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SYMMETRIC INTERIOR PENALTY DG METHODS FOR THE

COMPRESSIBLE NAVIER–STOKES EQUATIONS II:

GOAL–ORIENTED A POSTERIORI ERROR ESTIMATION

RALF HARTMANN AND PAUL HOUSTON

Abstract. In this article we consider the application of the generalization

of the symmetric version of the interior penalty discontinuous Galerkin finite

element method to the numerical approximation of the compressible Navier–

Stokes equations. In particular, we consider the a posteriori error analysis

and adaptive mesh design for the underlying discretization method. Indeed, by

employing a duality argument (weighted) Type I a posteriori bounds are derived

for the estimation of the error measured in terms of general target functionals

of the solution; these error estimates involve the product of the finite element

residuals with local weighting terms involving the solution of a certain dual

problem that must be numerically approximated. This general approach leads

to the design of economical finite element meshes specifically tailored to the

computation of the target functional of interest, as well as providing efficient

error estimation. Numerical experiments demonstrating the performance of the

proposed approach will be presented.

Key Words. Discontinuous Galerkin methods, a posteriori error estimation,

adaptivity, compressible Navier–Stokes equations

1. Introduction

In the recent series of articles [12, 13, 14, 17], we have been concerned with the

development of so–called ‘goal–oriented’ a posteriori error estimation for h–version

adaptive discontinuous Galerkin finite element methods (DGFEMs, for short) ap-

plied to inviscid compressible fluid flows; see also [19] and the references cited

therein for the generalization to the hp–version of the DGFEM. Here, in contrast

to traditional a posteriori error estimation which seeks to bound the error with re-

spect to a given norm, goal–oriented a posteriori error estimation bounds the error

measured in terms of certain output or target functionals of the solution of real

or physical interest. Typical examples include the mean value of the field over the

computational domain Ω, the normal flux through the outflow boundary of Ω, the

evaluation of the solution at a given point in Ω and the drag and lift coefficients of

a body immersed in a fluid. For related work, we refer to [6, 18], for example.
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The purpose of this article is to extend our earlier work on nonlinear systems

of first–order hyperbolic conservation laws to the compressible Navier–Stokes equa-

tions. As in the companion article [16], the discretization of the leading order terms

is performed by employing the generalization of the symmetric version of the inte-

rior penalty DGFEM. One of the key aspects of this discretization scheme is the

satisfaction of the adjoint consistency condition, cf. [1], for linear problems. This

condition is essential to guarantee that the optimal order of convergence of the

numerical approximation to the underlying analytical solution is attained when the

discretization error is measured in terms of either the L2–norm, or in the ‘goal–

oriented’ setting, in terms of a given target functional of practical interest. By

employing a duality argument we derive a weighted, or Type I, a posteriori error

bound which reflects the error creation and error propagation mechanisms inherent

in viscous compressible fluid flows. On the basis of this a posteriori estimate, we

design and implement the corresponding adaptive algorithm to ensure both the

reliable and efficient control of the error in the prescribed target functional of in-

terest. The superiority of the proposed approach over standard mesh refinement

algorithms which employ (unweighted) empirical error indicators will be demon-

strated. Additionally, we show numerically that the computed error representation

formula can be employed to determine a improved value of the computed target

functional J(·) of interest in order to yield a higher–order approximation to the

exact value of this quantity.

The paper is structured as follows. After introducing, in Section 2, the compress-

ible Navier–Stokes equations, in Section 3 we formulate its discontinuous Galerkin

finite element approximation. Then, in Section 4 we derive an error representation

formula together with the corresponding (weighted) Type I and (unweighted) Type

II a posteriori error bounds for general target functionals of the solution. The error

representation formula stems from a duality argument and includes computable

residual terms multiplied by local weights involving the dual solution; the inclusion

of the dual solution in the Type I bound ensures that the error creation and error

propagation mechanisms inherent in viscous compressible fluid flows are reflected by

the resulting local error indicators. On the basis of the (approximate) Type I error

bound, in Section 5 we design and implement an adaptive algorithm that produces

meshes specifically tailored to the efficient computation of the target functional

of practical interest. The performance of the proposed adaptive strategy, and the

quality of the (approximate) error representation formula and (approximate) Type

I a posteriori bound, are then studied in Section 6 through a series of numerical

experiments. Finally, in Section 7 we summarize the work presented in this paper

and draw some conclusions.

The work presented in this paper is a complete and improved account of our

recent work announced in the conference article [15].



SIPDG FEM FOR THE COMPRESSIBLE NAVIER–STOKES EQUATIONS II 143

2. Model Problem

Writing ρ, v = (v1, v2)
⊤, p, E, and T to denote the density, velocity vector, pres-

sure, specific total energy, and temperature, respectively, the compressible Navier–

Stokes equations are given by

(1) ∇ · (Fc(u) −Fv(u,∇u)) ≡
∂

∂xi
f c
i (u) −

∂

∂xi
fv
i (u,∇u) = 0 in Ω,

where Ω is an open bounded domain in R
2. Here, and throughout the rest of this

article, we use the summation convention, i.e., repeated indices are summed through

their range. The vector of conservative variables u, the convective fluxes f c
i , i = 1, 2,

and the viscous fluxes fv
i , i = 1, 2, are defined by u = [ρ, ρv1, ρv2, ρE]

⊤
, f c

i (u) =

[ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, ρHvi]
⊤

, i = 1, 2, and fv
i = [0, τ1i, τ2i, τi1v1 + τi2v2

+KTxi
]
⊤

, i = 1, 2, respectively. Here, K is the thermal conductivity coefficient and

H is the total enthalpy defined by H = E+p/ρ. The pressure is determined by the

equation of state of an ideal gas, i.e.,

(2) p = (γ − 1)ρ(E − 1
2v

2),

where γ = cp/cv is the ratio of specific heat capacities at constant pressure (cp)

and constant volume (cv); for dry air, γ = 1.4. For a Newtonian fluid, the viscous

stress tensor is given by

(3) τ = µ
(

∇v + (∇v)⊤ − 2
3 (∇ · v)I

)

,

where µ is the dynamic viscosity coefficient; the temperature T is given by KT =
µγ
Pr

(

E − 1
2v

2
)

, where Pr = 0.72 is the Prandtl number.

