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NUMERICAL METHODS FOR THE EXTENDED
FISHER-KOLMOGOROV (EFK) EQUATION

PALLA DANUMJAYA AND AMIYA KUMAR PANI

Abstract. In the study of pattern formation in bi–stable systems, the ex-

tended Fisher–Kolmogorov (EFK) equation plays an important role. In this

paper, some a priori bounds are proved using Lyapunov functional. Further,

existence, uniqueness and regularity results for the weak solutions are derived.

Using C1-conforming finite element method, optimal error estimates are estab-

lished for the semidiscrete case. Finally, fully discrete schemes like backward

Euler, two step backward difference and Crank-Nicolson methods are proposed,

related optimal error estimates are derived and some computational experi-

ments are discussed.
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1. Introduction

In this paper, the C1-conforming finite element method is analyzed for the fol-
lowing extended Fisher-Kolmogorov (EFK) equation :

ut + γ∆2u−∆u + f(u) = 0, (x, t) ∈ Ω× (0, T ],(1.1)

subject to the initial condition

u(x, 0) = u0(x), x ∈ Ω,(1.2)

either of the boundary conditions

u = 0,
∂u

∂ν
= 0, (x, t) ∈ ∂Ω× (0, T ],(1.3)

or

u = 0, ∆u = 0, (x, t) ∈ ∂ × (0, T ],(1.4)

where f(u) = u3−u, T > 0 and Ω is a bounded domain in <d, d ≤ 2 with boundary
∂Ω.

When γ = 0 in (1.1), we obtain the standard Fisher-Kolmogorov equation. How-
ever, by adding a stabilizing fourth order derivative term to the Fisher-Kolmogorov
equation, Coullet et al. [4], Dee and van Saarloos [7, 19, 20] proposed (1.1) and
called the model described in (1.1) as the extended Fisher-Kolmogorov equation.

The equation (1.1) occurs in a variety of applications such as pattern forma-
tion in bi-stable systems [7], propagation of domain walls in liquid crystals [22],
travelling waves in reaction diffusion systems [2] and mezoscopic model of a phase
transition in a binary system near the Lipschitz point [8]. In particular, in the
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phase transitions near critical points (Lipschitz points), the higher order gradient
terms in the free energy functional can no longer be neglected and the fourth order
derivative becomes important.

Recently, attention has been focused on the steady state equation of (1.1). The
aim of considering the steady state equation of (1.1) is to study the heteroclinic
solutions (so called kinks) connecting to the equilibria u = −1 and u = 1. Typically,
the stationary problem displays a multitude of periodic, homoclinic and heteroclinic
solutions [13, 15] depending on the parameter γ. The steady state equation of (1.1)
has been analysed by Peletier and Troy [13, 14] using shooting methods and by
Kalies, Kwapisz and Vander Vorst [9] with the help of variational methods.

As far as computational studies are concerned, there is hardly any literature for
the numerical approximations to (1.1)–(1.3) or (1.1)–(1.2) and (1.4). Therefore,
an attempt has been made here to discuss finite element Galerkin method for the
EFK equation. In this article, we mainly concentrate on the equation (1.1) with
the initial condition (1.2) and boundary conditions (1.3). Related to fourth order
evolution equations, the C1-conforming finite element method is analyzed by Pani
and Chung [11] for the Rosenau equation, for “Good” Boussinesq equation by Pani
and Haritha [12], for one dimensional Cahn-Hilliard equation by Elliott et., al [5, 6],
for multidimensional Cahn-Hilliard equation by Qiang and Nicolaides [16] and for
Kuramoto-Sivashinsky equation by Akrivis [1].

The outline of the paper is as follows. Section 2 deals with existence, uniqueness
and regularity results. In section 3, we derive a priori error estimates for the
semidiscrete Galerkin method using C1-conforming finite elements. In section 4,
we discretize the semidiscrete equation in the temporal direction and obtain optimal
error estimates for the backward Euler, two step backward difference and Crank-
Nicolson schemes. Finally in section 5, we discuss some computational experiments.

2. Existence, Uniqueness and Regularity results

In this section, we derive existence uniqueness and regularity results for the
extended Fisher-Kolmogorov (EFK) equation. In literature, we observe that there
is hardly any study on the existence, uniqueness and regularity results of weak
solutions to the problem (1.1)–(1.3) or (1.1)–(1.2) and (1.4). Therefore, an attempt
has been made in this section to derive existence, uniqueness and regularity results
for the EFK equation (1.1)–(1.3).

Taking L2-innerproduct of (1.1) with χ ∈ H2
0 and applying Green’s formula, we

obtain the following weak formulation. Find u(·, t) ∈ H2
0 for t ∈ (0, T ] such that

(ut, χ) + γ(∆u, ∆χ) + (∇u,∇χ) + (f(u), χ) = 0, χ ∈ H2
0 (Ω),

u(0) = u0.(2.1)

For the proof of existence and uniqueness results, the following a priori bound will
be useful.

Theorem 2.1. Assume that u0 ∈ H2
0 . Then there exists a positive constant C such

that
‖u(t)‖2 ≤ C(γ, ‖u0‖2), t > 0.

Further,
‖u(t)‖∞ ≤ C(γ, ‖u0‖2), t > 0.

Proof. We consider the Lyapunov functional E(χ) as

E(χ) =
∫

Ω

{γ

2
|∆χ|2 +

1
2
|∇χ|2 + F (χ)} dx,(2.2)
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where

F (χ) =
1
4
(1− χ2)2.

Note that F ′ = f . Differentiating (2.2) with respect to t, we obtain

dE(u)
dt

= γ(∆u, ∆ut) + (∇u,∇ut) + (F ′(u), ut).(2.3)

Choose χ = ut in (2.1) and write the resulting equation as

γ(∆u, ∆ut) + (∇u,∇ut) + (f(u), ut) = −‖ut‖2.(2.4)

Using (2.4) in (2.3), we find that

dE(u)
dt

= −‖ut‖2 ≤ 0,

and hence,
E(u) ≤ E(u0).

Using the definition of E(·), it follows that∫
Ω

{γ

2
|∆u|2 +

1
2
|∇u|2 + F (u)} dx ≤ C (‖u0‖2) .

Since F (u) ≥ 0, using Poincaré inequality, we obtain

‖u(t)‖2 ≤ C (γ, ‖u0‖2) .

An application of Sobolev imbedding theorem yields

‖u(t)‖L∞ ≤ C‖u(t)‖H2 ≤ C (γ, ‖u0‖2) ,

and this completes the rest of the proof. �

Remark 2.1. Note that
dE(u)

dt
+ ‖ut‖2 = 0,

and hence, for t > 0 ∫ t

0

‖ut(τ)‖2 dτ ≤ C (γ, ‖u0‖2) .(2.5)

Below, we discuss the global existence, uniqueness and regularity results using
Faedo-Galerkin method.

Theorem 2.2. Let u0 ∈ H2
0 (Ω). For any T > 0, there exists a unique u = u(x, t)

in Ω× [0, T ) with
u ∈ L∞(0, T ;H2

0 (Ω))

and
ut ∈ L∞(0, T ;L2(Ω)),

such that u satisfies the initial condition u(0) = u0 and the equation (2.1) in the
sense that

(ut, χ) + γ(∆u, ∆χ) + (∇u,∇χ) + (f(u), χ) = 0, χ ∈ H2
0 (Ω), t ∈ (0, T ].

Proof. Let {wj} be a basis of H2
0 , and let V m = span {w1, w2, · · · , wm}. Define

for each t > 0

um(t) =
m∑

i=1

gim(t)wi ∈ V m



NUMERICAL METHODS FOR THE EFK EQUATION 189

as a solution of

(um
t , χ) + γ(∆um,∆χ) + (∇um,∇χ) + (f(um), χ) = 0, χ ∈ V m,

um(0) = u0,m,(2.6)

where u0,m = um(0) =
∑m

i=1 gim(0)wi is the orthogonal projection of u0 onto V m

and u0,m → u0 in H2
0 (Ω). Note that ‖u0,m‖2 ≤ C‖u0‖2.

Clearly (2.6) represents a system of nonlinear ordinary differential equations.
Therefore, Picard’s theorem ensures that there exists a unique solution locally, i.e.,
there exists a unique solution um in (0, tm) for some tm > 0. For proving global
existence, we use continuation arguement and hence, we need the following a priori
bounds.

As in the proof of Theorem 2.1, we can easily obtain the following bounds using
Lyapunov functional E(um):

‖um(t)‖2, ‖∇um(t)‖, ‖∆um(t)‖ ≤ C.

