diag
(
li1, . . . , li,Ny−1

)
, Ri = diag

(
ri1, . . . , ri,Ny−1

)
.
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Then the difference scheme (2) may be written in the form

AiU
k
i −

(
LiU

k
i−1 + RiU

k
i+1

)
= −F k

i

(
Uk

i

)
+ τ−1Uk−1

i + Gk
i , i = 1, . . . , Nx − 1,

with the tridiagonal matrix Ai

Ai =




di1 −ti1 0
−bi2 di2 −ti2

. . . . . . . . .
−bi,Ny−2 di,Ny−2 −ti,Ny−2

0 −bi,Ny−1 di,Ny−1




.

Matrices Li and Ri contain the coupling coefficients of a mesh point respectively
to the mesh point of the left line and the mesh point of the right line.

Since dij , bij , tij > 0 and Ai is strictly diagonally dominant, then Ai is an M -
matrix and A−1

i ≥ 0 (cf. [12]).
Introduce two nonoverlapping ordered sets of indices

Mα = {mkα
| m1α

, . . . , mMα
}, α = 1, 2, M1 + M2 = M,

M1 6= ∅, M1 ∩M2 = ∅, M1 ∪M2 = {1, . . . ,M}.
Now, we modify Step 1 in algorithm (8)-(11) in the following way.
Step 1

′
. On subdomain Ω

h

m,m ∈M1, compute

V (n)
m (P, tk) =

{
V

(n)
m,i (P, tk) , 0 ≤ i ≤ im

}
, m ∈M1,

satisfying the difference scheme

Am,iV
(n)
m,i (tk) + c∗V (n)

m,i (tk) = Lm,iV
(n−1)
m,i−1 (tk) + Rm,iV

(n−1)
m,i+1 (tk)

+c∗V (n−1)
m,i (tk)− F k

m,i

(
V

(n−1)
m,i (tk)

)

+τ−1V k−1
m,i + Gk

m,i, 1 ≤ i ≤ im − 1,(14)

V
(n)
m,i (tk) = V

(n−1)
m,i (tk), i = 0, im,

where i = 0 and i = im are the boundary vertical lines, and Gk
m = {Gk

m,i, 1 ≤ i ≤
im−1}, V k−1

m = {V k−1
m,i , 1 ≤ i ≤ im−1}, V

(n−1)
m (tk) = {V (n−1)

m,i (tk) , 0 ≤ i ≤ im} are
the parts of g (P, tk), V (P, tk−1) and V (n−1) (P, tk), respectively, which correspond
to subdomain Ω

h

m.
On subdomain Ω

h

m,m ∈ M2, compute mesh function V
(n)
m (P, tk), m ∈ M2

satisfying (8).

Remark 11. Algorithm (14) may be considered as the line Jacobi method or the
block Jacobi method for solving the five-point difference scheme (8) on subdomain
Ωh

m,m ∈ M1 (cf. [12]). Basic advantages of the block iterative scheme (14) are
that the Thomas algorithm can be used for each subsystem i, i = 1, . . . , im − 1 and
all the subsystems can be computed in parallel.

On Ω
h

∗ = Ω
hx

∗ ×Ω
hy

, we represent a difference scheme in the following canonical
form

(15) d(P )W (P ) =
∑

P ′∈S(P )

e(P, P ′)W (P ′) + F (P ), P ∈ Ωh
∗ ,

W (P ) = W 0(P ), P ∈ ∂Ωh
∗ ,
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and suppose that

d(P ) > 0, e(P, P ′) ≥ 0, c(P ) = d(P )−
∑

P ′∈S′(P )

e(P, P ′) > 0, P ∈ Ωh
∗ ,

where S′(P ) = S(P ) \ {P}, S(P ) is a stencil of the difference scheme. Now, we
formulate a discrete maximum principle and give an estimate on the solution to
(15).

Lemma 1. Let the positive property of the coefficients of the difference scheme
(15) be satisfied.

(i) If W (P ) satisfies the conditions

d(P )W (P )−
∑

P ′∈S(P )

e(P, P ′)W (P ′)− F (P ) ≥ 0(≤ 0), P ∈ Ωh
∗ ,

W (P ) ≥ 0(≤ 0), P ∈ ∂Ωh
∗ ,

then W (P ) ≥ 0(≤ 0), P ∈ Ω
h

∗ .
(ii) The following estimate on the solution to (15) holds true

(16) ‖W‖
Ω

h
∗
≤ max

[∥∥W 0
∥∥

∂Ωh∗
; ‖F/c‖Ωh∗

]
.

The proof of the lemma can be found in [11].

Theorem 3. Let V (P, t− τ) be given and V
(0)

(P, t), V (0)(P, t) be upper and lower
solutions corresponding to V (P, t−τ). Suppose that f(P, t, u) satisfies (5). Then the
upper sequence

{
V

(n)
(P, t)

}
generated by (8)-(10), (14) converges monotonically

from above to the unique solution V(P, t) of the problem (4), and the lower sequence{
V (n)(P, t)

}
generated by (8)-(10), (14) converges monotonically from below to

V(P, t):

V (0)(P, t) ≤ V (n)(P, t) ≤ V (n+1)(P, t) ≤ V(P, t), P ∈ Ω
h
,

V(P, t) ≤ V
(n+1)

(P, t) ≤ V
(n)

(P, t) ≤ V
(0)

(P, t), P ∈ Ω
h
.

Proof. Introduce the notation

Z(n)
m (P, tk) = V (n)

m (P )(tk)− V (n−1)(P, tk), P ∈ Ωh
m, m ∈M1.