For the purposes of discretization, we rewrite the compressible Navier–Stokes

equations (1) in the following (equivalent) form:

(4)
∂

∂xi

(

f c
i (u) −Gij(u)

∂u

∂xj

)

= 0 in Ω.

Here, the matrices Gij(u) = ∂fv
i (u,∇u)/∂uxj

, for i, j = 1, 2, i.e., fv
i (u,∇u) =

Gij(u)∂u/∂xj , i = 1, 2, where

G11 =
µ

ρ











0 0 0 0

−

4
3
v1

4
3

0 0

−v2 0 1 0

−

(

4
3
v2
1 + v2

2 +
γ

Pr

(

E − v
2
)) (

4
3
−

γ

Pr

)

v1

(

1 −

γ

Pr

)

v2
γ

Pr











,

G12 =
µ

ρ











0 0 0 0
2
3
v2 0 −

2
3

0

−v1 1 0 0

−

1
3
v1v2 v2 −

2
3
v1 0











, G21 =
µ

ρ











0 0 0 0

−v2 0 1 0
2
3
v1 −

2
3

0 0

−

1
3
v1v2 −

2
3
v2 v1 0











,

G22 =
µ

ρ











0 0 0 0

−v1 1 0 0

−

4
3
v2 0

4
3

0

−

(

v2
1 +

4
3
v2
2 +

γ

Pr

(

E − v
2
)) (

1 −

γ

Pr

)

v1

(

4
3
−

γ

Pr

)

v2
γ

Pr











.

Given that Ω ⊂ R
2 is a bounded region, with boundary Γ, the system of conser-

vation laws (4) must be supplemented by appropriate boundary conditions. As in
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[16], for simplicity of presentation, we assume that Γ may be decomposed as follows

Γ = ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out ∪ ΓN ∪ ΓW,

where ΓD,sup, ΓD,sub-in, ΓD,sub-out, ΓN, and ΓW are distinct subsets of Γ represent-

ing Dirichlet (supersonic), Dirichlet (subsonic-inflow), Dirichlet (subsonic-outflow),

Neumann (supersonic-outflow), and solid wall boundaries, respectively. Thereby,

we may specify the following boundary conditions:

(5) B(u) = B(gD) on ΓD,sup∪ΓD,sub-in∪ΓD,sub-out, Fv(u,∇u) ·n = gN on ΓN,

where gD and gN are given Dirichlet and Neumann boundary conditions, respec-

tively. Here, B is a boundary operator employed to enforce appropriate Dirichlet

conditions on ΓD,sup ∪ ΓD,sub-in ∪ ΓD,sub-out. For simplicity of presentation, we as-

sume that B(u) = u on ΓD,sup, B(u) = (u1, u2, u3, 0)⊤ on ΓD,sub-in, and B(u) =
(

0, 0, 0, (γ − 1)(u4 − (u2
2 + u2

3)/(2u1))
)⊤

on ΓD,sub-out; we note that this latter con-

dition enforces a specific pressure pout = (B(gD))4 on ΓD,sub-out.

For solid wall boundaries, we consider isothermal and adiabatic conditions; to

this end, decomposing ΓW = ΓW,iso ∪ ΓW,adia, we set

v = 0 on ΓW, T = Twall on ΓW,iso, n · ∇T = 0 on ΓW,adia,

where Twall is a given wall temperature; see [4, 5, 7, 8, 9] and the references cited

therein for further details

3. Discontinuous Galerkin Discretization

In this section we introduce the discontinuous Galerkin method with interior

penalty for the discretization of the compressible Navier–Stokes equations (4); for

full details concerning the derivation of the proposed scheme, we refer to the com-

panion article [16].

We assume that Ω can be subdivided into shape-regular meshes Th = {κ} con-

sisting of quadrilateral elements κ. For each κ ∈ Th, we denote by nκ the unit

outward normal vector to the boundary ∂κ, and by hκ the elemental diameter. An

interior edge of Th is the (non-empty) one-dimensional interior of ∂κ+∩∂κ−, where

κ+ and κ− are two adjacent elements of Th. Similarly, a boundary edge of Th is

the (non-empty) one-dimensional interior of ∂κ ∩ Γ which consists of entire edges

of ∂κ. We denote by ΓI the union of all interior edges of Th.

Next, we define average and jump operators. To this end, let κ+ and κ− be

two adjacent elements of Th and x be an arbitrary point on the interior edge e =

∂κ+ ∩ ∂κ− ⊂ ΓI . Moreover, let v and τ be vector- and matrix-valued functions,

respectively, that are smooth inside each element κ±. By (v±, τ±) we denote the

traces of (v, τ) on e taken from within the interior of κ±, respectively. Then, we

define the averages at x ∈ e by {{v}} = (v+ + v−)/2 and {{τ}} = (τ+ + τ−)/2.

Similarly, the jumps at x ∈ e are given by [[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− and

[[[[[[τ]]]]]] = τ+ ·nκ+ +τ− ·nκ− . For matrices σ, τ ∈ R
m×n, m,n ≥ 1, we use the standard

notation σ : τ =
∑m

k=1

∑n
l=1 σklτkl; additionally, for vectors v ∈ R

m,w ∈ R
n, the

matrix v ⊗ w ∈ R
m×n is defined by (v ⊗ w)kl = vk wl.

Given a polynomial degree p ≥ 1, we define the finite element space Vh = {v ∈

[L2(Ω)]
4

: v|κ ∈ [Qp(κ)]
4
, κ ∈ Th}, where Qp(κ) denotes the space of tensor

product polynomials on κ of degree p in each coordinate direction. We consider the
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following interior penalty discontinuous Galerkin discretization of the compressible

Navier–Stokes equations (4): find uh ∈ Vh such that

N (uh,vh) ≡ −

∫

Ω

Fc(uh) : ∇hvh dx +
∑

κ∈Th

∫

∂κ\Γ

H(u+
h ,u

−
h ,nκ) · v+

h ds

+

∫

Ω

Fv(uh,∇huh) : ∇hvh dx −

∫

ΓI

{{Fv(uh,∇huh)}} : [[vh]] ds

−

∫

ΓI

{{
(

G⊤
i1∂hvh/∂xi, G

⊤
i2∂hvh/∂xi

)

}} : [[uh]] ds+

∫

ΓI

δ[[uh]] : [[vh]] ds

+

∫

Γ

H(u+
h ,uΓ(u+

h ),n) · v+
h ds+

∫

Γ\ΓN

δ
(

u+
h − uΓ(u+

h )
)