Since ‖um(t)‖Lp ≤ C‖um(t)‖H2 , 1 ≤ p ≤ ∞, we note that

‖f(um)‖2 =
∫

Ω

(
(um)3 − um

)2
dx ≤ 2

∫
Ω

(um)6 dx + 2
∫

Ω

(um)2 dx ≤ C,

and hence, f(um) is bounded in L∞(0, T ;L2(Ω)).

Now, let j be fixed and m > j,

(∆um(t),∆wj) → (∆u, ∆wj) in L∞(0, T ) weak*

(∇um,∇wj) → (∇u,∇wj) in L∞(0, T ) weak*
(f(um), wj) → (f(u), wj) in L∞(0, T ) weak*

(um, wj) → (u, wj) in L∞(0, T ) weak*.

Also, we find that

(um
t , wj) → (ut, wj) in L∞(0, T ) weak*.

Finally, we obtain

(ut, wj) + γ(∆u, ∆wj) + (∇u,∇wj) + (f(u), wj) = 0.

The existence of the equation (2.1) for t > 0 follows from the denseness of the basis
{wj} in H2

0 (Ω).
Uniqueness. Suppose u and v are two solutions of (2.1). Taking w = u − v, we
obtain

(wt, χ) + γ(∆w,∆χ) + (∇w,∇χ) = −(f(u)− f(v), χ), χ ∈ H2
0 .

Setting χ = w and using the boundedness of ‖u‖∞ and ‖v‖∞, we obtain

‖w(t)‖2 ≤ C

∫ t

0

‖w(τ)‖2dτ.(2.7)

Setting ∫ t

0

‖w(τ)‖2 dτ = Φ(t),

we rewrite (2.7) as Φ′(t)− CΦ(t) ≤ 0, and hence,

(e−CtΦ)′ ≤ 0.

Finally, integrating with respect to t, we obtain Φ(t) ≤ 0.
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Since Φ(t) ≥ 0, we, therefore, obtain Φ(t) = 0. This implies, w(t) = 0 and hence,
the uniqueness follows for t > 0. This completes the rest of the proof. �
Finally, we discuss the regularity results needed for the proof of a priori error
bounds in the subsequent sections.

Theorem 2.3. (Regularity) Suppose u0 ∈ H2
0 ∩ H6, then there exists a unique

function u with

u ∈ L∞(0, T ;H4 ∩H2
0 ), ut ∈ L2(0, T ;H4 ∩H2

0 ) and utt ∈ L2(0, T ;L2)

such that u satisfies (2.1).

Proof. Let {wi} be a basis of H2
0 ∩H4. Then we define

um(t) =
m∑

i=1

gim(t)wi ∈ V m,

where V m = span {w1, w2, · · · , wm}. Differentiating (2.6) with respect to t and
taking L2-innerproduct with χ ∈ V m and applying Green’s formula, we obtain the
following equation

(um
tt , χ) + γ(∆um

t ,∆χ) + (∇um
t ,∇χ) + (f ′(um)um

t , χ) = 0, χ ∈ V m.(2.8)

Setting χ = um
t in (2.8) and using the boundedness of ‖um‖L∞ , we find that

1
2

d

dt
‖um

t ‖2 + γ‖∆um
t ‖2 + ‖∇um

t ‖2 ≤ C‖um
t ‖2.

We now integrate on both sides with respect to t to obtain

‖um
t (t)‖2 + 2

∫ t

0

(
γ‖∆um

t ‖2 + ‖∇um
t ‖2

)
dτ ≤ ‖um

t (0)‖2 + C

∫ t

0

‖um
t (τ)‖2 dτ.

Note that ∫ t

0

‖um
t ‖2 dτ ≤ C

(
‖u0‖2

2

)
,

and hence,

‖um
t (t)‖2 + 2

∫ t

0

{γ‖∆um
t ‖2 + ‖∇um

t ‖2} dτ ≤ C
(
‖u0‖2

2

)
+ ‖um

t (0)‖2.

We now evaluate ‖um
t (0)‖. A use of (1.1) yields

‖um
t (0)‖ ≤ γ‖∆2um

0 ‖+ ‖∆um
0 ‖+ ‖f(um

0 )‖
≤ C (‖um

0 ‖4) ≤ C (‖u0‖4) .

Thus, we obtain

‖um
t ‖L∞(L2) ≤ C(‖u0‖4) and um

t ∈ L2(H2
0 ).

Using elliptic regularity, we find that

‖um(t)‖4 ≤ C‖∆2um −∆um‖
≤ ‖um

t ‖+ ‖f(um)‖
≤ C (‖u0‖4) .

This implies that
um ∈ L∞(0, T ;H4 ∩H2

0 ).
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Setting χ = um
tt in (2.8), we obtain

‖um
tt ‖2 +

1
2

d

dt

(
γ‖∆um

t ‖2 + ‖∇um
t ‖2

)
= −(f ′(um)um

t , um
tt )

≤ C‖um
t ‖2 +

1
2
‖um

tt ‖2,

and hence,

‖um
tt ‖2 +

d

dt

(
γ‖∆um

t ‖2 + ‖∇um
t ‖2

)
≤ C‖um

t ‖2.

Integrating both sides with respect to t, it now follows that∫ t

0

‖um
tt ‖2 ds + γ‖∆um

t ‖2 + ‖∇um
t ‖2 ≤ γ‖∆um

t (0)‖2 + ‖∇um
t (0)‖2

+ C

∫ t

0

‖um
t ‖2 ds.

A use of (2.5) yields∫ t

0

‖um
tt ‖2 ds + γ‖∆um

t ‖2 + ‖∇um
t ‖2 ≤ C (‖um

0 ‖2) + γ‖∆um
0 ‖2

4 + ‖∇um
0 ‖2

≤ C (‖u0‖6) .

Thus, we derive the following bounds∫ t

0

‖um
tt ‖2 dτ ≤ C and γ‖∆um

t ‖2 + ‖∇um
t ‖2 ≤ C,

and hence,

um
tt ∈ L2(0, T ;L2).

Again, using elliptic regularity, we obtain

C

∫ t

0

‖um
t ‖2

4 ≤
∫ t

0

‖∆2um
t −∆um

t ‖2 dτ ≤
∫ t

0

‖um
tt ‖2 dτ +

∫ t

0

‖f ′(um)um
t ‖2 ds

≤ C (‖u0‖6) ,

and hence,

um
t ∈ L2(0, T ;H4

0 ∩H2
0 ).

Finally, using the compactness arguments as in the proof of the previous Theorem
2.2, we prove the existence of u with

u ∈ L∞(0, T ;H4 ∩H2
0 ), ut ∈ L2(0, T ;H4 ∩H2

0 ) and utt ∈ L2(0, T ;L2).

This completes the proof of the theorem. �

Remark 2.2. For deriving higher regularity, again we differentiate (2.8) with re-
spect to t and choose χ = um

ttt. As in the proof of Theorem 2.3 we use higher
regularity condition on the initial data to obtain the following bounds:

uttt ∈ L2(L2), utt ∈ L∞(H2
0 ).
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3. Semidiscrete Galerkin Approximations

In this section, we apply Galerkin procedure in the spatial direction for the EFK
equation and obtain the semidiscrete scheme. Further, we derive a priori error
estimates for the semidiscrete method.

Let S0
h, 0 < h < 1 be a family of finite dimensional subspace of H2

0 with the
following approximation property: For v ∈ H4(Ω)∩H2

0 (Ω), there exists a constant
C independent of h such that

inf
χ∈S0

h

‖v − χ‖j ≤ Ch4−j‖v‖4, j = 0, 1, 2.(3.1)

As an example of the finite element space, let Th be a regular triangulation of Ω
which consists of nonoverlapping simplexes. Define

S0
h = {vh ∈ C1(Ω̄) : vh|K ∈ P3(K), vh = 0,

∂vh

∂ν
= 0 on ∂Ω,K ∈ Th}.

This finite element space satisfies the property (3.1). For details, see Ciarlet [3].
The semidiscrete Galerkin approximation of (1.1)–(1.3) is defined to be a function
uh : [0, T ] → S0

h such that

(uht, χ) + γ(∆uh,∆χ) + (∇uh,∇χ) + (f(uh), χ) = 0, χ ∈ S0
h,

uh(0) = u0,h,(3.2)

where u0,h ∈ S0
h is an appropriate approximation to u0 to be defined later.