Consider the case of the upper sequence, i.e. V
(0)

(P, tk) is an upper solution. For
n = 1 and m ∈M1, by (14)

Am,iZ
(1)
m,i(tk) + c∗Z(1)

m,i(tk) = −
[
Am,iV

(0)

m,i(tk)−
(
Lm,iV

(0)

m,i−1(tk)

+Rm,iV
(0)

m,i+1(tk)
)

+ F k
m,i

(
V

(0)

m,i(tk)
)

−τ−1V k−1
m,i −Gk

m,i

]
≤ 0,(17)

1 ≤ i ≤ im − 1,

where we have taken into account that V
(0)

(P, tk) is the upper solution. Since
A−1

m,i ≥ 0 then (Am,i + c∗Im)−1 ≥ 0, where Im is the (im − 1) × (im − 1) identity

matrix. Thus, we conclude that Z
(1)
m (P, tk) ≤ 0, P ∈ Ω

h

m, m ∈M1. By (8)

LZ(1)
m (P, tk) + c∗Z(1)

m (P, tk) = −
[
LV

(0)
(P, tk) + f

(
P, tk, V

(0)
)

−τ−1V (P, tk−1)
]
≤ 0,(18)
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P ∈ Ωh
m, Z(1)

m (P, t) = 0, P ∈ ∂Ωh
m, m ∈M2.

By the maximum principle in Lemma 1, we conclude that Z
(1)
m (P, tk) ≤ 0, P ∈ Ω

h

m,
m ∈M2. Thus

(19) Z(1)
m (P, tk) ≤ 0, P ∈ Ω

h

m, m = 1, . . . ,M.

By (9)

LZ̃(1)
m (P, tk) + c∗Z̃(1)

m (P, tk) = −
[
LV

(0)
(P, tk) + f

(
P, tk, V

(0)
)

−τ−1V (P, tk−1)
]
≤ 0, P ∈ ωh

m,(20)

Z̃(1)
m (P, tk) =





0, P ∈ γh0
m ;

Z
(1)
m (P, tk), P ∈ γhb

m ;
Z

(1)
m+1(P, tk), P ∈ γhe

m .

Using the nonpositive property of Z
(1)
m (P, tk), by the maximum principle in Lemma 1,

we conclude that

(21) Z̃(1)
m (P, tk) ≤ 0, P ∈ ωh

m, m = 1, . . . , M − 1.

(19) and (21) show that V
(1)

(P, tk) ≤ V
(0)

(P, tk), P ∈ Ω
h
. By induction, we prove

that V
(n)

(P, tk) ≤ V
(n−1)

(P, tk), P ∈ Ω
h

for each n ≥ 1.
Now we verify that V

(n)
(P, tk) is an upper solution for each n. From the bound-

ary conditions for V
(n)
m (P, tk) and Ṽ

(n)
m (P, tk), it follows that V

(n)
(P, tk) satisfies

the boundary condition in (2). Represent (14) in the form
[
ΛV (n)

m (tk)
]

i
= −Lm,iZ

(n)
m,i−1(tk)−Rm,iZ

(n)
m,i+1(tk)

+
[
c∗V

(n−1)

m,i (tk)− F k
m,i

(
V

(n−1)

m,i (tk)
)]

−
[
c∗V (n)

m,i (tk)− F k
m,i

(
V

(n)
m,i (tk)

)]
,(22)

where we have introduced the notation

ΛV (n)
m (P, tk) = LV (n)

m (P, tk) + f
(
P, tk, V (n)

m

)
− τ−1V (P, tk−1),

[
ΛV (n)

m (P, tk)
]

i
= Am,iV

(n)
m,i (tk)−

(
Lm,iV

(n)
m,i−1(tk) + Rm,iV

(n)
m,i+1(tk)

)

+F k
m,i

(
V

(n)
m,i (tk)

)
− τ−1V k−1

m,i −Gk
m,i.

By the mean-value theorem and (5)

[c∗W − f(W )]− [c∗Z − f(Z)] = c∗(W − Z)− F (n)
u (W − Z) ≥ 0,

whenever W ≥ Z. Using this property, (19) and Lm,i ≥ 0, Rm,i ≥ 0, we conclude

ΛV (n)
m (P, tk) ≥ 0, P ∈ Ωh

m, m ∈M1.

From (8) for m ∈M2, by the mean-value theorem, (5) and (19), we have

(23) ΛV (n)
m (P, tk) = −

(
c∗ − f (n)

u

)
Z(n)

m (P, tk) ≥ 0, P ∈ Ωh
m, m ∈M2.

Similarly, we prove

(24) ΛṼ (n)
m (P, tk) = −

(
c∗ − f (n)

u

)
Z̃(n)

m (P, tk) ≥ 0, P ∈ ωh
m.
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Thus, by the definition of V
(n)

in (10), we conclude that

LV
(n)

(P, tk) + f
(
P, tk, V

(n)
)
− τ−1V (P, tk−1) ≥ 0, P ∈ Ωh \ γh,

γh =
M−1⋃
m=1

γhb,e
m .

To prove that V
(n)

(P, tk) is an upper solution of (4), we have to verify only that
the last inequality holds true on the interfacial boundaries γhb

m , γhe
m , m = 1, . . . M−1.

We check this inequality in the case of the left interfacial boundary γhb
m , since the

second case is checked in a similar way. Introduce the notation W
(n)
m (P, tk) =

V
(n)
m (P, tk)− Ṽ

(n)
m (P, tk). From (14) and (9), we have

(25) Am,iW
(n)
m,i(tk) + c∗W (n)

m,i(tk) = −Lm,iZ
(n)
m,i−1(tk)−Rm,iZ

(n)
m,i+1(tk),

P ∈ ϑhb
m , ϑhb

m = Ωh
m ∩ ωh

m, m ∈M1.

In view of (Am,i + c∗Im)−1 ≥ 0, Lm,i ≥ 0, Rm,i ≥ 0 and (19) which holds true for
each n ≥ 1,

W (n)
m (P, tk) ≥ 0, P ∈ ϑ

hb

m , m ∈M1.

