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A SPLITTING EXTRAPOLATION BASED ON
ISO-PARAMETRIC QUADRATIC FINITE ELEMENTS FOR
SOLVING SECOND ORDER NONLINEAR PARABOLIC
EQUATIONS WITH CURVED BOUNDARIES

JINYI LUO, XI LI*, AND MULIN WANG

Abstract. This manuscript proposes, analyzes, and illustrates an iso-parametric finite element
splitting extrapolation method for accurately and efficiently solving the second-order semi-linear
and quasi-linear parabolic equations with curved boundaries. The design of multiple grid size
parameters is based on an appropriate domain decomposition of the original problem domain
and iso-parametric mapping, hence provides more flexibility to form the grid and constructs the
extrapolation schemes. To reach the same level of accuracy of a globally refined grid (or even
better accuracy) with less expenses, we only need to solve a group of smaller discrete problems
on a set of locally refined grids, instead of solving a much larger discrete problem on the globally
refined grid. To develop such an accurate and efficient scheme, multi-parameter expansions for
the semi-discrete and fully discrete iso-parametric finite element errors are first proved. Then the
extrapolation idea can be utilized to construct the splitting extrapolation schemes based on the
designed multiple grid size parameters. A posterior error estimates are provided for the splitting
extrapolation solutions. Numerical examples are also provided to illustrate the obvious accuracy
improvement from the splitting extrapolation schemes.
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1. Introduction

The extrapolation techniques for approximations with higher order of accuracy
have been developed for a long time. Particularly, Richardson extrapolation and its
variations, which are still a popular extrapolation technique, have been developed
for various types of methods and problems, including the finite difference methods
[18, 19, 20, 47, 59, 66|, the finite element methods [5, 17, 38, 55|, the numerical
integrations and integral equations [16, 24, 39, 50], data science [2, 22], and others
[3, 4, 11, 12, 14, 23, 34, 44, 49, 51, 65]. There also exist many other types of
extrapolation methods, see [1, 6, 7, 13, 15, 21, 29, 30, 32, 33, 45, 53, 56, 61, 63]
and references therein. Moreover, extrapolation methods have also been applied in
multiple fields [27, 31, 52, 57, 58, 60, 64].

The splitting extrapolation method was originally proposed by Q. Lin and T. Lii
[37]. Then it was extended to various numerical methods [9, 28, 42, 46, 48, 62]. Two
monographs [36, 43] were also published to summarize the early works of splitting
extrapolation. Particularly, the splitting extrapolation was developed for improving
the accuracy and efficiency of the finite element methods [8, 25, 26, 35, 40, 41]. The
main advantages of the splitting extrapolation method include the high accuracy
with only piecewise smoothness required, the less computational complexity than
Richardson extrapolation, the flexibility for meshing based on appropriate domain
decomposition, and the natural parallelism.
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In this manuscript, we will propose a finite element splitting extrapolation al-
gorithm for accurately and efficiently solving the second-order nonlinear parabolic
equations with curved boundaries. By introducing appropriate domain decomposi-
tion, multiple grid parameters, and local grid refinement strategies for the regular
d-quadratic iso-parametric finite element method, the splitting extrapolation algo-
rithm significantly improves both the accuracy and efficiency. We will establish
multi-parameter error expansions for both semi-discrete and fully discrete finite el-
ement solution errors. Then we can construct the finite element splitting extrapola-
tion algorithm while providing a posteriori error estimates. Numerical experiments
will also be provided to validate the proposed method.

This manuscript is organized as follows: Section 2 introduces the domain decom-
position, the iso-parametric mapping, the weak formulation, the semi-discrete finite
element scheme, and the fully-discrete finite element scheme. Section 3 and Sec-
tion 4 prove the multi-parameter asymptotic error expansion for the semi-discrete
solutions and the fully-discrete solutions, respectively. Based on these theoretical
foundations, Section 5 constructs the splitting extrapolation algorithm. Section
6 presents a posteriori error estimates, followed by Section 7 which validates the
proposed method through numerical experiments. Finally, Section 8 presents the
conclusions.

2. Second order nonlinear parabolic equation and d-quadratic iso-parame
-tric transform

In this section, we will follow the framework in [25] to present the iso-parametric
mapping, the weak formulation of the original problem, the semi-discrete iso-
parametric finite element scheme, and the fully discrete iso-parametric finite el-
ement scheme. Note that the purpose of d-quadratic iso-parametric mapping is to
handle the curved boundaries with high accuracy, as one of the preparations to
reach the high accuracy of the splitting extrapolation method.

Consider the semi-linear and quasi-linear second order parabolic equations:

Up — Zd: D;(a;j(t,z)Dju) + qu = f(t,z,u) , on Qp=1[0,T] x Q,

1) 51
u=0, on Yp =1[0,T] x 09,
u(0,x) = up(z) , on

where Q C Ré(d = 2,3), a;;(t,z), q(t,z) € L®(Qr), ¢ = (x1, -+ ,xq) and D; =
o

aiEi :
d
uy— > Di(aij(t,z,w)Dju) = f(t,z,u) , on Qr=][0,T]x L,
9 ij=1
@) u=0, on Xy =1[0,T] x 99,
u(0,2) = uo(z) . on

where Q C R4(d = 2,3), q(t,z) € L=(Q7), z = (z1, -+ ,24) and D; = %.
Based on the idea of domain decomposition, we construct a group of non-
overlapping subdomains whose union is the closure of the original problem domain:

— m —
Q = | Q. Using the regular d-quadratic iso-parametric mapping [10, 25, 41],
k=1

there exist the translated unit cubes Qk(k’ =1,---,m) C R? and one-to-one d-
quadratic iso-parametric mappings Wy : Qi — Qp where {\Illzl} are sufficiently
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~ x m =
smooth. Consider an open set  with Q@ = |J Q. Define % (k = 1,--- ,m) to
k=1
be a uniform cuboid partition on Qk with appropriately designed grid parameters

ﬁkj (j=1,---,d) so that " = U " can form a piecewise uniform cuboid parti-

tion on the whole domain w1thout hanging nodes. Therefore, there may be only
[ (I < md) independent grid parameters such that there are no hanging nodes on

the boundaries of Qk(k =1,---,m). Meanwhile, we choose a temporal step size 7.
Then we have [ + 1 independent grid parameters, denoted by hq, ---, hjy1, with
iLlJrl =T.