Since S0
h is a finite dimensional space, the equation (3.2) yields a system of nonlinear

ordinary differential equations. Picard’s theorem ensures that there exists a unique
local solution in (0, t∗) for some t∗ > 0. For proving the global existence, we need
an a priori bound like ‖uh(t)‖L∞(H2) ≤ C. Then using continuation argument, it
is easy to show the existence of a unique solution uh to (3.2) for all t > 0.
As in the case of continuous problem, we again use Lyapunov functional E(uh) to
derive the following a priori bound:

‖uh(t)‖L∞ ≤ C‖uh(t)‖H2 ≤ C (‖u0,h‖H2) .

We now introduce the bilinear form

A(v, w) = γ(∆v,∆w) + (∇v,∇w), v, w ∈ H2
0 ,

for our subsequent use note that A(·, ·) satisfies the following properties:
(i) Boundedness: There is a positive constant M such that

|A(v, w)| ≤ M‖v‖2 ‖w‖2, v, w ∈ H2
0 .

(ii) Coercivity: There is a constant α0 > 0 such that

A(v, v) ≥ α0‖v‖2
2, v ∈ H2

0 .

3.1. Error estimates. Very often a direct comparision between u and uh does
not yield optimal rate of convergence. Therefore, there is a need to introduce an
appropriate auxiliary or intermediate function ũ so that the optimal estimate of u−ũ
is easy to obtain and the comparision between uh and ũ yields a sharper estimate
which leads to optimal rate of convergence for u − uh. In literature, wheeler [21]
for the first time introduced this technique in the context of parabolic problem.
Following wheeler, we introduce ũ be as an auxiliary projection of u defined by

A(u− ũ, χ) = 0, χ ∈ S0
h.(3.3)
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We now split the error e = u− uh as

e := u− uh = (u− ũ)− (uh − ũ)
:= η − θ,

where η = u− ũ and θ = uh − ũ. Below, we derive the error estimates of η and its
temporal derivatives.

Lemma 3.1. For t ∈ [0, T ], there exists a constant C such that for any nonnegative
integer l

‖∂lη

∂tl
‖j ≤ Ch4−j

l∑
k=0

‖∂ku

∂tk
‖4, 0 ≤ j ≤ 2.(3.4)

Proof. Using coercivity property and (3.3), we note that

α0‖u− ũ‖2
2 ≤ A(u− ũ, u− ũ)

= A(u− ũ, u− χ), χ ∈ S0
h.

Since the bilinear form A(·, ·) is bounded, we find that

‖u− ũ‖2 ≤ C inf
χ∈S0

h

‖u− χ‖2.

Using approximation property, we obtain the required result for j = 2.
For j = 0, we use Aubin-Nitsche duality argument. Let Φ be a solution of

γ∆2Φ−∆Φ = η, x ∈ Ω,(3.5)

Φ = 0,
∂Φ
∂ν

= 0, x ∈ ∂Ω.

The solution Φ satisfies the regularity condition

‖Φ‖4 ≤ C(γ−1)‖η‖.

Taking L2-innerproduct of the equation (3.5) with η, using Green’s formula and
(3.3), we find that

‖η‖2 = A(η, Φ− χ)
≤ C‖η‖2‖Φ− χ‖2, χ ∈ S0

h,

and hence,

‖η‖2 ≤ C‖η‖2 inf
χ∈S0

h

‖Φ− χ‖2.

Using approximation property and the regularity condition we obtain the required
result for j = 0. Finally, for j = 1, we use the interpolation inequality to complete
the proof for l = 0. For l ≥ 1, we differentiate (3.3) l times to obtain

A

(
∂lη

∂tl
, χ

)
= 0.

Now repeat the above arguments to complete the rest of the proof. �
Assuming quasi-uniformity condition on the triangulation, it is easy to check that

‖η(t)‖W j,∞ ≤ Ch4−j‖u‖4,∞, j = 0, 1.(3.6)

For a proof see [17]. Below, we choose the initial approximation u0,h as H2
0 projec-

tion of u0 that is u0,h = ũ(0). Then ‖u0,h‖2 ≤ C‖u0‖2 and θ(0) = 0.
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Theorem 3.1. Let uh be a solution of (3.2) and let u0,h be the H2
0 projection of

u0 onto S0
h. Then, there exists a positive constant C independent of h such that

‖u− uh‖L∞(0,T ;Hj(Ω)) ≤ C(T, γ−1)h4−j
(
‖u‖L∞(H4) + ‖ut‖L2(H4)

)
, 0 ≤ j ≤ 2.

Moreover, assuming quasi-uniformity condition on the triangulation Th, there exists
a positive constant C independent of h such that

‖u− uh‖L∞(0,T ;L∞(Ω)) ≤ C(T, γ−1)h4
(
‖u‖L∞(W 4,∞) + ‖ut‖L2(H4)

)
.

Proof. Note that u − uh = η − θ. From (3.4), the estimates of η are known and
for completing the proof, it is enough to derive the estimates for θ. Then, a use
of triangle inequality completes the proof. Substracting (2.1) from (3.2) and using
auxiliary projection, we obtain the following equation in θ

(θt, χ) + γ(∆θ, ∆χ) + (∇θ,∇χ) = (ηt, χ) + (f(u)− f(uh), χ).(3.7)

Choose χ = θ in (3.7) and using Cauchy Schwarz inequality, we obtain
1
2

d

dt
‖θ(t)‖2 + γ‖∆θ‖2 + ‖∇θ‖2 ≤ (‖ηt‖+ ‖f(u)− f(uh)‖) ‖θ(t)‖.

For the nonlinear term ‖f(u) − f(uh)‖, we use the boundedness of ‖u‖L∞ and
‖uh‖L∞ to find that

‖f(u)− f(uh)‖2 =
∫

Ω

(u− uh)2(u2 + uuh + u2
h − 1)2 dx

≤ C‖u− uh‖2 = C
(
‖η‖2 + ‖θ‖2

)
,

and hence,

‖f(u)− f(uh)‖ ≤ C (‖η‖+ ‖θ‖) .(3.8)

This implies that
d

dt
‖θ(t)‖2 + 2(γ‖∆θ‖2 + ‖∇θ‖2) ≤ C

(
‖ηt‖2 + ‖η‖2 + ‖θ‖2

)
.

Integrating from 0 to t, it follows that

‖θ(t)‖2 + 2
∫ t

0

(
γ‖∆θ‖2 + ‖∇θ‖2

)
ds ≤ ‖θ(0)‖2

+ C

∫ t

0

(
‖ηt‖2 + ‖η‖2 + ‖θ‖2

)
ds.(3.9)

Note that θ(0) = 0 and an application of Gronwall’s Lemma yields the following
estimate

‖θ‖L∞(0,T ;L2(Ω)) ≤ C(T )h4
(
‖u‖L2(H4) + ‖ut‖L2(H4)

)
.

For obtaining ‖θ‖L∞(0,T ;H2(Ω)) estimate, setting χ = θt in (3.7), we obtain

‖θt(t)‖2 +
1
2

d

dt

(
γ‖∆θ‖2 + ‖∇θ‖2

)
= (ηt, θt) + (f(u)− f(uh), θt).(3.10)

Using Cauchy Schwarz inequality in (3.10) gives the following inequality

‖θt(t)‖2 +
1
2

d

dt

(
γ‖∆θ‖2 + ‖∇θ‖2

)
≤ C(‖ηt‖

+ ‖f(u)− f(uh)‖)‖θt‖.(3.11)

Substituting (3.8) in (3.11), we arrive at

‖θt‖2 +
1
2

d

dt
{γ‖∆θ‖2 + ‖∇θ‖2} ≤ C

(
‖ηt‖2 + ‖η‖2 + ‖θ‖2

)
+

1
2
‖θt‖2.
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Integrating from 0 to t, it follows that∫ t

0

‖θt(s)‖2 ds + γ‖∆θ‖2 + ‖∇θ‖2 ≤ C
(
γ‖∆θ(0)‖2 + ‖∇θ(0)‖2

)
+ C

∫ t

0

(
‖ηt‖2 + ‖η‖2 + ‖θ‖2

)
ds.(3.12)

Substituting the estimates of ‖ηt‖, ‖η‖, ‖θ(t)‖ and θ(0) = 0 in (3.12), we obtain
using Poincaré inequality the following super-convergence result for ‖θ(t)‖2

‖θ‖L∞(0,T ;H2(Ω)) ≤ C(T, γ−1)h4
(
‖u‖L∞(H4) + ‖ut‖L2(H4)

)
.