· v+
h ds

−

∫

Γ\(ΓN∪ΓW,adia)

Fv(u+
h ,∇hu

+
h ) : [[vh]] ds−

∫

ΓN

gN · vh ds

−

∫

ΓW,adia

Fv,adia(u+
h ,∇hu

+
h ) : [[vh]] ds

−

∫

Γ\ΓN

(

G⊤
i1(u

+
h )∂hv

+
h /∂xi, G

⊤
i2(u

+
h )∂hv

+
h /∂xi

)

:
(

u+
h − uΓ(u+

h )
)

⊗ nds = 0(6)

for all vh in Vh. Here, the subscript h on the operators ∇h and ∂h/∂xi, i = 1, 2,

is used to denote the discrete counterparts of ∇ and ∂/∂xi, i = 1, 2, respectively,

defined elementwise. Furthermore, H(·, ·, ·) denotes a numerical (convective) flux

function, assumed to be Lipschitz continuous, consistent and conservative. The

discontinuity penalization matrix δ = diag{δi, i = 1, . . . , 4} is set to

(7) δi|e = CIP

µp2

h̃
for e ⊂ ΓI ∪ Γ,

where h̃ = min(meas(κ),meas(κ′))/meas(e) represents the element dimension or-

thogonal to the edge e of elements κ and κ′ adjacent to e, and CIP is a positive

constant, which, for reasons of stability, must be chosen sufficiently large, cf. [1].

Finally, the boundary function uΓ(u) is given according to the type of boundary

condition imposed. To this end, we set uΓ(u) = gD on ΓD,sup, uΓ(u) = u on ΓN,

uΓ(u) = ((gD)1, (gD)2, (gD)3,
p(u)
γ−1 + ((gD)22 + (gD)23)/(2(gD)1))

⊤ on ΓD,sub-in, and

uΓ(u) = (u1, u2, u3,
pout
γ−1 + (u2

2 + u2
3)/(2u1))

⊤ on ΓD,sub-out. Here, p ≡ p(u) denotes

the pressure evaluated using the equation of state (2).

Finally, we set uΓ(u) = (u1, 0, 0, u1cvTwall)
⊤

on ΓW,iso, uΓ(u) = (u1, 0, 0, u4)
⊤

on ΓW,adia, and define Fv,adia(u,∇u) such that

Fv,adia(u,∇u) · n = (0, τ1jnxj
, τ2jnxj

, τijvjnxi
)⊤.

4. Goal–oriented a posteriori error estimation

In this section, we shall be concerned with controlling the error in the numerical

approximation measured in terms of a given target functional J(·). Quantities of

real or physical interest include the drag and lift coefficients, cd and cl, respectively,

of a body immersed into a viscous fluid. These quantities are defined by

Jcd
(u) = Jcdp

(u) + Jcdf
(u),

Jcl
(u) = Jclp

(u) + Jclf
(u),
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respectively, where cdp and clp are the pressure induced force coefficients given by

(8) Jcdp
(u) =

2

lρ̄|v̄|2

∫

S

p (n · ψd) ds and Jclp
(u) =

2

lρ̄|v̄|2

∫

S

p (n · ψl) ds,

respectively, and cdf and clf are the viscous force coefficients, defined by

(9) Jcdf
(u) =

2

lρ̄|v̄|2

∫

S

(τ n) · ψd ds and Jclf
(u) =

2

lρ̄|v̄|2

∫

S

(τ n) · ψl ds,

respectively. Here, S denotes the surface of the body, l its chord length, v̄ and ρ̄ are

the reference (or free-stream) velocity and density, respectively, (τ n) ·ψ = τijnjψi,

where τ is the viscous stress tensor defined in (3),

ψd =

(

cos(α) − sin(α)

sin(α) cos(α)

)(

1

0

)

, ψl =

(

cos(α) − sin(α)

sin(α) cos(α)

)(

0

1

)

,

and α is the angle of attack. Other examples of J(·) include the local mean value of

the field or its flux through the outflow boundary of the computational domain Ω,

and the point evaluation of a component of u in Ω. For a more detailed discussion,

we refer to the review articles [6, 19]. Assuming that J(·) is differentiable, we write

(10) J̄(u,uh;u − uh) = J(u) − J(uh) =

∫ 1

0

J ′[θu + (1 − θ)uh](u − uh) dθ,

where J ′[w](·) denotes the Fréchet derivative of J(·) evaluated at some w in V.

Here, V is some suitably chosen function space such that Vh ⊂ V. Analogously,

we write

M(u,uh;u − uh,v) = N (u,v) −N (uh,v)

=

∫ 1

0

N ′
u
[θu + (1 − θ)uh](u − uh,v) dθ(11)

for all v in V. Here, N ′
u
[w](·,v) denotes the Fréchet derivative of u 7→ N (u,v),

for v ∈ V fixed, at some w in V. We remark that the linearization defined in (11)

is only a formal calculation, in the sense that N ′
u
[w](·, ·) may not in general exist.

Instead, a suitable approximation to N ′
u
[w](·, ·) must be determined, for example,

by computing appropriate finite difference quotients of N (·, ·), cf. [11, 12]. For the

purposes of the current section, we assume that this linearization may be performed

exactly; in Section 6 we employ the approximation to N ′
u
[w](·, ·) defined in the

companion article [16]. Given a suitable linearization, we introduce the following

dual problem: find z ∈ V such that

M(u,uh;w, z) = J̄(u,uh;w) ∀w ∈ V.(12)

We assume that (12) possesses a unique solution. Clearly, the validity of this

assumption depends on both the definition of M(u,uh; ·, ·) and the choice of the

target functional under consideration, cf. [12]. For the proceeding error analysis,

we must therefore assume that the dual problem (12) is well–posed.

Proposition 4.1 (Error representation formula). Let u and uh denote the solutions

of (4) and (6), respectively, and suppose that the dual problem (12) is well–posed.