By the d-quadratic iso-parametric mapping, the original nonlinear parabolic e-
quations (1) and (2) are converted to the following problems.

by — i Dl(dlj(t)j:)f)]l&) +(j’a = f(taj:7ﬁ) , on QT = [OaT] X Qv

s
®) =0, on  Yp=[0,T] x 89,
a(0,2) = ao(2) on
d . . N A
4y — Y Di(ay(t, &,4)D;a) = f(t,2,4) , on Qr=[0,T] xQ,
4 b=l 3 .
) =0, on Yp =1[0,T] x 05,
a(0, ) = ao(2) on K.

We also define the following notations:

T
LP(0, T3 WEQ) = {a(t, ): [0,7] — W)} with norm [ —</0 e, )2, dt)b,

H™0,T;B) := {a(t,"): [0,T] —» B: %> € L*(0,T; B),i =0, ,m},

C*(0,T; B) := {a(t,-): [0 T] — B: a(t) has up to k'™ order continous derivative},

= (ha h), ho = g?%(lhu hoo = | Jnax h;
Define
A d A A
(5) A(t;a,0) = / (Y aij(t, &) DiaD;d + Gad) d,
Q<
7,7=1

for the semi-linear problem and

(6) A(t;a,0) :/(Z a4 (t, &, 0)D;aD;0 dz,
O <
i,7=1
for the quasi-linear problem.
Then the weak formulation for both the semi—lAinear and quasi-linear problems
can be obtained as follows: find & € H*(0,T; H}((2)) satisfying

7) { (i, 0) + A(t;0,0) = (f(t,2,9),0), V0 € H}(S),
(0, 2) = Go().

Let P, be the orthogonal projection operator mapping LQ(Q) to 5'(}}, then the

semi-discrete scheme for both the semi-linear and quasi-linear problems can be
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obtained as follows: find 4, € H'(0,T; 5'(’}) to satisfy
(8) { (ﬁt,haﬁ> +4(t7ﬁhaﬁ) = (]E(tvjjvﬂh)v’[))a VO S S(})Lv
iy (0,2) = Puiio(2).
Let 7 = % denote the temporal step size and t,, = n1, n=1,--- , N. The fully

discrete scheme for the semi-linear problem can be obtained by using the linearized
Crank-Nicolson-Galerkin method: find U™ € Sf, n=1,--- | N to satisfy

(@07, 8) + At, 3503, 9)
9) ¢ = (Fltyoz,&,0"71),0) + 3 falt,_1, & U (U = U1, 40), Ve SE,
U° = Pyig

where "2 = U%Un_l, QU™ = Un%Un_l and U" is the numerical solution to (3)
at time t,,.

The fully discrete scheme for the quasi-linear problem can be obtained by using
the backward Euler-Galerkin method: find U™ € S{}, n=1,---,N to satisfy
(10)

. d . A A X
(O U™, 0) + fQ( > aij(tn, 2, UMY D,UD;9) A2 = (f(tn, 2, U 1), 0), Vi€ SE,
ij=1
U0 = Py,
where U™ is the numerical solution to (4) at time t,,.

3. Multi-parameter asymptotic expansion of the semi-discrete d-quadratic
iso-parametric finite element error

In this section we will prove the multi-parameter asymptotic expansion of the
error of the above semi-discrete finite element scheme, as a preparation for the final
conclusion in Section 4.

First, we present the following two lemmas which were proved in [41].

Lemma 3.1. Consider a linear elliptic weak form

d
(1) D (@(@) Dicb, Di©), 0) + (pib, 0) = (f,0), V0 € Hy (),

and the corresponding d-quadratic iso-parametric finite element discrete scheme

d
(12) > (é4(2) Ditbp, Ditn) + (pibn, o) = (f,9n), Vou € S§.
i,j=1
Assume that éi5, p € ([T WA () N Loo(Q) and @ € ([] H () N HL(Q), then
s=1 s=1

there exist functions ¢; € ([] H™(Q))NL®( Q)G = 1, ---, 1) independent of h

s=1
such that

!
(13) ' — i’ =Y "hiol +e,
=1

74+« 7ot . d

(14) lellp oo = Olhg “[Inho| *), a=min(r,2) — - > 0.

2
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Lemma 3.2. If i € Wi(e),q € Wi (e), b € Qa(e), then

) 1
A N ¥ 4 301 14
) [ata-ahe xfgj {o [IgioDta - D@Dt di + R,
where
(16) RIS C@Mlillopcldllpcr oo = max e, =+ =1,

and Q2(e) is the set of all double-quadratic polynomials.
Second, we present the following two lemmas which were proved in [25, 36, 43].
Lemma 3.3. Let E(t;w0,0) = Ja (2 eyt , ) Dy Do + pivd) A, and RY denote
1,j=1
the Ritz projection operator with respect to E(t; ), Qe E(t; befh 0) = E(t; U, ),
Vo € .5'{} Consider a linear parabolic weak form

{ (e, 0) + B(t;0,0) = (7(t,2),0), Vo€ HH(SQ),
(0, ) = o (#).
Assume that é;;, pe(l_[ WA () N Loo () andwe(]_[ H(Q)) N HL(Q), then

there emst functions

(17)

W; e H(HT( JNL®Q))(i =1, ---, 1) and a constant C independent of h
s=1
such that
1
(18) By — Puid — > hi B Wil o o < Chy ™,
i=1

where By = min(r,2) — % > 0.
Lemma 3.4. Assume the semi-discrete scheme to (17) is

{ (e, 0) + E(t; 05, 0) = (F(t, 2),0), Vo e St

(19) Wy, (0, %) = Pyibo().