Using Sobolev Imbedding theorem, we find that

‖θ(t)‖L∞ ≤ C‖θ(t)‖2,

and hence,

‖θ‖L∞(0,T ;L∞(Ω)) ≤ C(T, γ−1)h4
(
‖u‖L∞(H4) + ‖ut‖L2(H4)

)
.

Using (3.4) and (3.6) along with triangle inequality, we complete the rest of the
proof. �

Remark 3.1. For optimal estimate of the error u − uh in L2-norm, it is possible
to choose u0,h as L2-projection, i.e., u0,h = Phu0, or u0,h = Ihu0, where Ihu0 is
the interpolant of u0 onto S0

h. In both the cases, ‖u0,h‖2 is bounded by ‖u0‖2 as

‖u0,h‖2 ≤ ‖u0,h − u0‖2 + ‖u0‖2

≤ C‖u0‖2.

Moreover, for j = 0, 1, 2

‖θ(0)‖j ≤ ‖u0,h − u0‖j + ‖u0 − ũ(0)‖j ≤ Ch4−j‖u0‖4.

4. Completely Discrete Scheme.

In this section, we discretize the semidiscrete equation (3.2) in the temporal direc-
tion using backward Euler method, Crank-Nicolson scheme and two step backward
difference method. We derive existence and uniqueness results by using a varient
of Brouwer fixed point theorem. Finally, we establish optimal error estimates for
all the three schemes.

4.1. Backward Euler Method. We consider a discretization in time based on
backward Euler’s method. For any given positive integer N , let k = T/N denote
the size of time discretization and tn = nk, n = 0, 1, 2, · · · , N. For a continuous
function ϕ, let ϕn = ϕ(tn) and

∂̄tϕ
n =

ϕn − ϕn−1

k
.

The discrete time Galerkin approximation Un ∈ S0
h of u(tn) is defined as a solution

of

(∂̄tU
n, χ) + γ(∆Un,∆χ) + (∇Un,∇χ) + (f(Un), χ) = 0, χ ∈ S0

h,

U0 = u0,h,(4.1)

where u0,h ∈ S0
h is an appropriate approximation to u0 to be defined later.

For proving existence of a unique solution Un to (4.1) at each time level tn, the
following a priori bound is useful.
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Theorem 4.1. The solution (4.1) satisfies

E(Un) ≤ E(U0), n ≥ 1,

where E(Un) is a Lyapunov functional defined by

E(Un) =
∫

Ω

{γ

2
|∆Un|2 +

1
2
|∇Un|2 + F (Un)} dx

with F ′ = f . Further, there exists a positive constant C such that

‖Un‖∞ ≤ C‖Un‖2 ≤ C
(
γ−1, ‖U0‖2

)
, n ≥ 1.

Proof. Setting χ = Un − Un−1 in (4.1), it follows that
1
k
‖Un − Un−1‖2 + γ

(
∆Un,∆(Un − Un−1)

)
+
(
∇Un,∇(Un − Un−1)

)
+(f(Un), Un − Un−1) = 0.

Now, we use a(a− b) = 1
2 (a2 − b2) + 1

2 (a− b)2, we arrive at

1
k
‖Un − Un−1‖2 +

γ

2
(
‖∆Un‖2 − ‖∆Un−1‖2

)
+

γ

2
‖∆Un −∆Un−1‖2

+
1
2
(
‖∇Un‖2 − ‖∇Un−1‖2

)
+

1
2
‖∇Un −∇Un−1‖2

+ (f(Un), Un − Un−1) = 0.(4.2)

Since F ′(Un) = f(Un), we obtain using the Taylor series expansion of F (·)(
F (Un)− F (Un−1), 1

)
= (f(Un), Un − Un−1)

−
(

F ′′(ξn)
2

(Un − Un−1)2, 1
)

,(4.3)

where ξn is a point on the line joining Un and Un−1. We note that(
−F ′′(ξn)

2
(Un − Un−1)2, 1

)
≤ 1

2
‖Un − Un−1‖2.(4.4)

Now, taking the difference between E(Un) and E(Un−1), we obtain

E(Un)− E(Un−1) =
γ

2
(‖∆Un‖2 − ‖∆Un−1‖2) +

1
2
(‖∇Un‖2 − ‖∇Un−1‖2)

+ (F (Un)− F (Un−1), 1).(4.5)

Substituting (4.2)–(4.3) in (4.5), we arrive at the following expression

E(Un)− E(Un−1) +
1
k
‖Un − Un−1‖2 +

γ

2
‖∆Un −∆Un−1‖2

+
1
2
‖∇Un −∇Un−1‖2 = −

(
F ′′(ξn)

2
(Un − Un−1)2, 1

)
.(4.6)

From (4.4), it follows that

E(Un)− E(Un−1) +
1
k
‖Un − Un−1‖2 − 1

2
‖Un − Un−1‖2 ≤ 0,

and

E(Un)− E(Un−1) +
(2− k)k

2
‖∂̄tU

n‖2 ≤ 0.

Hence,
E(Un) ≤ E(Un−1).

Finally, we obtain
E(Un) ≤ · · · ≤ E(U0).
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Using the definition of E(Un), we find that∫
Ω

{γ

2
|∆Un|2 +

1
2
|∇Un|2 + F (Un)} dx ≤

∫
Ω

{γ

2
|∆U0|2 +

1
2
|∇U0|2 + F (U0)} dx.

Since F (Un) ≥ 0, using Poincaré inequality, we obtain

‖Un‖2 ≤ C
(
γ−1, ‖U0‖2

)
.

An application of the Sobolev Imbedding theorem yields

‖Un‖L∞ ≤ C
(
γ−1, ‖U0‖2

)
.

This completes the rest of the proof. �
Below, we discuss the existence of a solution Un to (4.1) using the following Lemma
4.1 which is a consequence of the Brouwer fixed point theorem. For a proof, see
Kesavan [10].

Lemma 4.1. Let H be a finite dimensional Hilbert space with inner product (·, ·)H

and induced norm ‖ ·‖H . Further, let J be a continuous mapping from H into itself
and be such that (J(ξ), ξ)H > 0, for all ξ ∈ H with ‖ξ‖H = α > 0. Then there
exists ξ∗ ∈ H with ‖ξ∗‖H ≤ α such that J(ξ∗) = 0.

Theorem 4.2. Assume that U0, U1, · · · , Un−1 are given, then there exists a unique
solution Un, satisfying (4.1) for small k.

Proof. With H as S0
h, define J(Un) as

(J(Un), χ) = (Un, χ) + kA(Un, χ) + k (f(Un), χ)− (Un−1, χ).

Taking χ = Un, we obtain

(J(Un), Un) ≥ ‖Un‖2 + k
(
γ‖∆Un‖2 + ‖∇Un‖2

)
+ k(f(Un), Un)− ‖Un‖ ‖Un−1‖,

and hence, using k|(f(Un), Un)| ≤ Ck‖Un‖2, we find that

(J(Un), Un) ≥ (1− Ck)‖Un‖2 − ‖Un−1‖ ‖Un‖.
Choose k sufficiently small so that 1− Ck = 1

2 . Thus,

(J(Un), Un) ≥
(

1
2
‖Un‖ − ‖Un−1‖

)
‖Un‖.

Setting ‖Un‖ > 3‖Un−1‖ = α, it follows that

(J(Un), Un) > 0.

An application of the Lemma 4.1 yields the existence of Un∗ such that J(Un∗) = 0.
Infact, Un∗ = Un satisfies the Lemma 4.1 and this completes the proof of existence.
For uniqueness, let Un and V n be two distinct solutions of (4.1). Taking Wn =
Un − V n, it follows that

(∂̄tW
n, χ) + γ(∆Wn,∆χ) + (∇Wn,∇χ) + (f(Un)− f(V n), χ) = 0.

Choose χ = Wn, and using

(∂̄tW
n,Wn) ≥ 1

2
∂̄t‖Wn‖2,

we obtain
1
2
∂̄t‖Wn‖2 + γ‖∆Wn‖2 + ‖∇Wn‖2 + (f(Un)− f(V n),Wn) ≤ 0.(4.7)

For the last term on the right hand side of (4.7), we use the boundedness of ‖Un‖∞
and ‖V n‖∞. Thus,

(f(Un)− f(V n),Wn) ≤ C‖Wn‖2.
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On substituting in (4.7), we obtain

∂̄t‖Wn‖2 ≤ C‖Wn‖2,

and hence,

‖Wn‖2 ≤ 1
(1− Ck)

‖Wn−1‖2.