Then,

(13) J(u) − J(uh) = EΩ(u,uh; z − zh) ≡
∑

κ∈Th

ηκ,
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where

ηκ =

∫

κ

R(uh) · ω~ dx +

∫

∂κ\Γ

(Fc(uh) · nκ −H(u+
h ,u

−
h ,nκ)) · ω+

~
ds

+

∫

∂κ∩Γ

(Fc(uh) · nκ −H(u+
h ,uΓ(u+

h ),nκ)) · ω+
~

ds

+
1

2

∫

∂κ\Γ

(

(

G⊤
i1∂hω~/∂xi, G

⊤
i2∂hω~/∂xi

)

: [[uh]] − [[[[[[Fv(uh,∇uh)]]]]]] · ω+
~

)

ds

−

∫

∂κ\Γ

δ[[uh]] : ω
+
~
⊗ nκ ds−

∫

∂κ∩(Γ\ΓN )

δ
(

u+
h − uΓ(u+

h )
)

· ω+
~

ds

−

∫

∂κ∩ΓN

(Fv(u+
h ,∇u+

h ) · nκ − gN) · ω+
~

ds

−

∫

∂κ∩ΓW,adia

(

Fv(u+
h ,∇u+

h ) −Fv,adia(u+
h ,∇u+

h )
)

: ω
+
~
⊗ n ds

+

∫

∂κ∩(Γ\ΓN)

(

G⊤
i1(u

+
h )∂hω

+
~
/∂xi, G

⊤
i2(u

+
h )∂hω

+
~
/∂xi

)

:
(

u+
h − uΓ(u+

h )
)

⊗ n ds,

and ω~ = z−zh for all zh in Vh. Here, R(uh)|κ = −∇·Fc(uh)+∇·Fv(uh,∇uh),

κ ∈ Th, denotes the elementwise residual.

Proof. Choosing w = u− uh in (12), recalling the linearization performed in (10),

and exploiting the Galerkin orthogonality property of the DGFEM, we get

J(u) − J(uh) = J̄(u,uh;u − uh) = M(u,uh;u − uh, z)

= M(u,uh;u − uh, z − zh) = −N (uh, z − zh) ∀zh ∈ Vh.

Equation (13) now follows by application of the divergence theorem. �

Remark 4.2. We note that the dependence of the error representation formula

EΩ(u,uh; z− zh) on the unknown analytical solution u to the compressible Navier–

Stokes equations (4) stems from the linearizations performed in (10) and (11).

From the error representation formula (13) we can easily derive the following

Type I error bound.

Corollary 4.3 (Type I error bound). Given that the assumptions of Proposition

4.1 hold. Then,

(14) J(u) − J(uh) ≤
∑

κ∈Th

η(I)
κ ,

where η
(I)
κ = |ηκ|, and ηκ as given in Proposition 4.1.

Proof. Equation (14) follows from (13) by employing the triangle inequality. �

We now proceed to derive a so–called unweighted, or Type II, a posteriori error

bound, where the dependence of the dual solution z only enters the resulting es-

timate via a stability constant. To this end, under the foregoing assumption that

the underlying computational meshes employed, Th, parameterised by h > 0, are

shape-regular, we first recall the following approximation result; cf. [3], for example.
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Lemma 4.4. Given κ ∈ Th, suppose that v|κ ∈ Hkκ(κ), 0 ≤ kκ ≤ p+1. Then, there

exists Πv in Qp(κ), a constant Cint dependent on kκ, p, and the shape-regularity of

Th, but independent of v and hκ, such that for 0 ≤ q ≤ kκ,

‖v − Πv‖Hq(κ) ≤ Cinth
kκ−q
κ ‖v‖Hkκ (κ).(15)

Moreover, by employing Lemma 4.4, together with the multiplicative trace in-

equality

‖v‖L2(∂κ) ≤ Ctrace

(

‖v‖L2(κ)‖∇v‖L2(κ) + h−1
κ ‖v‖2

L2(κ)

)1/2

,

where Ctrace > 0 is a constant, dependent solely on the shape-regularity of Th, we

deduce that, given v|κ ∈ Hkκ(κ) for some 1 ≤ kκ ≤ p+ 1 and κ ∈ Th,

‖v − Πv‖L2(∂κ) ≤ Chkκ−1/2
κ ‖v‖Hkκ (κ).(16)

Similarly, given v|κ ∈ Hkκ(κ) for some 2 ≤ kκ ≤ p+ 1 and κ ∈ Th, we have

‖v − Πv‖H1(∂κ) ≤ Chkκ−3/2
κ ‖v‖Hkκ (κ).(17)

In (16) and (17), C is a positive constant, different at each occurrence, which de-

pends on the shape-regularity of Th and the polynomial degree p, but is independent

of the mesh size.

Equipped with (15), (16), and (17), we now prove the following Type II a pos-

teriori error bound.

Corollary 4.5 (Type II error bound). Given that the assumptions of Proposition

4.1 hold, suppose that z ∈ [Hs(Ω)]
4
, 2 ≤ s ≤ p + 1, and that we have found a

constant Cstab such that

‖z‖Hs(Ω) ≤ Cstab.(18)

Then, the following Type II a posteriori error bound holds:

|J(u) − J(uh)| ≤ C

(

∑

κ∈Th

(

η(II)
κ

)2
)1/2

,(19)

where

η(II)
κ = ‖hs

κR(uh)‖L2(κ) + ‖hs−1/2
κ (Fc(uh) · nκ −H(u+

h ,u
−
h ,nκ))‖L2(∂κ\Γ)

+ ‖hs−1/2
κ (Fc(uh) · nκ −H(u+

h ,uΓ(u+
h ),nκ))‖L2(∂κ∩Γ)

+ ‖hs−3/2
κ G·j [[uh]]

j
‖L2(∂κ\Γ) + ‖hs−1/2

κ [[[[[[Fv(uh,∇uh)]]]]]]‖L2(∂κ\Γ)

+ ‖hs−1/2
κ δ

(

u+
h − u−

h

)

‖L2(∂κ\Γ)

+ ‖hs−1/2
κ δ

(

u+
h − uΓ(u+

h )
)

‖L2(∂κ∩(Γ\ΓN ))

+ ‖hs−1/2
κ (Fv(u+

h ,∇u+
h ) · nκ − gN)‖L2(∂κ∩ΓN)

+ ‖hs−1/2
κ

(

Fv(u+
h ,∇u+

h ) −Fv,adia(u+
h ,∇u+

h )
)

· nκ‖L2(∂κ∩ΓW,adia)

+ ‖hs−3/2
κ G·j(u

+
h )
[(

u+
h − uΓ(u+

h )
)

⊗ n
]

j
‖L2(∂κ∩(Γ\ΓN))

(20)

and C is a positive constant depending on the shape-regularity of the mesh, the

polynomial degree and the regularity of the dual solution, but is independent of the
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mesh size. For interior edges, we have used the notation

‖G·j [[uh]]
j
‖L2(∂κ) =

(

2
∑

i=1

∫

∂κ

∣

∣

∣Gij [[uh]]
j

∣

∣

∣

2

ds

)

1
2

,

where for a m × n matrix A, we write Aj, 1 ≤ j ≤ n, to denote the m–vector

consisting of the jth column of A; the last term on the right-hand side of (20) is

also defined in an analogous manner.