Assume that &5, Dyéij,p € L®(Qr), 7 € L*(Qr), and 1€i31l0.00.0 ||lA)té”||O 0,01
16ll0.00.0, < M < o0, then there exist constant Co and Cy independent of h but

depend on M and p,such that

(20) lon (0} g < Coe™ (lwoll} ¢, + / I17(7,)[f g 47)-

Remark 3.1. Since the semi-discrete scheme for the semi-linear problem is just a
special case of the semi-discrete scheme for the quasi-linear problem, we only need
to prove the multi-parameter asymptotic expansion of the semi-discrete d-quadratic
iso-parametric finite element error for the quasi-linear problem.

Theorem 3.1. Along with the same assumptzons of Lemma 3.3, there exist func-
tions ¢; € HY(0,T; Ho(Q) NC(Q)) (i = 1,---,1) independent of h such that the
errors of the solutions to (8) satisfy the followz'ng multi-parameter asymptotic ex-
pansion:

l
(21) ip —al =" hip! +¢
=1
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where
(22) 1lg e = Olhig P ho| T, 5> 0.
Hence,
l
(23) tn(t, X) Z Lbi(t, X) + &(t, X), VX € Qb

Proof. Without loss of generality, we assume 0 € 5'(’} in the whole proof. Let
@ = R} 4 be the Ritz projection of @ with respect to

d
(24) A(t;b,0) = () aij(t, &,a) Dy, D;) + (i, 0).
7,7=1
By the definition of @, A(t;w, ) and A(t; i, 0) obtain
(25) A(tsa, 0) = A(t; Ry, 0) = A(t; 0, 0) = A(t; 0, 9),
and
~ d —_
(26) A(t, T:Lh, IA)) = A(t, ﬁh, ’lA)) + ( Z (&” (t, i’, T:L) - dij (t, "2, ﬁ))Dlﬁh, D]”LA))
ij=1

Leté:ﬁh—fc,ﬁl :ﬁ—ﬁl, then we have
(27) ap — ' =0+ pr.

By Lemma 3.1, we obtain

l
(28) pr=_ hidk+a,
k=1
where
7 pod= d
(29) ||§1||O,OO,Q = O(hé+a‘ In ho|%), a = min(r,2) — 5 > 0.

Now we discuss the expansion of § in detail as follows. Let f’, f”, a;; and aj;

denote the partial derivatives of functions f and a;; for 4. By the definitions of 0,
Py, R: and 4, (7), (8), (25), (26) and Taylor expansion, Yo € SF, we obtain

(01,9) + A(t:0,8) = (e, ) + Aty 10, 9)| = [, 9) + A(t:6,9)]

[(uth, 0) + A(t; i, )] — [(at,f;) +A(t;a,@)]

+ (i — 11y, 0) + (Y (aij(t,&,4) — d4;(t, &, ) Ditin, D;0)

(30) — > (@) (t, &, @) (i, — @) Dyit, D;0) + £2(d),
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where
d
e2(6) =(5 (1, €0 i — ), 8) — D (3al (1,3, &) i — ) Dy, Dy )
Q=1
d R ’ R
(31) = > (ag;(t, &, @) (@, — @) D;(an — @), D;0),
ij=1

& and & are between 1y and 4. By the Holder’s inequality, the error estimates of
d-quadratic finite element approximation and (31), we obtain

d
00+ O Collin — a3 ol1Dsdlly o

ij=1

(32) [€2(0)] <Cillan — all§ 10

d
+ > Csllin —dllg ol Dilin — @)llg o 1Dl ¢
i,j=1

§C4ilg||@‘|1,ﬂ'
Let p = @ — @, then we have
(33) ap — =0+ p.

By plugging (33) into (30) and moving all the terms about 6 to the left hand side
of the equation, we obtain

(00, 0) + B(t;0,9) =(f'(t, &, 0)p, 0) + (De(Prtt — R}@t), 9)

d
(34) - Z (&;](t,fﬁ,ﬁ)[)bzﬂ,ﬁ]’[}) +62(ﬁ)7
ij=1
where
A A ~ A A~ ~ d A A A
(35) B(t;0,9) = A(t;0,0) — (f'(t, 2,4)0,0) + Z (d;j (t,&,0)0D;u, D;v).
ij=1

Let po = 4! — 4, then
(36) p=p1+p2.
By (28), we obtain

l
(37) (f/(’ll, &,t)p1,0) = Z ﬁi(‘f’(ﬁ’ z, t)qgév ) + &3(9),
k=1
d R ) l R d o R

(38) Y (aj;(a, &, t)pr Dy, Dyo) =Y " hE( Y ag;(a, &, )b Ditt, D;) + £4(0),

i,j=1 k=1 i,5=1
where
(39) 1€3(0)| =|(f'(a, 2, t)é1, ),

d

(40) [€4(0)] =( > aj;(@,&,t)é1 Dy, D;))|
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By Hoélder’s inequality, (29) and inverse estimate, we obtain

7 at+d, . d
(41)  [es(®)] <Cshg" " *[léllg g, @ = min(r,2) - 5 >0,

~ « 4 « d
(42)  |24(®)] <Cohg™ F1Djolly 0 < Cohy ™ ¥ [0l 4, @ = min(r,2) - 5 > 0.
By the definition of p2 and Lemma 3.2, we have

(f' (@1, 2, ) pa2, 0

‘ M
>
=
—~
<>
=
~~
S~—"
<>
>
T
>

>

(43) - z(f’(u,m)v)DiU] di + £5(0),
d R R d_m d 1 o
a;: (U, Z,t)p2Diti, D;0) = — — U, T, t)DyuD; 0D 10
A{L.] ) L g D 7 D.]A hiS A;j 7 t D AD] AD%A
ij=1 k=1s=1 Qs ;=1 480
1 -~ ~ A N
(44) 5 k(g (0, &,t) D;aD;0) D) A + &6(0),
where