Assuming Wn−1 = 0, the above inequality implies Wn = 0 for sufficiently small
k with (1 − Ck) > 0 i.e., Un = V n. This leads to a contradiction and hence, the
solution is unique. This complete the rest of the proof. �
Below, we derive optimal error estimates for the backward Euler method. Now,
using the elliptic projection ũ at t = tn, we split the error en as

en := u(tn)− Un = (u(tn)− ũ(tn))− (Un − ũ(tn))
:= ηn − θn.

Theorem 4.3. Let U0 = ũ(0) so that θ0 = 0 and ‖U0‖2 ≤ C‖u0‖2. Then, there
exists a positive constant C independent of the discretization parameters h and k
such that for small k and J = 1, 2, · · · , N ,

‖u(tJ)− UJ‖j ≤ C(T, γ−1)(h4−j
(
‖u‖L∞(0,T ;H4) + ‖ut‖L2(0,T ;H4)

)
+ k‖utt‖L2(0,T ;L2)), j = 0, 1, 2.

Moreover, assuming the quasi-uniformity condition on the triangulation Th, the
following estimate holds :

‖u(tJ)− UJ‖L∞ ≤ C(T, γ−1)(h4
(
‖u‖L∞(0,T ;W 4,∞) + ‖ut‖L2(0,T ;H4)

)
+ k‖utt‖L2(0,T ;L2)).

Proof. Since the estimates of ηn are known, so for completing the proof, we need
to estimate θn. We substract the equation (4.1) from (2.1) and using the auxiliary
projection, we obtain the equation in θn as

(∂̄tθ
n, χ) + γ(∆θn,∆χ) + (∇θn,∇χ) = (f(un)− f(Un), χ)− (∂̄tũ(tn)− ut(tn), χ)

= (f(un)− f(Un), χ)− (wn, χ),(4.8)

where

wn = ∂̄tũ(tn)− ut(tn) =
(
∂̄tũ(tn)− ∂̄tu(tn)

)
+
(
∂̄tu(tn)− ut(tn)

)
,

= −∂̄tη
n +

(
∂̄tu(tn)− ut(tn)

)
= wn

1 + wn
2 .

Setting χ = θn in (4.8), we arrive at the following expression

(∂̄tθ
n, θn) + γ‖∆θn‖2 + ‖∇θn‖2 = (f(un)− f(Un), θn)− (wn, θn).

Note that
(∂̄tθ

n, θn) ≥ 1
2
∂̄t‖θn‖2,

and hence,
1
2
∂̄t‖θn‖2 + γ‖∆θn‖2 + ‖∇θn‖2 ≤ (‖f(un)− f(Un)‖+ ‖wn‖) ‖θn‖.(4.9)

To bound for ‖f(un) − f(Un)‖, we use the boundedness of ‖un‖L∞ and ‖Un‖L∞

to obtain

‖f(un)− f(Un)‖ ≤ C(‖ηn‖+ ‖θn‖).(4.10)

Substituting (4.10) in (4.9), we arrive at

∂̄t‖θn‖ ≤ C (‖ηn‖+ ‖θn‖+ ‖wn‖) .
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On summing from n = 1 to J , we find that

(1− Ck)‖θJ‖ ≤ C

(
k

J∑
n=1

‖ηn‖+ k
J∑

n=1

‖wn‖+ k
J−1∑
n=1

‖θn‖

)
.

Choose k sufficient small so that (1 − Ck) > 0 and an application of discrete
Gronwall’s Lemma yields

‖θJ‖ ≤ C(T )

(
k

J∑
n=1

‖ηn‖+ k
J∑

n=1

‖wn‖

)
.(4.11)

For completing the proof, it remains to estimate ‖wn‖. For wn
1 , we note that

wn
1 = −k−1

∫ tn

tn−1

ηt(s) ds,

and hence,

k

J∑
n=1

‖wn
1 ‖ ≤ Ch4

J∑
n=1

∫ tn

tn−1

‖ut‖4 ds = Ch4

∫ tJ

0

‖ut‖4 ds.

For wn
2 , we observe that

wn
2 =

u(tn)− u(tn−1)
k

− ut(tn)

= −k−1

∫ tn

tn−1

(s− tn−1)utt(s) ds,

and therefore,

k
J∑

n=1

‖wn
2 ‖ ≤

J∑
n=1

(∫ tn

tn−1

(s− tn−1)‖utt(s)‖ ds

)

≤ k

∫ tJ

0

‖utt‖ ds.

Substituting the estimates of ‖ηn‖, ‖wn
1 ‖ and ‖wn

2 ‖ in (4.11), we obtain the estimate
for ‖θJ‖. For ‖θJ‖2, we choose χ = ∂̄tθ

n in (4.8) to obtain

‖∂̄tθ
n‖2 +

1
2
∂̄t

(
γ‖∆θn‖2 + ‖∇θn‖2

)
≤

(
f(un)− f(Un), ∂̄tθ

n
)
− (wn, ∂̄tθ

n),

≤ C
(
‖θn‖2 + ‖ηn‖2 + ‖wn‖2

)
+

1
2
‖∂̄tθ

n‖2.

Now, we summing from n = 1 to J , we arrive at

k
J∑

n=1

‖∂̄tθ
n‖2 + γ‖∆θJ‖2 + ‖∇θJ‖2 ≤ Ck

J∑
n=1

(‖θn‖2

+ ‖ηn‖2 + ‖wn‖2).(4.12)

Using Poincaré inequality and substituting the estimates of ‖θn‖, ‖ηn‖ and ‖wn‖
in (4.12), we obtain a super-convergence result for ‖θJ‖2. Finally, a use of Sobolev
Imbedding theorem yields

‖θJ‖L∞ ≤ C‖θJ‖2.

Using triangle inequality with estimates of η, we complete the rest of the proof. �
We note that the backward Euler method is of first order convergence in time. For
obtaining second order convergence in time, we consider, below, the Crank-Nicolson
scheme and two step backward difference method.
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4.2. Crank-Nicolson Scheme. For obtaining second order accuracy in time, we
now consider Crank-Nicolson scheme. For a continuous function ϕ ∈ C[0, T ], let

∂̄tϕ
n =

ϕn − ϕn−1

k
, ϕn−1/2 =

ϕn + ϕn−1

2
.

Following Qiang and Nicolaides [16], we define

f̃(Un−1, Un) =

{
F (Un−1)−F (Un)

Un−1−Un , Un−1 6= Un,

F ′(Un−1), Un−1 = Un,

where, f̃(·, ·) in our case has the following explicit form

f̃(w, z) =
1
4
(
w3 + w2z + wz2 + z3

)
− 1

2
(w + z) .

It is easy to verify that f̃(w, z) → f(z) as w → z. Now, the discrete time finite
element Galerkin approximation Un of u(tn) is defined as a solution of

(∂̄tU
n, χ) + γ(∆Un−1/2,∆χ) + (∇Un−1/2,∇χ)

+(f̃(Un−1, Un), χ) = 0, χ ∈ S0
h, n ≥ 1,

U0 = u0,h,(4.13)

where u0,h ∈ S0
h is an appropriate approximation to u0 to be defined later. For

proving optimal error estimates, the following a priori bound is useful.

Theorem 4.4. Let Un be a solution of (4.13). Then, there exists a positive constant
C such that

‖Un‖∞ ≤ C
(
γ−1, ‖U0‖2

)
, n ≥ 1.

Proof. Setting χ = Un − Un−1 in (4.13), we obtain
1
k
‖Un − Un−1‖2 + γ(∆Un−1/2,∆(Un − Un−1)) + (∇Un−1/2,∇(Un − Un−1))

+ (f̃(Un−1, Un), Un − Un−1) = 0.(4.14)

Using the definition of f̃(·, ·) in (4.14), we arrive at
1
k
‖Un − Un−1‖2 +

γ

2
(
‖∆Un‖2 − ‖∆Un−1‖2

)
+

1
2
(
‖∇Un‖2 − ‖∇Un−1‖2

)
+
(
F (Un)− F (Un−1), 1

)
= 0.(4.15)

Note that

E(Un)− E(Un−1) =
γ

2
(
‖∆Un‖2 − ‖∆Un−1‖2

)
+

1
2
(
‖∇Un‖2 − ‖∇Un−1‖2

)
+
(
F (Un)− F (Un−1), 1

)
.(4.16)

Using (4.15) in (4.16), it gives the following expression

E(Un)− E(Un−1) = −1
k
‖Un − Un−1‖2 ≤ 0,

and hence,
E(Un) ≤ E(U0).

Using the definition of E(Un) and F (Un) = 1
4

(
1− (Un)2

)2 ≥ 0, we finally obtain

‖Un‖2 ≤ C
(
γ−1, ‖U0‖2

)
.