From (8), (9) and (21), we conclude

(26) LW (n)
m (P, tk) + c∗W (n)

m (P, tk) = 0, P ∈ ϑhb
m ,

W (n)
m (P, tk) = 0, P ∈ ∂ϑhb

m \ Γhe
m , W (n)

m (P, tk) ≥ 0, P ∈ Γhe
m .

In view of the maximum principle in Lemma 1, W
(n)
m (P, tk) ≥ 0, P ∈ ϑ

hb

m , m ∈M2.
Thus

(27) V (n)
m (P, tk)− Ṽ (n)

m (P, tk) ≥ 0, P ∈ ϑ
hb

m , m = 1, . . . , M − 1.

From (2), (9), (10) and Ṽ
(n)
m (P, tk) = V

(n)
m (P, tk), P ∈ γhb

m ,

−µ2Dy
+Dy

−V (n)
m (P, tk) = −µ2Dy

+Dy
−V

(n)
(P, tk), P ∈ γhb

m .

From (2), (10) and (27), we obtain

−µ2Dx
+Dx

−V (n)
m (P, tk) ≤ −µ2Dx

+Dx
−V

(n)
(P, tk), P ∈ γhb

m .

In the notation from (22), we conclude

ΛV
(n)

(P, tk) ≥ ΛV (n)
m (P, tk) ≥ 0, P ∈ γhb

m .

This leads to the fact that V
(n)

(P, tk) is an upper solution of problem (4).
By (19), (21), sequence {V (n)} is monotone decreasing and bounded by a lower

solution. Indeed, if V is a lower solution, then by the definitions of lower and upper
solutions and the mean-value theorem, for δ(n) = V

(n) − V , we have

Lδ(n)(P, tk) + fuδ(n)(P, tk) ≥ 0, P ∈ Ωh,

δ(n)(P, tk) = 0, P ∈ ∂Ωh.

In view of the maximum principle in Lemma 1, it follows that V ≤ V
(n)

, n ≥ 0.
Thus, lim V

(n)
= V as n →∞ exists and satisfies the relation

V (P, tk) ≤ V
(n+1)

(P, tk) ≤ V
(n)

(P, tk) ≤ V
(0)

(P, tk), P ∈ Ω
h
.

Now we prove the last point of this theorem that the limiting function V is the
solution to (4). Letting n → ∞ in (8), (9) and (14) shows that V is the solution
of (4) on Ωh \ γh. Now we verify that V satisfies (4) on the interfacial boundaries
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γhb
m , γhe

m , m = 1, . . . ,M − 1. Since V
(n)
m (P, tk) − Ṽ

(n)
m (P, tk) = V

(n−1)
(P, tk) −

V
(n)

(P, tk), P ∈ Γhe
m , we conclude that

lim
n→∞

V (n)
m (P, tk) = lim

n→∞
Ṽ (n)

m (P, tk) = V (P, tk), P ∈ ϑ
hb

m .

From here it follows that

lim
n→∞

ΛV
(n)

(P, tk) = lim
n→∞

ΛV (n)
m (P, tk) = 0, P ∈ γhb

m ,

and hence, V (P, tk) solves (4) on γhb
m . In a similar way, we can prove the last result

on γhe
m . Under the condition (5), problem (4) has the unique solution V (see [3] for

details), hence V = V. This proves the theorem. ¤

Remark 12. The proposed algorithm (8)-(10), (14) can be applied for solving
”unperturbed” problems of form (1), i.e. in the case of µ = O(1). Furthermore,
the block iterative scheme (14) can be applied on the whole computational domain
Ω

h
. However, as we show below, this algorithm can be most efficiently used at small

values of µ and in the case of the location of subdomains Ω
h

m, m ∈M1, outside the
boundary layers.

Remark 13. Remarks 4 and 5 to Theorem 1 hold true for algorithm (8)-(10), (14)
in Theorem 3.

4. Convergence of algorithm (8)-(11), (14)

We now establish convergence properties of algorithm (8)-(11), (14).

4.1. Convergence analysis of algorithm (8)-(11), (14). If we denote

Z(n)(P, tk) = V (n)(P, tk)− V (n−1)(P, tk), P ∈ Ω
h
,

then from (8)-(11), (14), it follows that on Ω
h

m,m = 1, . . . , M , Z(n) can be written
in the form

Z(n)(P, tk) =





Z
(n)
m−1(P, tk), xm−1 ≤ x ≤ xe

m−1;
Z̃

(n)
m (P, tk), xe

m−1 ≤ x ≤ xb
m;

Z
(n)
m (P, tk), xb

m ≤ x ≤ xm,

where for simplicity, we indicate the discrete domains only in the x-variable, i.e.
xm−1 ≤ x ≤ xe

m−1 means {xm−1 ≤ x ≤ xe
m−1, 0 ≤ y ≤ 1}, and assume that for

m = 1,M , the corresponding domains x0 ≤ x ≤ xe
0 and xb

M ≤ x ≤ xM are empty.
Introduce the notation

l = max
m∈M1

{
max

1≤i≤im−1

[
l(m)i

]}
, l(m)i = ‖Lm,i‖ , ‖Lm,i‖ ≡ max

1≤j≤Ny−1
|lij |,

r = max
m∈M1

{
max

1≤i≤im−1

[
r(m)i

]}
, r(m)i = ‖Rm,i‖ , ‖Rm,i‖ ≡ max

1≤j≤Ny−1
|rij |,

l(m)e =
∥∥∥Lm,ie

m−1

∥∥∥ , r(m)b =
∥∥Rm,ib

m

∥∥ ,

κ =
(

1
c∗ + τ−1

)
max

1≤m≤M−1

[
l(m)e; r(m)b

]
,

where the indices iem−1, i
b
m correspond to xe

m−1 and xb
m, respectively, and i = 0, i =

im correspond to xm and xm+1, respectively.