(45) €@ =1 R <Y Ch0
s=1 s=1

Ry is the error for QS in Lemma 3.2, izso is the max step size of Qs

When we construct the partition in Section 2, there are only ! (I < md) inde-
pendent grid parameters iLl, e ,le because of compatibility requirement between
subdomains to ensure no hanging nodes, then

,AS g thgH@”Zij = 5763

(46) (f'(@,2,8)pa,0) =D I My +&5(3),
k=1
d l R
(47) > (@l (i, &, t)poDyit, Dji) = > hig Ny, + 26(0),
i,j:] k=1

where M, is the sum of some integrations like
1 £ - il 2 A~
_/ [@(f’(ﬁ,i‘,t)ﬁD?ﬁ — —Dy(f'(a, 2, t)0)D}a] dz,
Qs
and Ng is the sum of some integrations like
N N R 1 - ) A A
/ Z 480 o ﬁ :&t)Dﬂlef)Déﬁ — ng(dgj(ﬁ,:@t)DiaDj{))Dgﬁ] dz.
Qs 4 =1

By Lemma 3.3, Holder’s inequality and finite element inverse estimate, we obtain

(48) (Dy(Pyiv — Ryat), 0) = > Wi (PhDyWi(t, 2),9) + £7(0),
k=1
where
. d
(49) €2(0)] < Cohg ™™+ ¥ 8]l fo = min(2,7) = 5 > 0.

By (34), (36), (37), (38), (46), (47) and (48), we obtain

(50) (0:,0) + B(t; 6,0 :Zh4Fk (41, 9) + 5(9),
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d
(51) + (_Z al; (i, &, t)gf Dy, Dj0) + My — Ny + (P Dy Wi (t, ), 9),
and |
(52) Eg(D) = &3(D) + €5(D) + €4(0) 4 E5(D) + E6(D) + £7(D).

&
By (32), (41), (42), (45) and (49), we obtain
(53) [€s(8)] < Crohg ™ |85, 6+ A1 = min(1,7) > 0.

By Lemma 3.3, the definition of 8, 4", (8), Hélder’s inequality and finite element
inverse estimate, we obtain

I
(54) (é(O ) ) (Phuo — Rhu07 Z ]Alzl + ég(f)),
where
N0 74+B0+5 ) o . d
(55) [20(0)] < Crihg " * 2|8l o, Bo = min(2,r) — 750

We construct the following auxiliary problem: find ¢; € H'(0,T; HA(Q))(i =
,++,1), such that
{ (Depi, ) + B(t; 4,0) = Fi(,0), Vo € H)(),
(¢:(0,-),0) = (Wi(0,),9), Vi € HY(Q).
The semi-discrete finite element scheme can be obtained as follows: find ¢;; €
HY(0,T; S{}),i =1,---,1l, such that

{ (Dii p, 0) + Bt $in, 0) = Fi(@i,0), Vo € 5,
(¢,n(0,-),0) = (Wi(0,-),0), Vo e S

1

~ “ [
Let v =0+ > h}$; n, we obtain
i=1

(56) { (Dyh, 0) + B(t; ), 0) = &s(0), ¥ € S,
(1(0,-),0) = &9(2), Vi e Sh.
By applying Lemma 3.4 on (56) and using (53) and (55), we obtain
67) 91,0 < CHE™, B2 > § — 1

If1>y>¢—1and @i(t,) € H2(0,T; H*(Q) N H{ (), then we have [54]
(58) 16 = inlly 0 < CAY.
By replacing ¢; , by ¢! and using (57), (58) and the inverse inequality, we obtain

(59) ||9+Zh4 Moo < Clinhol T g,

where

(60) B3 = min <ﬂ2,’y+1;i> > 0.
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Therefore
l
(61) 0==> hipl +énw,
i=1
where
R A d-1ay0 g
(62) E10llg,00.00 = | 00| T Big* 7.

Let ¢; = —@; + s, then ¥ = —@! 4+ ¢!, By (27), (28) and (61), we obtain

(63) in —al =" hipl +é,
=1

where

(64) E=2£&1 4+ é10.

From (29) and (62), we obtain

(65) 1llg 0.0 = Ohig ™[I o] T,
where
(66) f1 = min(Bs,a) > 0.

Because @ (t, X) = a(t, X) and ¢ (t,X) = ;(t, X), VX € Qb Vt € [0,T], we
obtain

Hence the proof is completed.

4. Multi-parameter asymptotic expansion of the fully discrete d-quadratic
iso-parametric finite element error

For the fully discrete finite element schemes presented in Section 2, we will prove
the multi-parameter asymptotic error expansions, which will be the foundation to
construct the splitting extrapolation schemes in Section 5. Note that the linearized
Crank-Nicolson-Galerkin method in (9) has O(72) order of accuracy and the back-
ward Euler-Galerkin method in (10) has O(r) order of accuracy. Therefore, we can
follow the ideas and arguments in [36, 43] to obtain the following two lemmas.

Lemma 4.1. Along with the same assumptions of Theorem 3.1, assume that the so-
lution to (8) satisfies @, € C°(0,T;St) and f(t,2,4) is third order differentiable for
. Then for the solution U™ to (9), there exists a function ¢y41(t,-) € H'(0,T; Sk
independent of T and h such that

(67) U —af = % +77,1 <n <N,

where
o o 278 ~d—1 o d
68) w177l 0 = ORGSRl T), By = min(1 +— 5. 1)
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Proof. We use the undetermined coefficient method for the proof. Assume

(69) O™ — iy = 7% + 7,

where ’(/AJZL_‘_l and 7} are undetermined. By (8) and (9), we obtain

(70) (DU = (1), 0) + Alt,_ 1510y : — tn(t,—1),0)
=(f(tpez, &, 0"1),8) = (f(tye g & (t,—1)), 0)
+ %[fﬂ(tn—%v 8, U YO — U 0)], Vo e St

n—

~ ﬁn_An—l
- Vi = e = (b, y) + D3 n(tn_1) + i,
4
n = 3840(D (01, &) + DYin (02, 2)),

where (n — 3)7 <61 <n7and (n — 1)1 <6 < (n— )7
By the Taylor expansions of 1&{3_1 and 1/3{?11 at t, 1, we obtain