An application of Sobolev Imbedding theorem yields

‖Un‖∞ ≤ C‖Un‖2 ≤ C
(
γ−1, ‖U0‖2

)
,
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and this completes the proof. �
Note that the existence of a unique solution Un to (4.13) follows easily following

the analysis of the Theorem 4.2. Therefore, we omit the proof. Below, we discuss
the error analysis. For error analysis, the following Lemma 4.2 will be useful. In
the context of Cahn-Hilliard equation [16], similar result is proved by Qiang and
Nicolaides [16]. For completeness, we briefly sketch the proof.

Lemma 4.2. Let u(tn) and Un be a solution of (2.1) and (4.13), respectively. Then,
there exists a positive constant C independent of the discretization parameters h and
k such that

‖f(u(tn−1/2))− f̃(Un−1, Un)‖ ≤ Ck2(‖ut‖L∞(0,T ;L2)

+ ‖utt‖L∞(0,T ;L2)).(4.17)

Proof. We rewrite as

‖f(u(tn−1/2)− f̃(Un−1, Un)‖ ≤ ‖f(u(tn−1/2))− f(un−1/2)‖
+ ‖f(un−1/2)− f̃(u(tn−1), u(tn))‖
+ ‖f̃(u(tn−1), u(tn))− f̃(u(tn−1, U

n)‖
+ ‖f̃(u(tn−1, U

n))− f̃(Un−1, Un)‖
= T1 + T2 + T3 + T4.(4.18)

Using the smoothness of f , boundedness of ‖u‖L∞ and Taylor series expansion, we
estimate T1 as

T1 ≤ C‖u(tn−1/2)−
(

un + un−1

2

)
‖ ≤ Ck2‖utt‖L∞(0,T ;L2).

Now, using the definition of f(·) and f̃(·, ·), we derive the bound for T2 :

T2 = ‖1
8

(un + un−1)
3 − 1

4
(
u3

n−1 + u2
n−1un + un−1u

2
n + u3

n

)
‖

= ‖1
8

(un − un−1)
(
u2

n − u2
n−1

)
‖

≤ C‖un − un−1‖2 ≤ Ck2‖ut‖L∞(0,T ;L2).

Similarly, using the boundedness of ‖u‖L∞ and ‖Un‖L∞ , we easily derive the fol-
lowing estimates

T3 ≤ C‖u(tn)− Un‖,
T4 ≤ C‖u(tn−1)− Un−1‖.

Substituting the estimates for T1, T2, T3 and T4 in (4.18), we obtain the required
resuly for (4.17). �

Theorem 4.5. Let U0 = ũ(0) so that θ0 = 0. Then, there exists a positive constant
C independent of the discretization parameters h and k such that for j = 0, 1, 2

‖u(tJ)− UJ‖j ≤ C(T )h4−j
(
‖u‖L∞(0,T ;H4) + ‖ut‖L2(0,T ;H4)

)
+ C(T )k2

(
‖u‖W 2,∞(0,T ;L2) + ‖utt‖L2(0,T ;H2)

)
, J ≥ 1.

In addition, assume that the triangulation Th is quasi-uniform. Then

‖u(tJ)− UJ‖L∞ ≤ C(T )h4
(
‖u‖L∞(0,T ;W 4,∞) + ‖ut‖L2(0,T ;H4)

)
+ C(T )k2

(
‖u‖W 2,∞(0,T ;L2) + ‖utt‖L2(0,T ;H2)

)
, J ≥ 1.
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Proof. Substracting (4.13) from (2.1) and using the auxiliary projection, we obtain
the error equation in θn as

(∂̄tθ
n, χ) + γ(∆θn−1/2,∆χ) + (∇θn−1/2,∇χ) = (∂̄tη

n, χ) + (σn−1/2, χ)

+ γ(wn−1/2
1 ,∆χ) + (wn−1/2

2 ,∇χ)

+
(
f(u(tn−1/2))− f̃(Un−1, Un), χ

)
,(4.19)

where

σn−1/2 = ut(tn−1/2)− ∂̄tu
n,

w
n−1/2
1 = ∆

(
u(tn−1/2)− (

un + un−1

2
)
)

,

w
n−1/2
2 = ∇

(
u(tn−1/2)− (

un + un−1

2
)
)

.

Setting χ = θn−1/2 in (4.19), we arrive at

(∂̄tθ
n, θn−1/2) + γ‖∆θn−1/2‖2 + ‖∇θn−1/2‖2 = (∂̄tη

n, θn−1/2) + (σn−1/2, θn−1/2)

+ γ(wn−1/2
1 ,∆θn−1/2) + (wn−1/2

2 ,∇θn−1/2)

+
(
f(u(tn−1/2))− f̃(Un−1, Un), θn−1/2

)
.

Note that (
∂̄tθ

n, θn−1/2
)

=
1
2
∂̄t‖θn‖2,

and hence,
1
2
∂̄t‖θn‖2 +

γ

2
‖∆θn−1/2‖2 +

1
2
‖∇θn−1/2‖2 ≤ C(γ, ε−1)(‖∂̄tη

n‖2

+ ‖σn−1/2‖2 + ‖wn−1/2
1 ‖2 + ‖wn−1/2

2 ‖2 + ‖θn−1/2‖2)

+ ‖
(
f(u(tn−1/2))− f̃(Un−1, Un)

)
‖2.(4.20)

Using Lemma 4.2 in (4.20), we arrive at
1
2
∂̄t‖θn‖2 +

γ

2
‖∆θn−1/2‖2 +

1
2
‖∇θn−1/2‖2 ≤ C(k4 + ‖ηn−1/2‖2 + ‖∂̄tη

n‖2

+ ‖σn−1/2‖2 + ‖wn−1/2
1 ‖2 + ‖wn−1/2

2 ‖2 + ‖θn−1/2‖2).(4.21)

On summing from n = 1 to J and using Poincaré inequality, it follows that

(1− Ck)‖θJ‖2 + k
J∑

n=1

‖θn−1/2‖2
2 ≤ Ck

J∑
n=1

(k4 + ‖ηn−1/2‖2 + ‖∂̄tη
n‖2 + ‖σn−1/2‖2

+ ‖wn−1/2
1 ‖2 + ‖wn−1/2

2 ‖2) + Ck
J−1∑
n=1

‖θn‖2.(4.22)

We note that

‖wn−1/2
1 ‖2 ≤ Ck3

∫ tn

0

‖∆utt(s)‖2 ds,

‖wn−1/2
2 ‖2 ≤ Ck3

∫ tn

0

‖∇utt(s)‖2 ds,

‖σn−1/2‖2 ≤ Ck3

∫ tn

0

‖uttt(s)‖2 ds.
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For small k with (1−Ck) > 0 and substituting ‖σn−1/2‖, ‖wn−1/2
1 ‖, ‖wn−1/2

2 ‖, ‖∂̄tη
n‖, ‖ηn‖

in (4.22) and an application of discrete Gronwall’s Lemma yields the ‖θJ‖ estimate.
Finally, the result j = 0 follows from the triangle inequality.
For j = 2, we choose χ = ∂̄tθ

n in (4.19) gives the following expression

‖∂̄tθ
n‖2 + γ(∆θn−1/2,∆∂̄tθ

n) + (∇θn−1/2,∇∂̄tθ
n) = (∂̄tη

n, ∂̄tθ
n) + (σn−1/2, ∂̄tθ

n)

+ γ(wn−1/2
1 ,∆∂̄tθ

n) + (wn−1/2
2 ,∇∂̄tθ

n)

+
(
f(u(tn−1/2))− f̃(Un−1, Un), ∂̄tθ

n
)

.(4.23)

Note that

γ(∆θn−1/2,∆∂̄tθ
n) + (∇θn−1/2,∇∂̄tθ

n)

=
1
2
∂̄t

(
γ‖∆θn‖2 + ‖∇θn‖2

)
.(4.24)

Substituting (4.24) in (4.23), we arrive at

1
2
‖∂̄tθ

n‖2 +
1
2
∂̄t

(
γ‖∆θn‖2 + ‖∇θn‖2

)
≤ C(γ)(‖∂̄tη

n‖2 + ‖σn−1/2‖2

+ ‖wn−1/2
1 ‖2 + ‖wn−1/2

2 ‖2 + ‖θn−1/2‖2
2

+ ‖ηn−1/2‖2 + ‖f(u(tn−1/2))− f̃(Un−1, Un)‖2).(4.25)

Again using Lemma 4.2 in (4.25) and summing from n = 1 to J , we obtain

k

J∑
n=1

‖∂̄tθ
n‖+ γ‖∆θJ‖+ ‖∇θJ‖ ≤ Ck

J∑
n=1

(k2 + ‖∂̄tη
n‖+ ‖σn−1/2‖+ ‖wn−1/2

1 ‖

+ ‖wn−1/2
2 ‖+ ‖θn−1/2‖+ ‖ηn−1/2‖).(4.26)

Substituting the estimates of ‖θn‖, ‖ηn‖, ‖σn−1/2‖, ‖wn−1/2
1 ‖, ‖wn−1/2

2 ‖ and ‖∂̄tη
n‖

in (4.26), we obtain the super-convergent result for ‖θJ‖2. An application of Sobolev
Imbedding theorem yields

‖θJ‖∞ ≤ C‖θJ‖2.