Proof. Selecting zh = Πz, applying the Cauchy–Schwarz inequality, together with

the approximation results (15), (16), and (17), we note that the local error indicator

|ηκ|, cf. Proposition 4.1, may be bounded as follows:

|ηκ| ≤ C
(

‖hs
κR(uh)‖L2(κ) + ‖hs−1/2

κ (Fc(uh) · nκ −H(u+
h ,u

−
h ,nκ))‖L2(∂κ\Γ)

+‖hs−1/2
κ (Fc(uh) · nκ −H(u+

h ,uΓ(u+
h ),nκ))‖L2(∂κ∩Γ)

+‖hs−3/2
κ G·j [[uh]]

j
‖L2(∂κ\Γ) + ‖hs−1/2

κ [[[[[[Fv(uh,∇uh)]]]]]]‖L2(∂κ\Γ)

+‖hs−1/2
κ δ

(

u+
h − u−

h

)

‖L2(∂κ\Γ)

+‖hs−1/2
κ δ

(

u+
h − uΓ(u+

h )
)

‖L2(∂κ∩(Γ\ΓN ))

+‖hs−1/2
κ (Fv(u+

h ,∇u+
h ) · nκ − gN)‖L2(∂κ∩ΓN)

+‖hs−1/2
κ

(

Fv(u+
h ,∇u+

h ) −Fv,adia(u+
h ,∇u+

h )
)

· nκ‖L2(∂κ∩ΓW,adia)

+‖hs−3/2
κ G·j(u

+
h )
[(

u+
h − uΓ(u+

h )
)

⊗ n
]

j
‖L2(∂κ∩(Γ\ΓN))

)

‖z‖Hs(κ),(21)

for 2 ≤ s ≤ p + 1, where C is a positive constant which depends on the shape-

regularity of the mesh Th and the polynomial degree, but is independent of the

mesh size. Here, for the fourth and tenth terms on the right–hand side of (21), we

have employed the following identity:

(

G⊤
i1∂hω~/∂xi, G

⊤
i2∂hω~/∂xi

)

: [[uh]] = Gij [[uh]]
j
· ∂hω~/∂xi.

Upon summing over the elements in the mesh Th, application of the Cauchy–

Schwarz inequality, together with the stability bound (18), the statement of the

corollary follows immediately. �

We note that the error representation formula (13) and the Type I a posteriori

error bound (14) depends on the unknown analytical solution to the primal and

dual problems, u and z, respectively. Thus, in order to render these quantities

computable, both u and z must be replaced by suitable approximations. Here, the

linearizations leading to M(u,uh; ·, ·) and J̄(u,uh; ·) are performed about uh and

the dual solution z is replaced by a DGFEM approximation ẑ computed on the

same mesh Th used for uh, but with a higher degree polynomial.

Notwithstanding these approximations, we shall show through numerical exper-

imentation in Section 6, that the reliability of the Type I a posteriori error bound

(14) is not compromised, in the sense that
∑

κ∈Th
η̂(I)

κ , where η̂(I)
κ = |η̂κ| and η̂κ is

defined in an analogous manner to ηκ, cf. Proposition 4.1, with z replaced by ẑ, re-

mains an upper bound on the true error in the target functional J(·). Furthermore,
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we shall show that the ratio of the approximate error representation formula

(22) EΩ(uh,uh; ẑ − zh) ≡
∑

κ∈Th

η̂κ

and the true value J(u) − J(uh) is extremely close to one; see [10, 12, 13, 18], for

related work.

Before we end this section, we finally note that provided the linearization er-

ror is sufficiently small and the analytical solutions to the underlying compressible

Navier–Stokes equations and the corresponding dual problem are sufficiently regu-

lar, then the approximate error representation formula (22) may be used to improve

the computed value of the target functional of interest, J(uh). To see this, we note

that the error representation formula may be written as follows:

J(u) − J(uh) = EΩ(uh,uh; ẑ − zh) + EΩ(uh,uh; z − ẑ)

+EΩ(u,uh; z − zh) − EΩ(uh,uh; z − zh).(23)

Here, the first term on the right–hand side of (23) is the approximate error repre-

sentation formula which is actually computed in practice, cf. above. Given that ẑ

is computed using higher–order polynomials to those employed for uh, the second

term on the right–hand side of (23) will be of higher–order than the first, provided

that the dual solution is sufficiently regular. The last two terms on the right–hand

side of (23) represent the error incurred through linearization; in cases when the

analytical solution u is smooth, we would expect these terms to be relatively small.

Thereby, in these circumstances, we can expect that the modified value of the target

functional, namely,

J̃(uh) = J(uh) + EΩ(uh,uh; ẑ − zh)

should provide an improved estimate of the actual value of the target functional

J(u); this will be demonstrated numerically in Section 6.

5. Adaptive mesh refinement

In this section we consider the design of an adaptive algorithm to ensure the

efficient computation of the given target functional J(·) of practical interest. To

this end, we employ the approximate Type I a posteriori error bound
∑

κ∈Th
η̂(I)

κ

to determine when the desired level of accuracy has been achieved. For example,

suppose that the aim of the computation is to compute J(·) such that the error

|J(u) − J(uh)| is less than some user-defined tolerance TOL, i.e.,

|J(u) − J(uh)| ≤ TOL;

then, in practice we may enforce the stopping criterion
∑

κ∈Th

η̂(I)
κ ≤ TOL.

If this condition is not satisfied on the current finite element mesh Th, then the ele-

mentwise terms η̂(I)
κ are employed as local error indicators to guide mesh refinement

and coarsening. The cycle of the adaptive mesh refinement is outlined as follows:

(1) Construct an initial mesh Th.

(2) Compute uh ∈ Vh on the current mesh Th.
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Figure 1. Computational mesh with 3072 elements: (a) Full view;

(b) Zoom of the mesh.