A BLOCK MONOTONE DOMAIN DECOMPOSITION ALGORITHM 223

Theorem 4. For the block monotone domain decomposition algorithm (8)-(11),
(14) the following estimate holds true

(28)
∥∥∥Z(n)(tk)

∥∥∥
Ω

h
≤ (ρ + λ)

∥∥∥Z(n−1)(tk)
∥∥∥

Ω
h

,

λ =
l + r

c∗ + τ−1
+ κmax

[
1;

l + r

c∗ + τ−1

]
,

where Z(n) = V (n) − V (n−1), ρ = c∗/
(
c∗ + τ−1

)
.

Proof. Let V
(0)

be an upper solution. Then similar to (17), (18) and (20), by
induction, we get for n ≥ 1

Am,iZ
(n)
m,i(tk) + c∗Z(n)

m,i(tk) = −
[
ΛV

(n−1)
(P, tk)

]
m,i

, 1 ≤ i ≤ im − 1, m ∈M1,

LZ(n)
m (P, tk) + c∗Z(n)

m (P, tk) = −ΛV
(n−1)

(P, tk), P ∈ Ωh
m, m ∈M2,

LZ̃(n)
m (P, tk) + c∗Z̃(n)

m (P, tk) = −ΛV
(n−1)

(P, tk), P ∈ ωh
m, m = 1, . . . , M − 1.

Using (16) with c = c∗ + τ−1, we get the following estimates on Z
(n)
m and Z̃

(n)
m

(29) |Z(n)
m (P, tk)| ≤ 1

c∗ + τ−1

∥∥∥ΛV
(n−1)

(tk)
∥∥∥

Ωh
m

, P ∈ Ω
h

m,

|Z̃(n)
m (P, tk)| ≤ max

[ 1
c∗ + τ−1

∥∥∥ΛV
(n−1)

(tk)
∥∥∥

ωh
m

;
∥∥∥Z(n)

m (tk)
∥∥∥

γhb
m

;
∥∥∥Z

(n)
m+1(tk)

∥∥∥
γhe

m

]
, P ∈ ωh

m.

From (10), (22), (23) and (24), on Ωh
m, m = 1, . . . ,M , we have

ΛV
(n−1)

(P, tk) =





− (c∗ − fu) Z̃
(n−1)
m−1 (P, tk), xm−1 ≤ x < xe

m−1;
− (c∗ − fu)Z

(n−1)
m (P, tk), xe

m−1 < x < xb
m, m ∈M2;

− (c∗ − fu) Z̃
(n−1)
m (P, tk), xb

m < x ≤ xm,

[
ΛV

(n−1)
(P, tk)

]
m,i

= − (c∗ − fu)Z
(n−1)
m,i (tk)−

(
Lm,iZ

(n−1)
m,i−1(tk)

+Rm,iZ
(n−1)
m,i+1(tk)

)
, iem−1 < i < ibm, m ∈M1,

where the indices iem−1, i
b
m correspond to xe

m−1 and xb
m, respectively. From here

and (5) and taking into account Lm,i ≥ 0, Rm,i ≥ 0 and (19), we get

(30)
1

c∗ + τ−1

∣∣∣ΛV
(n−1)

(P, tk)
∣∣∣ ≤ ρ1

∥∥∥Z(n−1)(tk)
∥∥∥

Ω
h

, P ∈ Ωh
m \ (γhe

m−1 ∪ γhb
m ),

where ρ1 = ρ + (l + r)/
(
c∗ + τ−1

)
.

Now, we prove the following estimates

(31)
1

c∗ + τ−1

∥∥∥ΛV
(n−1)

(tk)
∥∥∥

γhb
m

≤
[
ρ1 +

ρ2r(m)b

c∗ + τ−1

] ∥∥∥Z(n−1)(tk)
∥∥∥

Ω
h

,

1
c∗ + τ−1

∥∥∥ΛV
(n−1)

(tk)
∥∥∥

γhe
m−1

≤
[
ρ1 +

ρ2l(m)e

c∗ + τ−1

] ∥∥∥Z(n−1)(tk)
∥∥∥

Ω
h

,
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where ρ2 = max
[
1; (l + r)/

(
c∗ + τ−1

)]
. Using (10), on the boundary γhb

m , we can
write the relation

ΛV
(n−1)

(P, tk) = ΛV (n−1)
m (P, tk)

− µ2

~b
mhb+

m

(
Ṽ (n−1)

m

(
P b+

m , tk
)− V (n−1)

m

(
P b+

m , tk
))

,

P =
(
xb

m, y
) ∈ γhb

m , P b+
m =

(
xb

m + hb+
m , y

) ∈ γhb+
m .

From (22) and (23), we can represent ΛV
(n−1)
m (P, tk) on γhb

m in the form
[
ΛV (n−1)

m (tk)
]

i
= − (c∗ − fu) Z

(n−1)
m,i (tk)−

(
Lm,iZ

(n−1)
m,i−1(tk)

+Rm,iZ
(n−1)
m,i+1(tk)

)
, i = ibm, m ∈M1,

where the index ibm corresponds to γhb
m ,

ΛV (n−1)
m (P, tk) = − (c∗ − fu)Z(n−1)(P, tk), P ∈ γhb

m , m ∈M2.

Thus, we conclude the estimate

1
c∗ + τ−1

∣∣∣ΛV
(n−1)

(P, tk)
∣∣∣ ≤ ρ1

∥∥∥Z(n−1)(tk)
∥∥∥

Ω
h

+
µ2

(c∗ + τ−1) ~b
mhb+

m

×
∣∣∣V (n−1) (

P b+
m , tk

)− V (n−1)
m

(
P b+

m , tk
)∣∣∣ ,

P =
(
xb

m, y
) ∈ γhb

m , P b+
m =

(
xb

m + hb+
m , y

) ∈ γhb+
m .