Finally, the result follows from triangle inequality. �

4.3. Second Order Backward Difference Method. For a second order accu-
racy in time, we consider a two-step backward method. Let

D
(2)
t Un = ∂̄tU

n +
1
2
k∂̄2

t Un,

and let Un, n = 0, 1, 2, · · · , N be the discrete time finite element Galerkin solution
defined by

(D(2)
t Un, χ) + γ(∆Un,∆χ) + (∇Un,∇χ) + (f(Un), χ)

= 0, χ ∈ S0
h, n ≥ 2(4.27)

and for n = 1

(∂̄tU
1, χ) + γ(∆U1,∆χ) + (∇U1,∇χ) + (f(U1), χ) = 0, χ ∈ S0

h(4.28)

with
U0 = u0,h.

For proving optimal error estimates the following a priori bound is useful.
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Theorem 4.6. Let Un be a solution of (4.27)–(4.28). Then, there exists a positive
constant C such that

‖U j‖2
2 +

k

4
‖∂̄tU

j‖2 ≤ C(γ−1, ‖U0‖2), j = 1, 2, · · · , N.

Moreover,

‖U j‖∞ ≤ C(γ−1, ‖U0‖2), j = 1, 2, · · · , N.

Proof. Setting χ = U1 − U0 in (4.28), we obtain

k‖∂̄tU
1‖2 + γ(∆U1,∆(U1 − U0)) + (∇U1,∇(U1 − U0)) + (f(U1), U1 − U0) = 0.

Using a(a− b) = 1
2 (a2 − b2) + 1

2 (a− b)2, it gives the following expression

k‖∂̄tU
1‖2 +

γ

2
(‖∆U1‖2 − ‖∆U0‖2) +

γ

2
‖∆U1 −∆U0‖2 +

1
2
(‖∇U1‖2 − ‖∇U0‖2)

+
1
2
‖∇U1 −∇U0‖2 + (f(U1), U1 − U0) = 0.(4.29)

Taking the difference between E(U1) and E(U0), we find that

E(U1)− E(U0) =
γ

2
(‖∆U1‖2 − ‖∆U0‖2) +

1
2
(‖∇U1‖2 − ‖∇U0‖2)

+ (F (U1)− F (U0), 1).(4.30)

Using the Taylor’s series expansion, we obtain(
F (U1)− F (U0), 1

)
= (f(U1), U1 − U0)

−
(

F ′′(ξ1)
2

(U1 − U0)2, 1
)

,(4.31)

where ξ1 is a point on the line joining U1 and U0. Note that(
−F ′′(ξ1)

2
(U1 − U0)2, 1

)
≤ 1

2
‖U1 − U0‖2.(4.32)

Substituting (4.29) and (4.31)–(4.32) in (4.30), we arrive at

E(U1)− E(U0) + (4− 2k)
k

4
‖∂̄tU

1‖2 ≤ 0.

Choose k with 0 < k < 1 so that (4− 2k) > 1, we obtain

E(U1) +
k

4
‖∂̄tU

1‖2 ≤ E(U0).(4.33)

Using the definition of E(·) with F (U1) ≥ 0, we obtain

‖U1‖2 ≤ C(γ−1, ‖U0‖2).

An application of Soblolev Imbedding theorem yields

‖U1‖L∞ ≤ C(γ−1, ‖U0‖2).

This completes the proof for n = 1. For n ≥ 2, we choose χ = ∂̄tU
n in (4.27) and

using the fact that(
D

(2)
t Un, ∂̄tU

n
)
≥ ‖∂̄tU

n‖2 +
k

4
∂̄t(‖∂̄tU

n‖2),
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we obtain

k‖∂̄tU
n‖2 +

k2

4
∂̄t(‖∂̄tU

n‖2) +
γ

2
(‖∆Un‖2 − ‖∆Un−1‖2) +

γ

2
‖∆Un −∆Un−1‖2

+
1
2
(‖∇Un‖2 − ‖∇Un−1‖2) +

1
2
‖∇Un −∇Un−1‖2

+ (f(Un), Un − Un−1) ≤ 0.(4.34)

Taking the difference between E(Un) and E(Un−1), using (4.3)–(4.4) and (4.34), we
derive the following expression(

k − k2

2

)
‖∂̄tU

n‖2 +
k2

4
∂̄t(‖∂̄tU

n‖2) + E(Un)− E(Un−1) ≤ 0.

Choose k with 0 < k < 1 so that (1− k
2 ) > 0, Now, we arrive at

E(Un) +
k

4
‖∂̄tU

n‖2 ≤ E(Un−1) +
k

4
‖∂̄tU

n−1‖2,

and hence, using (4.33)

E(Un) +
k

4
‖∂̄tU

n‖2 ≤ · · · ≤ E(U1) +
k

4
‖∂̄tU

1‖2 ≤ E(U0).(4.35)

From the definition of E(·) and Poincaré inequality, we find that

‖Un‖2 ≤ C(γ−1, ‖U0‖2).

An application of Sobolev Imbedding theorem yields

‖Un‖∞ ≤ C‖Un‖2 ≤ C(γ−1, ‖U0‖2),

and this completes the rest of the proof. �
Using analysis similar to that of the Theorem 4.2, the existence of a unique solution
Un to (4.27)–(4.28) follows easily. Below, we derive optimal error estimates.

Theorem 4.7. Let U0 = ũ(0) so that θ0 = 0. Then, there exists a positive constant
C independent of the discretization parameters h and k such that for J = 1, 2, · · · , N

‖u(tJ)− UJ‖j ≤ C(T )(h4−j
(
‖u‖L∞(0,T ;H4) + ‖ut‖L2(0,T ;H4)

)
+ k2‖utt‖L2(0,T ;L2)), j = 0, 1, 2.

In addition, assume that the triangulation Th is quasi-uniform. Then

‖u(tJ)− UJ‖L∞ ≤ C(T )
(
h4
(
‖u‖L∞(0,T ;W 4,∞) + ‖ut‖L2(0,T ;H4)

)
+ k2‖utt‖L2(0,T ;L2)

)
, J = 1, 2, · · · , N.

Proof. Since the estimates of ηn are known, it is sufficient to estimate θn. Sub-
stracting the equations (4.27)–(4.28) from (2.1) and using auxiliary projection, we
obtain the following equation in θn. For n ≥ 2

(D(2)
t θn, χ) + γ(∆θn,∆χ) + (∇θn,∇χ) = (f(un)− f(Un), χ)

+ (σn, χ) + (D(2)
t ηn, χ),(4.36)

and for n = 1

(∂̄tθ
1, χ) + γ(∆θ1,∆χ) + (∇θ1,∇χ) = (f(u1)− f(U1), χ)

+ (σ1, χ) + (∂̄tη
1, χ),(4.37)

where

σn = ut(tn)−D
(2)
t u(tn), n ≥ 2,

σ1 = ut(t1)− ∂̄tu(t1).
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Setting χ = θn in (4.36), we arrive at the following expression

(D(2)
t θn, θn) + γ‖∆θn‖2 + ‖∇θn‖2 ≤

(
‖f(un)− f(Un)‖+ ‖D(2)

t ηn‖+ ‖σn‖
)
‖θn‖.