(3) Compute ẑ ∈ V̂h, where V̂h is a finite element space defined in an analogous

manner to Vh based on the (same) computational mesh Th, but consisting

of piecewise (discontinuous) polynomials of degree p̂ > p.

(4) Evaluate the approximate a posteriori error bound
∑

κ∈Th
η̂(I)

κ .

(5) If
∑

κ∈Th
η̂(I)

κ ≤ TOL, where TOL is a given tolerance, then STOP.

(6) Otherwise, refine and coarsen a fixed fraction of the total number of ele-

ments according to the size of η̂(I)
κ and generate a new mesh Th; GOTO 2.

6. Numerical experiments

In this section we present a series of numerical examples to highlight the ad-

vantages of designing an adaptive finite element algorithm based on the weighted

error indicator η̂
(I)
κ , in comparison to an adaptive algorithm based on an empirical

(unweighted) refinement indicator which does not require the solution of an auxil-

iary (dual) problem; for simplicity, we employ the Type II residual–based indicator

η
(II)
κ defined in Section 4. Throughout this section, we employ the Vijayasundaram

flux for the discretization of the convective terms and set p = 1 (bilinear elements).

As in [16], we select the constant CIP appearing in the discontinuity penalisation

parameter δi, i = 1, . . . , 4, defined in (7) as follows: CIP = 10. Finally, for both

adaptive refinement strategies, we use the fixed fraction refinement algorithm with

refinement and derefinement fractions set to 20% and 10%, respectively; we also

note that for the computation of η̂
(I)
κ , the dual solution is approximated using piece-

wise biquadratic polynomials, i.e., p̂ = 2.

All computations presented in this section have been performed using a DG flow

solver based on the deal.II library [2].

6.1. Mach 0.5 flow at Re = 5000 and α = 0◦ around a NACA0012. In this

example, we consider the subsonic viscous flow around a NACA0012 airfoil; here,

the upper and lower surfaces of the airfoil geometry are specified by the function
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Figure 2. M = 0.5,Re = 5000, α = 0◦ flow around the

NACA0012 airfoil: (top) Mach isolines; (bottom) Streamlines.

g±, respectively, where

g±(s) = ±5 × 0.12 × (0.2969s1/2 − 0.126s− 0.3516s2 + 0.2843s3 − 0.1015s4).

As the chord length l of the airfoil is l ≈ 1.00893 we use a rescaling of g in order to

yield an airfoil of unit (chord) length. The computational domain Ω is subdivided

into quadrilateral elements; cf. the C-type mesh depicted in Figure 1. Curved

boundaries are approximated by piecewise quadratic polynomials. At the farfield

(inflow) boundary we specify a Mach 0.5 flow at a zero angle of attack, i.e. α =

0◦, with Reynolds number Re = 5000; on the walls of the airfoil geometry, we

impose a zero heat flux (adiabatic) no-slip boundary condition. This is a standard

laminar test case which has been investigated by many other authors, cf. [5], for

example; this test case was also considered in the companion–article [16] in order

to demonstrate the convergence of the inviscid and viscous drag coefficients, cdp

and cdf , respectively, on the surface of the airfoil under both global and local mesh

refinement. The solution to this problem consists of a strictly subsonic flow which is

symmetric about the x-axis, see Figure 2. On the basis of a fine grid computation,

the reference values for these quantities of interest are given by Jcdp
(u) ≈ 0.0222875

and Jcdf
(u) ≈ 0.032535.

In Table 1 we demonstrate the performance of the adaptive algorithm for the

numerical approximation of the inviscid drag coefficient, i.e. when J(·) ≡ Jcdp
(·),

based on employing the weighted Type I error indicators η̂
(I)
κ . Here, we show

the number of elements and degrees of freedom (DoF) in Vh, the true error in

the functional J(u) − J(uh), the computed error representation formula, the ap-

proximate a posteriori error bound, and their respective effectivity indices θ1 =
∑

κ∈Th
η̂κ/(J(u) − J(uh)) and θ2 =

∑

κ∈Th
|η̂κ|/|J(u) − J(uh)|; here, we recall

that η̂
(I)
κ = |η̂κ|. We see that initially on very coarse meshes the quality of the

computed error representation formula
∑

κ∈Th
η̂κ is rather poor, in the sense that

θ1 noticeably differs from one; however, as the mesh is refined, we observe that

the effectivity indices θ1 slowly tend towards unity. On the other hand, just the
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Table 1. M = 0.5,Re = 5000, α = 0◦ flow around the NACA0012

airfoil: Adaptive algorithm for the numerical approximation of cdp

based on employing the Type I error indicator η̂
(I)
κ .

Elements DoF J(u) − J(uh)
∑

κ∈Th
η̂κ θ1

∑

κ∈Th
|η̂κ| θ2

3072 49152 1.522e-02 1.040e-02 0.68 1.963e-02 1.29

4929 78864 4.410e-03 3.839e-03 0.87 6.659e-03 1.51

8097 129552 1.262e-03 1.156e-03 0.92 2.208e-03 1.75

13467 215472 3.285e-04 3.106e-04 0.95 7.156e-04 2.18

21846 349536 8.918e-05 8.675e-05 0.97 2.725e-04 3.06

35610 569760 2.536e-05 2.530e-05 1.00 1.253e-04 4.94
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Figure 3. M = 0.5,Re = 5000, α = 0◦ flow around the

NACA0012 airfoil: (a) Computed values of cdp based on employ-

ing the error indicators η̂
(I)
κ and η

(II)
κ , together with the improved

value; (b) Convergence of the error in these quantities.

Table 2. M = 0.5,Re = 5000, α = 0◦ flow around the NACA0012

airfoil: Adaptive algorithm for the numerical approximation of cdf

based on employing the Type I error indicator η̂
(I)
κ .

Elements DoF J(u) − J(uh)
∑

κ∈Th
η̂κ θ1

∑

κ∈Th
|η̂κ| θ2

3072 49152 -1.839e-02 -1.274e-02 0.69 2.430e-02 1.32

4962 79392 -3.680e-03 -3.239e-03 0.88 9.399e-03 2.55

8028 128448 -8.246e-04 -7.596e-04 0.92 4.209e-03 5.10

13446 215136 -1.773e-04 -1.680e-04 0.95 2.067e-03 11.65

21750 348000 -4.444e-05 -4.258e-05 0.96 1.044e-03 23.48

35118 561888 -1.624e-05 -1.626e-05 1.00 5.328e-04 32.82

application of the triangle inequality leads to reliable error estimation, even on the

coarsest mesh; indeed, here we see that θ2 is always greater than one, though we

do observe a slight increase in this quantity as the mesh is refined.