¢l+1 ¢l+1

aﬂ/}z+1 = Dt¢l+1( 'n,f—) + 13,

2

" = 48<D3ah<es, #) + D (04,2)),

where (n — 2)7 <03 <nrand (n—1)7 <0; < (n— 3)7.
Therefore, by (69), (71) and (72), we obtain

(72)

QU™ =dya} + Tzétzfjﬁrl + 8,77
(73) =ty (t,_1) + 24Dtuh( 1) + 7Dy (b, 1) + O + €7,
(74) el =nt +7°n3.
By (71) and (72), we obtain
(75) et llo,00,6 = O(T%).

By the Taylor expansions of 47 and f&Z‘l at t, 1, we obtain

n—

el G +art T2 . n
h = h 2 b :uh(tn—l)_‘_thQuh(tn—l)+773’
(76) .
T,ZT’)L 768(D uh(95a )+Dtu’h(067 ))7

where (n — %)T <0 <nrand (n—1)71 <6 < (n— %)’7’

By the Taylor expansions of 1[1[;1 and 7,/3;:11 at t, 1, we obtain
(77)
n—i ¢z+1 ‘H/’z+1

2
n n T A~ A A ~
Yy = 5 = Pry1(t,_ 1)+ ng, ng = E(D?uh(fh,z) + D}y (0s, &),

where (n — )7 <67 < n7 and (n— 1)7 < 0s < (n— 3)7.
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Therefore, by (69), (76) and (77), we obtain

Srm— L 7An—% 2 An—% An—%
Ur™2 =a;, > +7%¢%, " +7

(78) =l (t, 1)+ gpfah(tn,%) + 7 (1) + Y ey,
(79) ey =nj + 705
By (76) and (77), we obtain
(80) I8 1lg,00. 0 = O(7).
By (70), (73) and (78), we obtain
(81)
(C Dintt )+ 7Dty y) +0if +<1.9)

N nl R
33 g Diin(ta-y) + TG (tu_y) +7, 7 +5,0)
L2, U™, )

n—z

N|=

1. . . . . .
& n(ty—1)),0) + 5 falty—y. 2, Unhom —-umt o)), Yo € Sp.
By the Taylor expansions, we obtain

f(tnfévi'vﬁh(tnfé)) :f(tnfév‘%aﬂzil) + ﬁ(tnf ai.aﬁ’zil)[ﬂh(tnfé) - ﬁzil

1. N am—1\TA ap—
g faa (b g, 5 lin (b, y) — T
14 R R o
(52) + & oty 8, 00) (6, y) — 5P,
2
N ap— T on— T .
(83) (b y) =i+ S+ g Wt.n(010)-
Therefore
fltaops @ an(t,_y)) =f (a1, 2,037 ") + falt,_y, &85 an(t,_y) — a5~
2
T A U TN
(84) + g faaltn-y, 3,0, gy (ta-r) + 15,
where
(85)
n_ 1 - T.n—1 T 3 ™ & an—1y~2
5 =g faaa(tn_y,2,00) 50 + glen(0r0)]” + o faaltn_y, 2,57 )ai p(010)
3
T2 A U .
+ Efﬂﬁ(tnfévxuuh 1)utt,h(610)ut,h(tnfl)~
By (76), we obtain
. ap +art 72
(86) n(ty—y) = 5 = = iualt_y) =75,
Therefore,
. . A o +,&n—1 an +,&n—1 .
() inltay) — 0 =it _y) — ) g (R
- i — i
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By (84) and (87), we obtain

£ PN n A oan— L Ao oan— n ~m—
f(tnfévx?uh(tnfé)) :f(tnfé?x’uh 1) + §fﬁ(tn7%7‘r7uh 1)(uh h 1)
oy W Aan—1yp
- §fﬂ(tn7%7w7uh )utt’h(tnfl)
7-2 r & oan—1
(88) + §fuu(tn—%7$7uh Vi p(tn—1) + €5,
where
(89) 5? = 77? - ngfﬂ(tnféwfjvﬁzil)
By (85) and (76), we obtain
(90) €5 1lo,00,0 = O().-

By plugging (88) into (81), we obtain
(91)

2
T ~ n 3 an noa
(ﬂDfUh(tn_%) + T2Dt¢l+1(tn—%) —+ 6trh —+ 61 ) ’U)

h

+ At _1; %QDfﬂh(tn_%) + T%H(tn_%) + f,’f% + e, d)

=(f(tp1, &, 0" = f(t,_ 1, @, 0571),9)
5 Faltyog 2,077 O = 0", 8) = S(falt,y, 2,85 )@ — a),0)
%2( Au(tn,%,ﬁ,aﬁfl)utt,h(tn,;) - fuu(tn,%7gz,a;;*)ut,h(tn,l) — e}, 0), Vo e S

7i‘7 ’&/Z_l)(Un_l - ﬁ;—z_l) + ng
n

(92) =f(ty_z, &) + falty_s, &, 07 )OS + 70 + g,
where

n 1 ~ an—1\/7rn—1 ~n—1\2
(93) e = ifﬁﬁ(tn—%7xvuh )(U 7uh ) .

