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ANALYSIS OF A TYPE II THERMAL PROBLEM INVOLVING A

VISCOELASTIC BEAM

JACOBO BALDONEDO, JOSÉ R. FERNÁNDEZ∗, AND RAMÓN QUINTANILLA

Abstract. In this work, we will study, from both analytical and numerical points of view, a
nonlocal problem involving a thermoviscoelastic beam which has been modeled by using the type
II thermal law. In the first part, we will show that this problem has a unique solution and that the
solutions decay exponentially by using the theory of linear semigroups. We will also prove that the

semigroup of contractions is not differentiable and the impossibility of localization, that is, we will
obtain that the unique solution which can vanish in an open nonempty set is the null solution.
In the second part, we will focus on the numerical approximation of a variational formulation

of the thermomechanical problem. By using the finite element method and the implicit Euler
scheme to approximate the spatial variable and to discretrize the time derivatives, respectively,
a fully discrete scheme will be introduced. Then, we will prove a discrete stability property and
we will provide an a priori error analysis. The linear convergence of the approximations will be

deduced whenever the continuous solution is regular enough. Finally, some numerical results will
be presented to demonstrate the numerical convergence and the exponential decay of the discrete
energy.

Key words. Viscoelastic beam, type II thermoelasticity, finite elements, a priori error estimates,

numerical simulations.

1. Introduction

The study of thermoelastic materials has received a large number of contributions
dealing with both quantitative or qualitative aspects. In these studies, we can
find results about the existence, uniqueness and stability as well as the numerical
behavior of the solutions. In this sense, it is suitable to recall several contributions
concerning plate thermoelastic problems [1, 2, 3, 4, 10, 12, 13, 17, 18, 20, 22].
In these references, the conservative component is mechanical and the dissipative
aspect is thermal. The objective of this work is to follow these lines but it is worth
noting that, here, we consider a nonlocal thermoviscoelastic bar formulated with a
conservative heat conduction model.

Therefore, it is adequate to recall that the idea of non-locality in elasticity was
introduced by Eringen [8, 9] and that this mechanism suggests a regularization of
the solutions [11]. From the physical point of view, this is introduced to take into
account the effects at long distances.On the other hand, from the thermal point
of view, it is worth noting that Green and Naghdi proposed three thermoelastic
theories depending on the type of heat conduction (see, for details, [14, 15, 16]). In
this paper, we consider the so-called type II thermal law, which does not allow the
energy dissipation, leading to a conservative behavior. That is, in this paper we
change the role of the mechanical and thermal aspects and we consider the nonlocal
effect.

The paper is structured as follows. In the next section we will describe the
problem that we will study in this work. Then, in Sections 3 and 4 the existence
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and the energy decay of the solutions will be obtained by means of the theory of
linear semigroups, although we will also prove that the semigroup is not differen-
tiable. In Section 5, we will see that the unique solution which vanishes for every
time t ≥ t0 ≥ 0 is the null solution. Then, in Section 6 we will focus on the nu-
merical approximation of a variational formulation of the above thermomechanical
problem. The fully discrete scheme will be provided by using the classical finite
element method to approximate the spatial variable and the implicit Euler scheme
to discretize the time derivatives. A discrete stability property and an a priori er-
ror analysis will be shown by using a discrete version of Gronwall’s inequality. The
linear convergence of the approximations will be deduced under some additional
regularity of the continuous solution. Finally, in Section 7 we will present two nu-
merical tests: the first one will demonstrate the convergence of the discrete solution
when both spatial parameter and time step tend to zero, leading to the theoretical
linear convergence. The second example will show the exponential decay of the
discrete energy.

2. Preliminaries

In this paper, we will consider a thermoviscoelastic bar which occupies the do-
main (0, π), and modeled by using the Euler-Bernoulli theory when the heat con-
duction is determined by the type II Green-Naghdi theory (see [16]).

Therefore, we will study the system:

(1)
ρutt − τuttxx + µuxxxx + µ∗utxxxx − βαtxx = 0,
cαtt − καxx + βutxx = 0

}
in (0, π)× (0, T ).