154 RALF HARTMANN AND PAUL HOUSTON

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

3000 10000 30000

reference cdf = 0.032535
cdf value for ref. by ind. eta^(II)
cdf value for ref. by ind. eta^(I)

improved cdf value for ref. by ind. eta^(I)

c
d
f

Number of elements

1e-06

1e-05

0.0001

0.001

0.01

3000 10000 30000

error of cdf value for ref. by ind. eta^(II)
error of cdf value for ref. by ind. eta^(I)

error of improved cdf value for ref. by ind. eta^(I)

|0
.0

3
2
5
3
5
−

c
d
f
|

Number of elements

(a) (b)

Figure 4. M = 0.5,Re = 5000, α = 0◦ flow around the

NACA0012 airfoil: (a) Computed values of cdf based on employ-

ing the error indicators η̂
(I)
κ and η

(II)
κ , together with the improved

value; (b) Convergence of the error in these quantities.

In Figure 3 we compare the true error in the computed target functional Jcdp
(·)

using the two mesh refinement strategies. Here, we clearly observe the superiority

of employing the weighted Type I a posteriori error indicator; on the final mesh, the

true error in the computed target functional is over an order of magnitude smaller

than |Jcdp
(u)−Jcdp

(uh)| computed on the sequence of meshes produced using η(II)
κ .

Moreover, here we also show the error in the improved value of the inviscid drag

coefficient, i.e. |Jcdp
(u) − J̃cdp

(uh)|; in this case, we clearly see that this error is

of higher–order than the baseline error |Jcdp
(u) − Jcdp

(uh)|. Indeed, on the finest

mesh the error in the improved target functional is over an order of magnitude

smaller than the corresponding quantity computed with the weighted Type I error

indicator. We also point out that after just one mesh refinement step, the improved

value J̃cdp
(uh) computed on the mesh refined using the weighted Type I indicator is

more accurate than the corresponding value Jcdp
(uh) computed on the finest mesh

designed on the basis of employing the Type II error indicator.

Analogous behaviour is also observed for the numerical approximation of the

viscous stress induced drag coefficient, i.e., Jcdf
(u). Indeed, from Table 2 we again

see that the quality of the computed error representation formula is extremely

good as the mesh is refined; here, θ1 ≈ 1 on the finer meshes. However, the loss

of sharpness of the Type I a posteriori error bound is now more pronounced; here,

θ2 increases to a value of almost 33 on the finest mesh. In Figure 4, we compare

the true error in the computed functional Jcdf
(·) using the two mesh refinement

strategies, as well as the improved value of this target functional. As before, for

the computation of cdp, we clearly see the superiority of employing the weighted

Type I error indicators in comparison with the Type II indicator: the former error

indicator leads to almost 2 orders of magnitude improvement in the error in the

computed viscous stress induced drag coefficient on the finest mesh. Indeed, we

note that the accuracy in the computed target functional on a mesh with only 8040

elements refined using the Type I indicator is still better than the accuracy on the

finest mesh with 34638 elements designed using the Type II indicator. Also, we
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Figure 5. M = 0.5,Re = 5000, α = 0◦ flow around the

NACA0012 airfoil: Meshes constructed using (top row) Type II

error indicators; (middle row) Weighted Type I error indicators

for cdp; (bottom row) Weighted Type I error indicators for cdf .

again note that the improved value of the target functional leads to a significant

reduction in the baseline error in the numerical approximation of cdf . Indeed, in

this case the error in the improved target functional J̃cdf
(uh) is over 2 orders of
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Figure 6. M = 0.5,Re = 5000, α = 0◦ flow around the

NACA0012 airfoil: Isolines of component z1 of the dual solution

for (a) cdp; (b) cdf .

magnitude smaller than the error in Jcdf
(uh) computed on the sequence of meshes

generated by the weighted Type I error indicator.

Finally, in Figure 5 we show the meshes generated using both the Type II error

indicator η
(II)
κ , as well as the weighted Type I indicator for both the computation

of the pressure induced and viscous stress induced drag coefficients; note that since

η
(II)
κ only depends on the dual solution through a global stability constant, the

same mesh is produced, irrespective of the choice of the target functional under

consideration. Here, we observe that the Type II error indicator mainly refines the

computational mesh in the region of the boundary layer, as well as in the long wake

behind the airfoil geometry. In contrast for both the computation of cdp and cdf ,

we see that while the meshes generated by employing the weighted Type I error in-

dicator η̂
(I)
κ are both refined within the boundary layer, the wake is far less refined,

indicating that a good resolution of the wake is not important for the accurate com-

putation of the pressure and stress induced drag coefficients, respectively. Indeed,

from Figure 6, we see that while the corresponding dual solutions for cdp and cdf

exhibit boundary layers in the vicinity of the airfoil geometry, both dual solutions

become increasing smooth as we enter the trailing edge wake. We also note that

both dual solutions contain a strong singularity emanating from the leading edge

of the airfoil; indeed, this leads to some additional refinement of the computational

mesh directly in front of the airfoil geometry.

6.2. Mach 0.5 flow at Re = 5000 and α = 3◦ around a NACA0012. In

this second example we again consider a laminar Mach 0.5 flow at Re = 5000, but

now prescribe an angle of attack of α = 3◦, in contrast to α = 0◦ which was em-

ployed in the previous example; cf. [20], for example. While the boundary layer

in the previous example, see Figure 2, was completely attached to the surface of

the airfoil geometry, the boundary layer in this example, see Figure 7, only remains
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Figure 7. M = 0.5,Re = 5000, α = 3◦ flow around the

NACA0012 airfoil: (top) Mach isolines; (bottom) Streamlines.

Figure 8. M = 0.5,Re = 5000, α = 3◦ flow around the

NACA0012 airfoil: Zoom of the streamlines at the trailing edge.