By the finite element error estimate, we obtain
(94) 116 [lo,00.00 = O(T%).
By (69), we obtain

(95) U = U = (i, — ap =) + T — 9 + = ).
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By plugging (92) and (95) into (91), we obtain

(96)
7—2 3. 2 n 3 an n oA
(ﬂDtuh(tn,%) +7 Dﬂ/}l+1(tn7%) + 0y 4 €7, 0)
T2 2 n—3% A
J'_A(tnf%?thuh(t ) ATVt )+ 7, P 4y, D)
=2 (falty_ 1, @03 S 0) + (falt,— 1, &, 05", 9)
1, . . . R
+§(.fﬁ(tn—%7xauh 1)(rh Z 1) U)
2
T2 A oan—1\ £ A oan—1y ~ noa
g(fﬂ(tn—%vxau}z 1)utt,h(tn—%) - fﬁﬁ(tn—%7xvuz 1)uf7h(tn—1) + (7’]7,’0),
where

777__53+776+ fu(

—1,
2

(97) [fu( ne 1o 8, UMY = falty g @iy DR —ap =) + (7 — 7]
By (90), (94), Taylor expansion and the finite element error estimate, we obtain
(98) 197 (9)llo, 00,00 = O(°).-
We choose 41 € H'(0,T; 8}) such that
(99)
(Dt (b s)s0) + Alty_ 351t s)s0) — (Falta_y 58000 0)
= —(gDfun(t,—1),0) = §A(t,_1: Dfun(t,_1), 0)
+3( a(tpo 1, @0 s (ty_1) = faa(ty_ 1, &, 05 a7, (tn-1),0), V0 € S,
wl+l(05 ) =0.
Then by (69), (96) and (99), we obtain
a 7747l ~ P A ATL— AN — A
(B0 8) + Alty g7 20) = (Jalt-y 2.5 ) 0)
(100) —3(falt,_y, @ a5 ") (Fp — 1), 8) = 4(0), Vo € S,
7 =0,
where
(101) e;(0) = (n7 —el,0) — A(t,_1;€5,9).
Then by (75), (80) and (98), we obtain
(102) 5 (0)] = O(7?).
In summary. (69), (99), and (100) together complete the proof of (67).
Let © = 0;#% in (100). Then by the boundedness of f;(t,%,4s) in Qr, the in-

termediate value theorem, the Cauchy-Schwarz inequality, the Gronwall inequality,
and the inverse inequality, we can follow the corresponding arguments in [36, 43]

to obtain (68).

Following the framework and arguments of the above proof and the ideas in

[36, 43], one can similarly obtain the following conclusion.
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Lemma 4.2. Along with the same assumptions of Theorem 3.1, assume that the
solution to (8) satisfies 4y, € C3(0,T;Sh), a;j(t,&,4) and f(t, & a) are third or-
der differentiable for u. Then for the solution U™ to (10), there exists a function
iy (t,-) € HY(0,T; St independent of T and h such that

(103) U™ =4 = mdfsy + 7,1 <n < N,

where

9

31— ~ A d—1 d
= O((r3he ™% + 7he) | Inho| T ), a1 =1+~ — <.

(104) 5

Combining the above results with Theorem 3.1, we can obtain the following
two theorems for the multi-parameter asymptotic expansion of the fully discrete
d-quadratic iso-parametric finite element errors.

Theorem 4.1. Along with the same assumptions of Theorem 3.1 and Lemma 4.1,
for the solution to (9), there exist functions ¢¥;(t,z)(i = 1,--- 1+ 1) independent
of h such that

(105) U™(w) — Zh4¢n ) + hipadp (@) + €% (x), Vo € Qf, 1 <n < N,
where
(106) 16" o o 0, = OU(RGT + By R 0 B 7).

Proof. By combining Theorem 3.1 and Lemma 4.1, we obtain
U"(X) - a"(X) =(0"(X) — ap (X)) + (a5(X) - a"(X))
l
(107) = Z D (X) + B g (X) + €7
By (22) and (68), we obtain the estimate for £".

Theorem 4.2. Along with the same assumptions of Theorem 3.1 and Lemma 4.2,
for the solution to (10), there exist functions ¥;(t,x)(i =1,--- 1+ 1) independent
of h such that

(108) U™(z) — @ Zh4 )+ b () + EMx), Ve € Q5,1 <n < N,
where

n 5 A pod=1
(109) 1E™ o 0.0 = O((hE? + by he ™% + hugahg)| Inho) 7).

Proof. By combining Theorem 3.1 and Lemma 4.2, we obtain

0™ (X) — a"(X) =(0"(X) — (X)) + (i (X) — (X))
l
(110) = R + R (X) 4+ 27

By (22) and (104), we obtain the estimate for £".
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Remark 4.1. Similar to the Remark 4 in [41], the expansions are true for all the
original coarse grid nodes in Qg, as well as all the edge midpoints and centers in
Qg. Furthermore, the multi-parameter expansions only require the local solution
smoothness in each sub-domain Q. Hence it is efficient to utilize the splitting
extrapolation methods to solve interface problems, by using the original problem
interface for the domain decomposition steps.

5. Splitting extrapolation formulas at globally fine grid points

Based on the above multi-parameter asymptotic error expansions and the basic
idea of splitting extrapolation, in this section we will develop the splitting extrapo-
lation schemes for all the nodes in the globally refined grid, not only on the coarse
grid or the locally refined grids. Here we first explain the basic idea of splitting
extrapolation based on the multi-parameter asymptotic error expansions, before we
present the detailed formulations. First, on each of the coarse grid and the locally
refined grids, we can apply the multi-parameter asymptotic error expansion with
its grid parameters. Then all of the low order error terms in these multi-parameter
asymptotic error expansions can be canceled out by taking an appropriate linear
combination of these expansions, which is the key of the splitting extrapolation.
Eventually this linear combination will lead to a new numerical solution with only
the higher order error terms survived. Hence the new solution achieves higher order
accuracy.

Because the derivation is similar to that of [25, 26], we only show the conclu-
sions without proof here. Let Qg denotes the set of grid points obtained from the
initial grid parameter le, Sy fll+1, Q? denote the set of grid points obtained from
R = (hl, R 2, : le+1, Q?), i=1,---,1+1, Ug’ denote the fully discrete
approximation at time ¢, on Q 0, and Uf denote the fully discrete approximation
at time t¢,, on Q?,ifl, LI+ 1.

First, consider the splitting extrapolation formulas for the semi-linear parabolic
equation.