Applying (16) to (25) and (26), and taking into account that Ṽ
(n−1)
m (P, tk) −

V
(n−1)
m (P, tk) = V

(n−1)
(P, tk)− V

(n−2)
(P, tk), P ∈ Γhe

m , we get the estimates
∥∥∥Ṽ (n−1)

m (tk)− V (n−1)
m (tk)

∥∥∥
ϑ

hb
m

≤ ρ2

∥∥∥Z(n−1)(tk)
∥∥∥

Γhe
m

, m ∈M1,

∥∥∥Ṽ (n−1)
m (tk)− V (n−1)

m (tk)
∥∥∥

ϑ
hb
m

≤
∥∥∥Z(n−1)(tk)

∥∥∥
Γhe

m

, m ∈M2.

Thus, we prove (31) on γhb
m . Similarly, we can prove (31) on the boundary γhe

m−1.
From (29), (30) and (31) and using the definition of Z(n)(P, tk), we prove the
theorem. ¤

Theorem 5. Let V (0)(P, t) be an upper or lower solution in the domain decompo-
sition algorithm (8)-(11), (14) and let f(P, t, u) satisfy (5). Suppose that on each
time level, the number of iterates n∗ satisfies n∗ ≥ 2. Then the following estimate
on convergence rate holds

(32) max
1≤k≤Nτ

‖V (tk)− U(tk)‖ ≤ C (c∗ + ν) (ρ + λ)n∗−1
,

ν =
(
c∗ + τ−1

)
λ,

where U(P, t) is the solution to (2), ρ and λ are defined in Theorem 4, and constant
C is independent of τ . Furthermore, on each time level the sequence

{
V (n)(P, t)

}
converges monotonically.

Proof. Denote W (P, t) = U(P, t)− V (P, t). Using the notation from (22) and (2),
we can write the following difference problem for W (P, t)

(33) LW (P, t) + fu(P, t)W (P, t) = −ΛV (n∗)(P, t) + τ−1W (P, t− τ), P ∈ Ωh,

W (P, t) = 0, P ∈ ∂Ωh.
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From here, (30), (31) and using (16), we obtain the estimate

‖W (tk)‖
Ω

h ≤ τ (c∗ + ν)
∥∥∥Z(n∗) (tk)

∥∥∥
Ω

h
+ ‖W (tk − τ)‖

Ω
h .

Using (28), we prove by induction the estimates

‖W (tk)‖ ≤
(

k∑

l=1

Cl

)
τ (c∗ + ν) (ρ + λ)n∗−1

, k = 1, . . . , Nτ ,

(34)
∥∥∥Z(1) (tl)

∥∥∥
Ω

h
≤ τ

∥∥∥LV (0) (tl) + f
(
V (0)

)
− τ−1V (tl − τ)

∥∥∥
Ω

h
≤ Cl,

where all constants Cl are independent of τ . Since Nτ τ = T , we prove the estimate
in the theorem with C = TC0, where C0 = max1≤l≤Nτ Cl. ¤

Remark 14. We mentioned in Remark 12 that the block monotone iterative scheme
(14) can be applied on the whole computational domain Ω

h
, i.e. in the case of

M1 = {1} and M2 = ∅. As follows from the proofs of Theorems 4 and 5, these
theorems hold true with λ = (l + r)/

(
c∗ + τ−1

)
.

Remark 15. In the case of M1 = ∅, as follows from the proofs of Theorems 4 and
5, these theorems hold true with

λ = κ, κ = max
1≤m≤M−1

{
κb

m;κe
m

}
,

where we use the notation from (13) and (28). Since the solutions to (12) are
bounded by 0 ≤ Φs(P ) ≤ 1, then in (13), 0 ≤ qb,e

m ≤ 1. Thus, the last estimate on
λ follows from (13).

4.2. Estimates on the rate of convergence of algorithm (8)-(11), (14).
Here we analyze a convergence rate of algorithm (8)-(11), (14) applied to the dif-
ference scheme (2) defined on a piecewise equidistant mesh of Shishkin-type and
on its modification. On the Shishkin mesh, the difference scheme (2) converges
µ-uniformly to the solution of (1) (see [7] for details).

The piecewise equidistant mesh of Shishkin-type is formed by the following man-
ner. We divide each of the intervals Ω

x
= [0, 1] and Ω

y
= [0, 1] into three parts

each [0, σx], [σx, 1 − σx], [1 − σx, 1], and [0, σy], [σy, 1 − σy], [1 − σy, 1], respec-
tively. Assuming that Nx, Ny are divisible by 4, in the parts [0, σx], [1− σx, 1] and
[0, σy], [1−σy, 1] we use a uniform mesh with Nx/4+1 and Ny/4+1 mesh points,
respectively, and in the parts [σx, 1− σx], [σy, 1− σy] with Nx/2 + 1 and Ny/2 + 1
mesh points, respectively. This defines the piecewise equidistant meshes in the x-
and y-directions condensed in the boundary layers at x = 0, 1 and y = 0, 1:

xi =





ihxµ, i = 0, 1, . . . , Nx/4;
σx + (i−Nx/4)hx, i = Nx/4 + 1, . . . , 3Nx/4;
1− σx + (i− 3Nx/4)hxµ, i = 3Nx/4 + 1, . . . , Nx,

yj =





jhyµ, j = 0, 1, . . . , Ny/4;
σy + (j −Ny/4)hy, j = Ny/4 + 1, . . . , 3Ny/4;
1− σy + (j − 3Ny/4)hyµ, j = 3Ny/4 + 1, . . . , Ny,

hx = 2(1− 2σx)N−1
x , hxµ = 4σxN−1

x , hy = 2(1− 2σy)N−1
y , hyµ = 4σyN−1

y ,

where hxµ, hyµ and hx, hy are the step sizes inside and outside the boundary layers,
respectively. We choose the transition points σx, (1− σx) and σy, (1− σy) in
Shishkin’s sense (see [7] for details), i.e.