Elements DoF J(u) − J(uh)
∑

κ∈Th
η̂κ θ1

∑

κ∈Th
|η̂κ| θ2

3072 49152 -9.163e-02 -2.785e-02 0.30 3.549e-01 3.87

4950 79200 -1.713e-02 -1.649e-02 0.96 7.730e-02 4.51

7992 127872 -3.831e-03 -3.725e-03 0.97 1.741e-02 4.54

13194 211104 -1.035e-03 -1.022e-03 0.99 5.146e-03 4.97

21579 345264 -3.558e-04 -3.557e-04 1.00 2.424e-03 6.81

Table 3. M = 0.5,Re = 5000, α = 3◦ flow around the NACA0012

airfoil: Adaptive algorithm for the numerical approximation of clp

based on employing the Type I error indicator η̂
(I)
κ .

attached on the lower surface; indeed, separation on the upper surface occurs at

approximately 50% of the chord length, see Figure 8 for a close-up view of the sep-

arated flow. The force coefficients of the airfoil under these flow conditions strongly

depend on the position of the flow separation and their numerical approximation

represents a significantly more challenging task than for the previous example.
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Elements DoF J(u) − J(uh)
∑

κ∈Th
η̂κ θ1

∑

κ∈Th
|η̂κ| θ2

3072 49152 8.486e-04 1.449e-03 1.71 6.877e-03 8.10

4983 79728 4.197e-04 4.611e-04 1.10 4.483e-03 10.68

8070 129120 2.390e-04 2.593e-04 1.08 2.384e-03 9.98

13266 212256 1.399e-04 1.436e-04 1.03 1.280e-03 9.15

21678 346848 7.742e-05 7.575e-05 0.98 6.590e-04 8.51

Table 4. M = 0.5,Re = 5000, α = 3◦ flow around the NACA0012

airfoil: Adaptive algorithm for the numerical approximation of clf
based on employing the Type I error indicator η̂

(I)
κ .
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Figure 9. M = 0.5,Re = 5000, α = 3◦ flow around the

NACA0012 airfoil: (a) Computed values of clf based on employ-

ing the error indicators η̂
(I)
κ and η

(II)
κ , together with the improved

value; (b) Convergence of the error in these quantities.

In contrast to the previous example, here we now consider the numerical approx-

imation of the pressure induced and viscous stress induced lift coefficients, clp and

clf , respectively. On the basis of a fine grid computation, the reference values for

these target functionals are given by Jclp
(u) ≈ 0.052524 and Jclf

(u) ≈ 4.39× 10−4.

In Tables 3 and 4 we show the performance of our adaptive algorithm employing

the weighted Type I error indicator η̂
(I)
κ , for both the numerical approximation of

clp and clf , respectively. In each case we see that the quality of the computed error

representation formula is extremely good; indeed, from the second mesh onwards

the effectivity index θ1 is extremely close to one. Moreover, the Type I a posteriori

error bound provides a reliable upper bound on the true error in the computed

target functional. In particular, while the effectivity index θ2 slightly grows as the

mesh is refined for the numerical approximation of clp, for clf we observe that θ2 is

relatively constant on each of the meshes employed.

In Figure 9 we present a comparison of the true error in the computed functional

Jclf
(·) using the two mesh refinement strategies, as well as the improved value of

this target functional. As in the previous example, we observe that the meshes de-

signed by employing the weighted Type I error indicators lead to an improvement in
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Figure 10. M = 0.5,Re = 5000, α = 3◦ flow around the

NACA0012 airfoil: Meshes constructed using (top row) Type II

error indicators; (middle row) Weighted Type I error indicators

for clp; (bottom row) Weighted Type I error indicators for clf .

the error in the computed target functional in comparison with the corresponding

quantity computed on the sequence of meshes generated by the Type II error indi-

cator η
(II)
κ . However, here the improvement is less dramatic than in the previous

example; indeed, on the finest mesh we see that the error in the computed value
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Figure 11. M = 0.5,Re = 5000, α = 3◦ flow around the

NACA0012 airfoil: Isolines of component z1 of the dual solution

for (a) clp; (b) clf .

of clf is only 3–4 times more accurate when η̂
(I)
κ is employed to design the mesh,

as apposed to η
(II)
κ . However, for the latter error indicator, we observe that the

error reduction from one mesh to the next is gradually becoming less as the mesh

refinement algorithm proceeds, whereas, the weighed Type I error indicator leads

to a constant reduction in |Jclf
(u) − Jclf

(uh)| as the mesh is refined. Finally, we

again note that the improved value of target functional leads to a significant reduc-

tion in the baseline error. Analogous behaviour is also observed for the numerical

approximation of clp; for brevity, we omit the results.

Finally, in Figure 10 we show the meshes generated using both the Type II error

indicator η
(II)
κ , as well as the weighted Type I indicator for both the computation

of the pressure induced and viscous stress induced lift coefficients. As in the pre-

vious example, here we observe that the Type II error indicator mainly refines the

computational mesh in the region of the boundary layer, as well as in the long wake

behind the airfoil geometry. In contrast, for both the computation of clp and clf ,

we see that while the meshes generated by employing the weighted Type I error in-

dicator η̂
(I)
κ are both refined within the boundary layer, the wake is far less refined.

Though, here we again observe some additional refinement of the mesh directly in

front of the airfoil geometry, which corresponds to the region of the computational

domain where the dual solutions exhibit a strong singularity emanating from the

leading edge of the airfoil, cf. Figure 11.

7. Concluding Remarks

In this article, we have developed the a posteriori error analysis of the discon-

tinuous Galerkin finite element method for the numerical approximation of the

compressible Navier–Stokes equations in two–dimensional space. In particular, by

employing a duality argument, we have derived (weighted) Type I and (unweighted)

Type II a posteriori error bounds for general linear and nonlinear target functionals
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of the solution. Numerical experiments have been presented to illustrate the qual-

ity of the approximate error representation formula, when the (approximate) dual

problem is approximated numerically. In particular, comparisons between Type I

and Type II error indicators have clearly demonstrated the superiority of exploiting

weighted a posteriori error indicators to guide adaptive mesh refinement. Moreover,

provided the analytical solutions to the compressible Navier–Stokes equations and

the corresponding dual problem are sufficiently smooth, then our numerical exper-

iments also indicate that the computed approximate error representation may also

be employed to improve the error in the computed value of the target functional

under consideration.

Future extensions of this work include the consideration of three–dimensional

compressible fluid flows, turbulent flows, anisotropic mesh refinement, as well as

the simultaneous approximation of multiple target quantities of practical interest.
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