(1) type 0: grid points in Q. Suppose A is a grid point in Q, then the splitting
extrapolation formula for A is

16 o - 4. 16 17 -
(111) Up(A) = BZU{‘(A) + 300 (4) + {151 - 3} U (A).
=1

1
(2) type 1: grid points in |J QP\QZ. Let A; and Ay be the two neighboring
i=1

coarse grid points. Suppose B is the midpoint of A;As and B € Q{L\Qg Then the
splitting extrapolation formula for B is

UL(B) = 31022: [0 (44) — 07(A0)]
3 l 2 ! 2 2 )
(112) —wzkz[ (4K)] - gkz (05 (Aw) = O (Ax)]
=t k=1 =1

(3) type 2: Centers of rectangular elements. Suppose C is the center of a rectan-
gular element, Ay (k =1, ---, 4) are the four vertices and B (k=1, ---, 4) are
the midpoints of the four edges. First, Uy(Ay) and Uy (By) are computed according

o0 (111) and (112). Then by using an incomplete bi-quadratic interpolation without
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term x?y? [46, 40], we obtain

(113) U2(C) = 5 S U (BY) — 1 S Uol(A).
k=1 k=1

(4) type 3: Centers of rectangular parallelepiped elements. Suppose D is the cen-
ter of a rectangular parallelepiped element, Ay (k =1, ---, 8) are the eight vertices
and By (k=1, ---, 12) are the midpoints of the twelve edges. First, Uy(A4) and
U1 (By) are computed according to (111) and (112). Then by using an incomplete
tri-quadratic interpolation without term x2y?22, z2y%z, x2yz2, xy?22, x2y2,
2222, y%2?% [46, 40], we obtain

12 8
(114) Us(D) = izUl(Bk) - %ZUO(AIC)-
k=1 k=1

Second, consider the splitting extrapolation formulas for the quasi-linear para-
bolic equation.

(1) type 0: grid points in Qg Suppose A is a grid point in Qg Then the splitting
extrapolation formula for A is

(115) Z U7 (A) + 2070, 1) (A) + {—1?1 - 1} 07 (A).

(2) type 1: grid points in U Qh\Qh Let A; and Ay be the two neighboring
=1

coarse grid points. Suppose B is the midpoint of A1 A5 and B € Qf\ﬂg Then the
splitting extrapolation formula for B is

02 (B) =07(B) = 35 3 [0 ()~ 07 (40

(116) % i { — U (A ] i [Uo Ak) — Uﬁl(Ak)} :

k:l k=1

(3) type 2 and type 3: The formulas are the same as (113) and (113) with
computing Up(A) and Uy (By) are computed according to (115) and (116).

6. A Posteriori error estimate

In this section, we also present some a posteriori error estimates. Because the
techniques for the proof are the same as in [25, 26], we only show the conclusions
without proof here. Suppose A is a grid point in Qg

First, consider some a posteriori error estimates for the semi-linear parabolic
equation.

Theorem 6.1. For the semi-linear parabolic equation (1), let U (A) and UJ"(A)
(G =1,...,14 1) be the finite element solutions on the coarse and locally refined
grids, respectively, at a grid point A € QF. Then the following estimates hold:

U3 (A) - a(4)] < 16

. . 474
<T 20|05 () = U7 ()| + 505 (4) - O (4)
=

(117) + O((hg ™ + W2y higg) | n ho| ),
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l
Ti(4) — @ (4) —52 07(A)|
+3lop %(A)) I3 (4) ~ VL)
(118) + O((hg™ + B b)) ol T), k=1, 1,

- U}’(A)’ + % ‘US(A) ~ U4 (4)

l
rn ~m 16 3
O (4) — " (4) S
(119) 0<(h4+ﬁ + R b k| 7).

Theorem 6.2. For the semi-linear parabolic equation (1), the error of the averaged
solution at a grid point A € QF satisfies:

1 +1 ) 1 +1 )
1 2 U ) = (A) < | D07 () - T (4)
j=1 j=1
16 < )
55 |G A) - 07 ()| + 5 |05 (4) — Ot (4)
=
(120) + O((hg ™ + b i) [ In ol ).

Second, consider some a posteriori error estimates for the quasi-linear parabolic
equation.

Theorem 6.3. For the quasi-linear parabolic equation (2), let Uf(A) and UJ"(A)
(G =1,...,014+ 1) be the finite element solutions on the coarse and locally refined
grids, respectively, at a grid point A € QF. Then the following estimates hold:

l
B4~ (4)] <5 Z HA)|+ 2|03 () - T ()
(121) + 0((%” - fzilﬁé*f + b ) o] ),
- 16 | - .
P(A) - an(4)] <52 30|05 ) - U7 ()]
j=1
+ 2|03 (4) - Ot ()] + U3 (4) - U (4)
(122) + O + hp he F + i hg) Inho| T, k=1, 1,
- . 16 [~ . . .
Ofa (4) = ()| <32 D [08(A4) = T7(A)| + [07:(4) - O (4)

~ ~ Al1_d ~ ~ ~ —1
(123) +O((he™? + by 2 4 hapahg)| ko 7).
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Theorem 6.4. For the quasi-linear parabolic equation (2), the error of the averaged
solution at a grid point A € Qf satisfies:

1 I+1 ) 1 I+1
- n _an <|_—— A’I_’L T
M;UJ (A) —an(4)| < M;UJ (A) - U(A)
16 < | R X X
+ 32 2 |05 () - 07 )| + 2{08 () - T ()
j=1
(124) + O((hg ™ + 2y hig) I ho 7).

7. Numerical experiments

In this section, we will present two numerical examples to illustrate the features
of the proposed finite element splitting extrapolation method. We will see that
our method is valid for solving interface problems if we utilize the interfaces of the
original problems for the domain decomposition.