σx = min
{
4−1, υ1µ ln Nx

}
, σy = min

{
4−1, υ2µ ln Ny

}
,
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where υ1 and υ2 are positive constants. If σx,y = 1/4, then N−1
x,y are very small

relative to µ, and in this case the difference scheme (2) can be analyzed using
standard techniques. We therefore assume that

σx = υ1µ ln Nx, σy = υ2µ ln Ny.

In this case the meshes Ω
hx

and Ω
hy

are piecewise equidistant with the step sizes

(35) N−1
x < hx < 2N−1

x , hxµ = 4υ1µN−1
x ln Nx,

N−1
y < hy < 2N−1

y , hyµ = 4υ2µN−1
y ln Ny.

The difference scheme (2) on the piecewise uniform mesh (35) converges µ-
uniformly to the solution of (1):

(36) max
(P,t)∈Ω

h×Ω
τ
|U(P, t)− u(P, t)| ≤ K

((
N−1 ln N

)2
+ τ

)
, N = min {Nx; Ny} ,

where constant K is independent of µ, N and τ . The proof of this result can be
found in [7].

Consider algorithm (8)-(11), (14) on the piecewise uniform mesh (35) with the
subdomains Ω

h

m, m ∈ M1 and the interfacial subdomains ωh
m, m = 1, . . . , M − 1

located in the x-direction outside the boundary layer, where the step size hx from
(35) is in use. In this case, l, r and κ in (28) are bounded by τµ2/h2

x, and we
estimate λ in (28) by

(37) λ ≤ 2τµ2

h2
x

+
τµ2

h2
x

max
[
1;

2τµ2

h2
x

]
.

Thus, if µ ≤ hx and 2τ ≤ 1, then λ ≤ 3τ , hence, the right hand side in (32) is
estimated by

(38) C (c∗ + ν) (ρ + λ)n∗−1 ≤ C̃ (ρ + 3τ)n∗−1
,

where constant C̃ is independent of τ .

Remark 16. We mention that the implicit difference scheme (2) is of the first order
with respect to τ and ρ = c∗/

(
c∗ + τ−1

) ≤ c∗τ . Thus, to guarantee the consistency
of the global errors in the difference scheme (2) and in the block monotone domain
decomposition algorithm (8)-(11), (14) it is enough to choose n∗ = 2.

Remark 17. Without loss of generality, we assume that the boundary condition
g(P, t) = 0. This assumption can always be obtained via a change of variables. Let
on each time level the initial function V (0)(P, t) be chosen in the form of (7), i.e.
V (0)(P, t) is the solution of the following difference problem

(39) LV (0)(P, t) = q
∣∣f(P, t, 0)− τ−1V (P, t− τ)

∣∣ , P ∈ Ωh,

V (0)(P, t) = 0, P ∈ ∂Ωh, q = 1,−1,

where R(P, t) = 0. Then the functions V
(0)

(P, t), V (0)(P, t) corresponding to q = 1
and q = −1 are upper and lower solutions, respectively. From here and (34), it
follows that∥∥∥Z(1) (tl)

∥∥∥
Ω

h
≤ τ

[∥∥∥LV (0) (tl)
∥∥∥

Ω
h

+
∥∥f (P, tl, 0)− τ−1V (tl − τ)

∥∥
Ω

h

]

≤ 2τ
∥∥f (P, tl, 0)− τ−1V (tl − τ)

∥∥
Ω

h

≤ 2τ ‖f (P, tl, 0)‖
Ω

h + 2 ‖V (tl − τ)‖
Ω

h ≤ Cl.

To prove that all constants Cl are independent of the small parameter µ, we have
to prove that ‖V (tl − τ)‖

Ω
h are µ-uniformly bounded. For l = 1, V (P, 0) = u0(P ),
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where u0 is the initial condition in the differential problem (1), and, hence, C1 is
independent of µ and τ . For l = 2, we have∥∥∥Z(1) (t2)

∥∥∥
Ω

h
≤ 2τ ‖f (P, t1, 0)‖

Ω
h + 2 ‖V (t1)‖Ωh ≤ C2,

where V (P, t1) = V (n∗)(P, t1). As follows from Theorem 3, the monotone se-
quences

{
V

(n)
(P, t1)

}
and

{
V (n) (P, t1)

}
are µ-uniformly bounded from above by

V
(0)

(P, t1) and from below by V (0) (P, t1). Applying (16) to the problem (39) at
t = t1, we have∥∥∥V (0)(t1)

∥∥∥
Ω

h
≤ τ

∥∥f(P, t1, 0)− τ−1u0(P )
∥∥

Ω
h ≤ K1,

where constant K1 is independent of µ and τ . Thus, we prove that C2 is independent
of µ and τ . Now by induction on l, we prove that all constants Cl in (34) are
independent of µ, and, hence, constant C = T max1≤l≤Nτ

Cl in (32) is independent
of µ and τ . Thus, if µ ≤ hx and 2τ ≤ 1, then from (32), (38) and (36), we conclude
that the monotone domain decomposition algorithm (8)-(11), (14) converges µ-
uniformly to the solution of the differential problem (1).

Now we modify the piecewise equidistant mesh of Shishkin-type in the x-direction.
Let the number of mesh points Nxµ and the step size hxµ in the boundary layers
be chosen in the form

(40) Nxµ = α ln(1/µ), hxµ = υµ,

where α and υ are positive constants. In this case, the transition points σx and
(1− σx) are defined by

σx = hxµNxµ = (αυ) µ ln
(
µ−1

)
.