From (4.10), we find that

‖f(un)− f(Un)‖ ≤ C(‖θn‖+ ‖ηn‖),
and hence,

(D(2)
t θn, θn) + γ‖∆θn‖2 + ‖∇θn‖2 ≤ C(‖θn‖+ ‖ηn‖+ ‖D(2)

t ηn‖
+ ‖σn‖)‖θn‖.(4.38)

We note that

k(D(2)
t θn, θn) = ∆1‖θn‖2 − 1

4
∆2‖θn‖2 + ‖∆1θ

n‖2 − 1
4
‖∆2θ

n‖2, for n ≥ 2,

where ∆k = θn − θn−k, for k = 1,2. As in McLean and Thomée [18], it is easy to
find that

k

J∑
n=2

(D(2)
t θn, θn) ≥ 3

4
‖θJ‖2 − 1

4
‖θJ−1‖2 − 1

4
‖θ1‖2.(4.39)

Multiplying (4.38) by k and taking summation from n = 2 to J , we obtain

k
J∑

n=2

(D(2)
t θn, θn) ≤ Ck

J∑
n=2

(‖θn‖+ ‖ηn‖

+ ‖D(2)
t ηn‖+ ‖σn‖)‖θn‖.(4.40)

Substituting (4.39) in (4.40), we arrive that

3
4
‖θJ‖2 ≤ 1

4
‖θ1‖2 +

1
4
‖θJ−1‖2 + Ck

J∑
n=2

(
‖θn‖+ ‖ηn‖+ ‖D(2)

t ηn‖+ ‖σn‖
)
‖θn‖.

Assume that ‖θM‖ = max0≤n≤J ‖θn‖. Then

3
4
‖θM‖2 ≤

(
1
4
‖θ1‖+ Ck

J∑
n=2

(
‖θn‖+ ‖ηn‖+ ‖D(2)

t ηn‖+ ‖σn‖
))

‖θM‖+
1
4
‖θM‖2

and hence,

‖θJ‖ ≤ ‖θM‖ ≤ C(‖θ1‖+ k
J∑

n=2

(‖θn‖+ ‖ηn‖+ ‖D(2)
t ηn‖+ ‖σn‖)).(4.41)

For completing the proof, it is enough to find ‖θ1‖ estimate. We choose χ = θ1 in
(4.37), and use (

∂̄tθ
1, θ1

)
≥ 1

2
∂̄t‖θ1‖2,

to obtain
1
2
∂̄t‖θ1‖2 + γ‖∆θ1‖2 + ‖∇θ1‖2 ≤

(
‖f(u1)− f(U1)‖+ ‖∂̄tη

1‖+ ‖σ1‖
)
‖θ1‖.

Note that
‖f(u1)− f(U1)‖ ≤ C

(
‖θ1‖+ ‖η1‖

)
,

and hence,
∂̄t‖θ1‖ ≤ C

(
‖θ1‖+ ‖η1‖+ ‖∂̄tη

1‖+ ‖σ1‖
)
.

Finally, we find that

‖θ1‖ ≤ ‖θ0‖+ Ck
(
‖θ1‖+ ‖η1‖+ ‖∂̄tη

1‖+ ‖σ1‖
)
.
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Using θ0 = 0, we have the following inequality

(1− Ck)‖θ1‖ ≤ Ck
(
‖η1‖+ ‖∂̄tη

1‖+ ‖σ1‖
)
.(4.42)

It is easy to find the following estimates

‖σ1‖ ≤ k

∫ k

0

‖utt‖ ds,

and

k‖∂̄tη
1‖ ≤ Ch4

∫ k

0

‖ut‖4 ds.

For sufficiently small k with (1− Ck) > 0 and substituting the above estimates in
(4.42), we obtain the ‖θ1‖ estimate. Finally, substituting ‖θ1‖ estimate in (4.41),
we obtain ‖θJ‖ estimate. Using triangle inequality, we complete the rest of the
proof for j = 0.
For j = 2, we choose χ = ∂̄tθ

n in (4.36), we obtain

(D(2)
t θn, ∂̄tθ

n) +
1
2
∂̄t

(
γ‖∆θn‖2 + ‖∇θn‖2

)
≤ (f(un)− f(Un), ∂̄tθ

n)

+(D(2)
t ηn, ∂̄tθ

n) + (σn, ∂̄tθ
n), n ≥ 2.(4.43)

Note that (
D

(2)
t θn, ∂̄tθ

n
)
≥ ‖∂̄tθ

n‖2 +
k

4
∂̄t(‖∂̄tθ

n‖2), n ≥ 2.(4.44)

Using (4.44) in (4.43), it yields the following expression

‖∂̄tθ
n‖2 +

k

4
∂̄t(‖∂̄tθ

n‖2) +
1
2
∂̄t(γ‖∆θn‖2 + ‖∇θn‖2) ≤ C(‖θn‖2 + ‖ηn‖2

+ ‖D(2)
t ηn‖2 + ‖σn‖2) +

1
2
‖∂̄tθ

n‖2.(4.45)

Multiplying (4.45) by k and summing from n = 2 to J , we arrive at

k
J∑

n=2

‖∂̄tθ
n‖2 +

k

2
‖∂̄tθ

J‖2 + γ‖∆θJ‖2 + ‖∇θJ‖2 ≤ γ‖∆θ1‖2 + ‖∇θ1‖2

+
k

2
‖∂̄tθ

1‖2 + Ck
J∑

n=2

(
‖θn‖2 + ‖ηn‖2 + ‖D(2)

t ηn‖2 + ‖σn‖2
)

.(4.46)

To complete the proof, it is enough to find estimates ‖∆θ1‖, ‖∇θ1‖ and ‖∂̄tθ
1‖.

Now, setting χ = ∂̄tθ
1 in (4.37) and use the boundedness of ‖u‖∞ and ‖U‖∞, we

derive the following expression

‖∂̄tθ
1‖2 +

1
2
∂̄t

(
γ‖∆θ1‖2 + ‖∇θ1‖2

)
≤ C

(
‖θ1‖2 + ‖η1‖2 + ‖∂̄tη

1‖2 + ‖σ1‖2
)

+
3
4
‖∂̄tθ

1‖2.

Finally, we have the following inequality
k

2
‖∂̄tθ

1‖2 + γ‖∆θ1‖2 + ‖∇θ1‖2 ≤ Ck(‖θ1‖2 + ‖η1‖2

+ ‖∂̄tη
1‖2 + ‖σ1‖2).(4.47)

Substituting (4.47) in (4.46) with known estimates ‖θ1‖, ‖η1‖, ‖∂̄tη
1‖ and ‖σ1‖, we

obtain the super-convergence result for ‖θJ‖2. An application of Sobolev Imbedding
theorem yields

‖θJ‖∞ ≤ C‖θJ‖2.
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Finally, we complete the proof using triangle inequality. �

5. Computational Experiments

We have seen in sections 3 and 4 that for obtaining the approximate solution
for the EFK equation (1.1), we need ploynomials of the degree ≥ 3. It means that
we have to construct minimum 10 node triangle for approximating the solution.
Computationally, it is very expensive and difficult to impose inter-element C1-
continuity condition. If the boundary is curved, imposition of boundary conditions
causes some more difficulties. Therefore, in this section, we discuss computational
results for the following one dimensional EFK equation using C1-piecewise cubic
elements. Now, the one dimensional EFK equation is given by

ut + γuxxxx − uxx + f(u) = 0, (x, t) ∈ Ω× (0, T ]

with initial condition

u(0) = u0 = x2(1− x)2, x ∈ Ω,

and the boundary conditions

u(0, t) = u(1, t) = 0, (x, t) ∈ ∂Ω× (0, T ],
ux(0, t) = ux(1, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

where f(u) = u3 − u.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.03

−0.02

−0.01

0

0.01
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0.03

0.04

0.05

0.06
Numerical Solution for EFK equation

−−> x

−
−

>
 u

t=0.1
t=0.3
t=0.7
t=1.5
t=2.0

Figure 1. The profile of u(x, t) vs x for γ = 0.01
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Divide the domain into Ni = 5, 10, 20 with each of equal intervals hi, where

hi =
1
Ni

i = 1, · · · , 3.

With S0
h consisting of C1-piecewise cubic polynomials, we consider the Galerkin

approximation uh. In Fig. 1, we obtain the graph of the approximate solution with
h = 1

50 at different time levels t = 0.1, 0.3, 0.7, 1.5, 2.0. Since the exact solution of
the EFK equation is not known, it has been replaced by numerical solution uh with
h = 160. The order of convergence for the numerical method has been computed
by the formula

order =
log
[
‖uh − uhi

‖Lj

‖uh − uhi+1‖Lj

]
log(2)

, i = 1, 2, j = 2,∞,

where uhi
is the numerical solution with step size hi and hi+1 = hi

2 .
The order of the convergence in L∞ norm:

N ‖uh − uhi‖L∞ order
10 0.7753074169158936E-03
20 0.4878640174865723E-04 3.9902
40 0.3010034561157227E-05 4.0186

Table 1. The order of convergence for u(x, t) at t = 1.0
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