As explained in [26], in order to obtain the splitting extrapolation solution on the
globally fine grid, we only need to compute the regular bi-quadratic finite element
solutions on the coarse grid and the locally fine grids. In these computations, we
do not need to compute the finite element solutions at the globally fine grid nodes
which are not the nodes of either the coarse grid or the locally fine grids. In the
tables of this section, let “** denote these errors which are not computed on the
coarse grid and the locally fine grids, “Error of FE denote the error of the regular
bi-quadratic finite element solutions, “Error of SE denote the error of the splitting
extrapolation solution, and “Max error denote the maximum error on all nodes at
all time steps.

Example 1: Consider a semi-linear parabolic interface equation

% - vl(a(z,y) v u) = f(z,y,t,u) on QxI[0,T],
u(z,y,0) = ¥(x,y) on
u(z,y,t) =0 on 0 x[0,T],
where
( ) = r, x<lI,
WY =11, z>1,
and
—tant-u+ 157(r + 1)y(y — 1)(3z — 2) cost
_ —157[6 — (r + 1)a(z — 1)?] cost, x <1,
@, y.t,u) = —tant-u+ 15(r + 1)y(y — 1)(3z — 2) cost

—152rz +2 —2r — (r + D)z(z — 1)?] cost, x> 1.

Here € is a curved quadrangle, whose bottom boundary is on the straight line
connecting P; = (0,0) and P> = (2,0), top boundary is on the straight line con-
necting P, = (0,1) and P3 = (2,1), left boundary is a parabola connecting P,
Py = (—0.25,0.5), and Py, and right boundary is a parabola connecting Ps, Ps =
(2.25,0.5), and Ps. Also, we define P = (1,0), P; = (1,1), Py = (1, 1). The initial

_ 2 _
domain decomposition is constructed as Q = |J €25 where Q7 = Q[ {x < 1} and
s=1
Qo = QN {z > 1}. With the d-quadratic iso-parametric mapping, 2, Q;, and Qq
are mapped to © = (0,2) x (0,1), €3 = (0,1) x (0,1), and Q3 = (1,2) x (0,1)
separately. Then we design four independent step sizes: define h;(i = 1,2) to be
the grid step sizes of ;(i = 1,2) in the x-direction, h3 to be the grid step size in
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the y-direction, and h4 to be the temporal step size. The interface of the domain
decomposition 2 = Q; [J§ is exactly the same as the interface of a(z,y), i.e.,
x = 1. Choose h; = i(z =1,2,3,4) and T = 1. Then the numerical results in Table
1 show the dramatic accuracy improvement.

TABLE 1. Numerical error comparison between the regular finite
element (FE) solutions and the splitting extrapolation (SE) solu-
tions for Example 1.

Grid points Point type Error of FE Error of SE

(—0.0801,0.3750,T) type 0 —1.8850 x 10~* 1.1282 x 1076
(1.0000, 0.5000, T") type 0 —1.8595 x 1073 2.4163 x 1074
(0.0889,0.6875,T) type 1 —3.5537 x 1074 1.9720 x 1076
(1.0000,0.5625,T) type 1 —1.3739 x 1073 7.4213 x 107°
(0.4958,0.1875,T) type 2 ok —2.1941 x 107°
(0.8015,0.9375,T) type 2 ok —4.8336 x 1077
Max error on coarse grid —1.8595 x 1073 —5.3819 x 1074
Max error on fine grid ok —5.3819 x 1074

Example 2: Consider a quasi-linear parabolic equation

Gu —(uvu) = flz,y,t,u), on QxI0,T],
U(fE,y,O) = LC(:L’ - 2)y(y - 1)7 on Qv
u(z,y,t) =0, on 90 x [0,T],

where €2 is the same curved quadrangle as in Example 1 and

fa,y tou) =z(z = 2)y(y — 1)e’ — x(%—Z)

— 4z — )% (y — 1)%e* — (2y — 1)22% (x — 2)%e*.

u? — 2% (x — 2)%ey(y — 1)

The construction of the initial domain decomposition and design of independent
step sizes are the same as in Example 1. Choose h; = i(z =1,2,3,4)and T = 1.
Then the numerical results in Table 2 show the dramatic accuracy improvement.

8. Conclusion and Future Prospects

In this manuscript, we developed a finite element splitting extrapolation method
for more accurately and efficiently solving the nonlinear second order parabolic
equations. Based on the idea of domain decomposition, a group of independent
grid size parameters were designed for the subdomains to form a grid on the whole
domain. And the regular iso-parametric finite element method is presented based
on this grid. After the multi-parameter asymptotic expansions of the semi-discrete
and fully discrete iso-parametric finite element errors were proved, they are utilized
to construct the splitting extrapolation schemes. A posterior error estimates are
also presented for the finite element splitting extrapolation schemes. Numerical
examples are provided to illustrate the effect of the splitting extrapolation schemes.

Sophisticated interfaces, such as general smooth curves, are indeed more diffi-
cult to analyze and compute than the straight-line interfaces. The approximation
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TABLE 2. Numerical error comparison between the regular finite
element (FE) solutions and the splitting extrapolation (SE) solu-
tions for Example 2.

Grid points Point type Error of FE Error of SE
(2.0391,0.7500,T) type 0 —1.3048 x 1072 1.9629 x 1075
(1.0000,0.1250,T) type O 1.5548 x 1072 3.8575 x 10~*
(2.0903,0.5625, T) type 1~ —1.0150 x 1072 8.7175 x 10~°
(1.0000, 0.1875,T) type 1 3.1612 x 102 3.1334 x 1074
(1.6482,0.8125,7) type 2 ok 8.2897 x 10~*

(—0.0125,0.5625,T) type 2 ok 1.7171 x 10~4
Max error on coarse grid 6.1057 x10~2 —3.5523 x 1073
Max error on fine grid ok —2.0857 x 1072

of curved interfaces would generate geometric discretization errors, for which the
iso-parametric d-quadratic mapping is more accurate than the piecewise linear ap-
proximation of the interfaces. It is an interesting future work to extend the proposed
splitting extrapolation method to more complex interface problems, which clearly
have a wider range of application scenarios and more significant challenges.
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