We note that, in general, the difference scheme (2) on the modified piecewise
equidistant mesh (35), (40) does not converge µ-uniformly to the solution of (1).

Consider algorithm (8)-(11), (14) on the modified mesh (35), (40) and assume
µ ≤ hx. Using (37) with the step size hxµ, we estimate λ in the boundary layers in
the form

λ ≤ 2υ−2τ + υ−2τ max
[
1; 2υ−2τ

]
.

If 2υ−2τ ≤ 1, then λ ≤ 3υ−2τ , and from here and (37), the right hand side in (32)
is estimated by

C (c∗ + ν) (ρ + λ)n∗−1 ≤ C̃ (ρ + rτ)n∗−1
, r = 3 max

[
1; υ−2

]
,

where constant C̃ is independent of τ .
We mention that Remark 16 holds true for the block monotone domain decom-

position algorithm (8)-(11), (14) on the modified mesh (35), (40).

5. Numerical experiments

Consider problem (1) with f(P, t, u) = (u−4)/(5−u), g(P, t) = 1 and u0(P ) = 1,
which models the biological Michaelis-Menton process without inhibition [5]. This
problem gives

V (P, t1) =
{

4, x ∈ Ωh;
1, x ∈ ∂Ωh,

V (P, t1) =
{

0, x ∈ Ωh;
1, x ∈ ∂Ωh,

where V (P, t1) and V (P, t1) are the upper and lower solutions on the time level
t1 = τ corresponding to V (P, 0) = 1, P ∈ Ω

h
. Suppose that we initiate our

algorithms with V (0)(P, t1) = V (P, t1) or with V
(0)

(P, t1) = V (P, t1) and thus



228 I. BOGLAEV

generate sequences of lower and upper solutions {V (n)(P, t1)} and {V (n)
(P, t1)},

respectively, with respect to V (P, 0). It follows from Theorem 1 in [3] that

0 ≤ V (P, t1) ≤ V (n)(P, t1) ≤ V
(n)

(P, t1) ≤ V (P, t1) ≤ 4, P ∈ Ω
h
, n ≥ 0.

Now for k ≥ 2, let Vl(P, tk−1) = V (n∗)(P, tk−1), Vr(P, tk−1) = V (n∗)(P, tk−1).
Since the boundary condition g and the function f in the test problem are indepen-
dent of time, the mesh functions V (0)(P, tk), V

(0)
(P, tk) defined by V (0)(P, tk) =

Vl(P, tk−1), V
(0)

(P, tk) = V r(P, tk−1) are lower and upper solutions with respect
to Vl(P, tk−1) and Vr(P, tk−1), respectively. Applying Theorem 1 from [3], one has
by induction on k that

0 ≤ V (n)(P, tk) ≤ V
(n)

(P, tk) ≤ 4, P ∈ Ω
h
, 0 ≤ n ≤ n∗, 1 ≤ k ≤ Nτ .

Since each of our computed mesh functions satisfies the above inequalities, we may
suppose that fu is bounded above by c∗ = 1.

On each time level tk, the stopping criterion is chosen in the form∥∥∥V (n)(tk)− V (n−1)(tk)
∥∥∥

Ω
h
≤ δ,

where δ = 10−5. All the discrete linear systems corresponding to set M2 are solved
by GMRES-solver.

It is found that in all the numerical experiments the basic feature of monotone
convergence of the upper and lower sequences is observed. In fact, the monotone
property of the sequences holds at every mesh point in the domain. This is, of
course, to be expected from the analytical consideration.

Consider the block monotone domain decomposition algorithm (8)-(11), (14) on
the piecewise uniform mesh (35) with Nx = Ny. The domain decomposition of the
computational domain Ω

h
consists of the three subdomains Ω

h

m, m = 1, 2, 3 and
the two interfacial subdomains ωh

m,m = 1, 2, such that M1 = {2}, M2 = {1, 3}.
The interfacial subdomains ωh

m, m = 1, 2 contain only three mesh points in the
x-direction and lie straightaway outside the boundary layers in the x-direction.
In Table 1, for µ = 10−2, 10−3 and 10−4 and for various values of Nx, we give
the average (over ten time levels) numbers of iterations nτ1 , nτ2 , (τ1 = 5 × 10−2,
τ2 = 10−2) required to satisfy the stopping criterion. The µ-dependence of the step
sizes hx and hxµ of the piecewise uniform mesh (35) is tabulated in Table 2. Since
for our data set we allow σx > 0.25, the step size hxµ is calculated as

(41) hxµ =
4min {0.25, σx}

Nx
.

From the data presented in Tables 1 and 2, it follows that if the condition µ / hx

holds true then the numbers of iterations are equal to the numbers of iterations for
the undecomposed monotone iterative algorithm (6), where GMRES-solver is in
use on the whole domain Ω

h
, i.e. M1 = ∅, M2 = {1}. If we violate this condition

as in the case with µ = 10−2, Nx = 512, 1024 and τ1 = 5× 10−2, then the number
of iterations nτ1 exceeds the number of iteration for the undecomposed monotone
algorithm. Thus, the numerical experiments confirm our theoretical estimates that
the monotone domain decomposition algorithm (8)-(11), (14) can be most efficiently
used if the condition µ / hx holds true. For µ ≤ 10−3, nτ is independent of µ,
which confirms the uniform convergence results shown in Remark 17.

In Table 3, we present the numerical results from [3] for the monotone domain
decomposition algorithm (8)-(11) on the piecewise uniform mesh (35) corresponding
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Table 1. Average numbers of iterations for τ1 = 5 × 10−2, τ2 =
10−2 for the block monotone domain decomposition algorithm (8)-
(11), (14) on the piecewise uniform mesh (35).

Nx nτ1 ; nτ2

64 3.8; 2.8 3.8; 2.8
128; 256 4.0; 3.0 4.0; 3.0

512 4.7; 3.0 4.0; 3.0
1024 6.6; 3.0 4.0; 3.0

µ 10−2 10−3; 10−4

Table 2. The µ-dependence of hx, hxµ.

Nx hx; hxµ

64 1.82E-02; 1.30E-02 2.99E-02; 1.30E-03 3.11E-02; 1.30E-04
128 8.03E-03; 7.59E-03 1.49E-02; 7.59E-04 1.55E-02; 7.59E-05
256 3.91E-03; 3.91E-03 7.38E-03; 4.34E-04 7.77E-03; 4.34E-05
512 1.95E-03; 1.95E-03 3.66E-03; 2.44E-04 3.88E-03; 2.44E-05
1024 9.77E-04; 9.77E-04 1.82E-03; 1.35E-04 1.94E-03; 1.35E-05

µ 10−2 10−3 10−4

to the numerical experiments reported in Table 1. As follows from Tables 1 and 3,
the block monotone domain decomposition algorithm (8)-(11), (14) requires at most
the same number of iterations as in the monotone domain decomposition (14) to
reach the given accuracy. Since in algorithm (8)-(11), (14) the Thomas algorithm
is in use on the subdomain located outside the boundary layers, it is clear that
algorithm (8)-(11), (14) executes more quickly than algorithm (8)-(11).

Table 3. Average numbers of iterations for τ1 = 5 × 10−2, τ2 =
10−2 for the monotone domain decomposition algorithm (8)-(11)
on the piecewise uniform mesh (35).

Nx nτ1 ; nτ2

64 3.8; 2.8 3.8; 2.8
128; 256 4.0; 3.0 4.0; 3.0

512 6.6; 3.0 4.0; 3.0
µ 10−2 10−3; 10−4

Now consider the case M1 = {1}, M2 = ∅, i.e. the block monotone iterative
method (14) solves the difference scheme (2) on the whole computational domain
Ω

h
. In Table 4, for τ1 = 5×10−2, τ2 = 10−2 and for various values of Nx and µ, we

give the average (over ten time levels) numbers of iterations nτ1 , nτ2 required to
satisfy the stopping criterion. In the case of the numerical experiments presented
in Table 4, we violate the condition µ / hx. For µ ≤ 10−3, nτ is independent of
µ, which confirms the uniform convergence results shown in Remark 17. In the
contrast to the block monotone domain decomposition algorithm (compare with
Table 1), here nτ is a monotone increasing function in Nx. For µ ≥ 10−1, the block
monotone iterative method (14) converges very slowly.

On the modified mesh (35), (40), consider the block monotone domain decom-
position algorithm (8)-(11), (14) and the block monotone iterative method (14).
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Table 4. Average numbers of iterations for τ1 = 5 × 10−2, τ2 =
10−2 for the block monotone iterative method (14) on the piecewise
uniform mesh (35).

Nx nτ1 ; nτ2

64 33.2; 11.2 4.0; 3.0 4.0; 3.0 4.0; 3.0
128 101.0; 28.8 5.6; 4.0 5.6; 4.0 5.6; 4.0
256 311.4; 86.4 10.1; 5.0 9.0; 5.0 9.0; 5.0
512 942.6; 271.3 23.8; 9.1 17.5; 7.2 17.5; 7.2
1024 2592.7; 823.4 70.1; 26.8 41.3; 13.4 41.3; 13.4

µ 10−1 10−2 10−3 10−4

Table 5. Average numbers of iterations on the modified
mesh (35), (40).

ALGORITHM nτ1 ; nτ2

(8)-(11), (14) 4.0; 3.0 3.9; 2.9 3.9; 2.9
(14) 9.0; 5.0 5.0; 3.0 5.0; 3.0
Nxµ 32 64 96
µ e−4 e−8 e−12

For algorithm (8)-(11), (14), we decompose each of the boundary layers in the x-
direction [0, σx] and [1− σx, 1] into Mµ subdomains and solve the problems (8) on
these subdomains by GMRES-solver, the problem on the subdomain [σx, 1 − σx]
is solved by the block iterative method (14). Thus, the total number of subdo-
mains is M = 2Mµ +1. The interfacial subdomains ωh

m, m = 1, . . . , M − 1 contain
only three mesh points in the x-direction, and the problems (9) on the interfa-
cial subdomains are solved by the Thomas algorithm. In Table 5, for values of
µ = exp(−k), k = 4, 8, 12 and Nxµ = 8 ln(1/µ), Nx = 4Nxµ, we give the average
(over ten time levels) numbers of iterations nτ1 , nτ2 , (τ1 = 5×10−2, τ2 = 10−2) re-
quired to satisfy the stopping criterion. Since for our data set we allow σx > 0.25,
the step size hxµ is calculated by (41). We mention that nτ1 and nτ2 for algo-
rithm (8)-(11), (14) are independent of the number of subdomains M and equal to
the number of iterations for the undecomposed monotone iterative algorithm (6),
where GMRES-solver is in use on the whole domain Ω

h
. For µ ≤ exp(−5), nτ in

the block monotone domain decomposition algorithm (8)-(11), (14) and in the block
monotone iterative method (14) is independent of µ. Thus, the main features of
algorithm (8)-(11), (14) on the piecewise uniform mesh (35) highlighted in Table 1
hold true for the algorithm on the modified mesh (35), (40). An advantage of the
modified mesh (35), (40) is that the boundary layers may be decomposed into a
set of subdomains without deteriorating the convergence rate of iterations, and the
problems (8) on these subdomains can be solved in parallel. In the contrast to the
block monotone iterative method (14) on the piecewise uniform mesh (35) (compare
Tables 4 and 5), the algorithm (14) on the modified mesh (35), (40) converges µ-
and N -uniformly in (32).
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