In the previous equations, T is the final time, u is the mechanical displacement and
α is the thermal displacement which satisfies αt = θ (the temperature). We will
also consider the boundary conditions:

(2)
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0
α(0, t) = α(π, t) = 0

}
for a.e. t ∈ (0, T ),

and the initial conditions:

(3)
u(x, 0) = u0(x), ut(x, 0) = v0(x)
α(x, 0) = α0(x), αt(x, 0) = θ0(x)

}
for a.e. x ∈ (0, π).

In this work, we will assume that ρ, τ , µ, µ∗, c, κ and β are constants and, in
general, that ρ, τ , µ, µ∗, c and κ are positive. Moreover, when we study the energy
decay of the solutions to our problem, we will also assume that β ̸= 0.

We can recall that our problem is similar to the one studied analytically in
[21]. However, here we consider the inertial effects determined by the parameter τ .
Furthermore, in this work we emphasize in the numerical aspect of the problem,
which was not considered in [21].

3. Existence of solutions

In this section, we will show the existence and uniqueness of solutions to the
problem determined by system (1), boundary conditions (2) and initial conditions
(3). First, we will write our problem as a Cauchy problem in an adequate Hilbert
space. Let us denote U = (u, v, α, θ) and consider the Hilbert space:

H = H1
0 (0, π) ∩H2(0, π)×H1

0 (0, π)×H1
0 (0, π)× L2(0, π),

where L2(0, π), H1
0 (0, π) and H2(0, π) represent the usual Sobolev spaces.

We can define the scalar product in H associated to the norm:

∥U∥2H = µ∥uxx∥2 + ρ∥v∥2 + τ∥vx∥2 + κ∥αx∥2 + c∥θ∥2.
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If we define the operator:

(4) AU =


v

−(ρ− τ∂xx)
−1∂xx(µuxx + µ∗vxx − βθ)

θ
c−1∂xx(κα− βv)

 ,

we can write our problem in the following abstract form:

(5) Ut −AU = 0, U(0) = (u0, v0, α0, θ0).

We observe that the domain of the operator A is defined as

D(A) ={U = (u, v, α, θ) ∈ H ; v ∈ H2(0, π), θ ∈ H1
0 (0, π),

µuxx + µ∗vxx − βθ ∈ H−1(0, π), κα− βv ∈ H2(0, π),

µuxx + µ∗vxx vanishes at x = 0, π}.

Clearly, this set is dense in H.
Now, we have

⟨AU,U⟩ =µ⟨vxx, uxx⟩+ ρ⟨−(ρ− τ∂xx)
−1∂xx[µuxx + µ∗vxx − βθ], v⟩

+ τ⟨−∂x(ρ− τ∂xx)
−1∂xx[µuxx + µ∗vxx − βθ], vx⟩+ κ⟨θx, αx⟩

+ c⟨c−1∂xx(κα− βv), θ⟩.

We note that

⟨−∂x(ρ− τ∂xx)
−1∂xx[µuxx + µ∗vxx − βθ], vx⟩

=⟨∂xx(ρ− τ∂xx)
−1∂xx[µuxx + µ∗vxx − βθ], v⟩,

and therefore,

⟨AU,U⟩ = µ⟨vxx, uxx⟩−⟨∂xx[µuxx+µ∗vxx−βθ], v⟩+κ⟨θx, αx⟩+ ⟨∂xx(κα−βv), θ⟩.

After the use of the integration by parts, we find that

Re⟨AU,U⟩ = −µ∗
∫ π

0

|vxx|2 dx ≤ 0.

Now, our aim is to show that operator A generates a semigroup of contractions.
Therefore, it will be enough to show that zero belongs to the resolvent of the
operator. So, we consider the element F = (f1, f2, f3, f4) ∈ H. We must prove that
there exists (u, v, α, θ) ∈ D(A) such that

(6)

v = f1,
∂xx(µuxx + µ∗vxx − βθ) = −(ρ− τ∂xx)f2,
θ = f3,
∂xx(κα− βv) = cf4.

Of course, it is trivial to obtain v and θ. Therefore, we arrive to the following
system:

(7)
µ∂xxxxu = −(ρ− τ∂xx)f2 − µ∗∂xxxxf1 + β∂xxf3,
κ∂xxα = cf4 + β∂xxf1.

It is obvious that we can obtain the solutions to system (7) in an easy way and that
they belong to the domain D(A). Moreover, we find that there exists a positive
constant K such that

∥U∥ ≤ K∥F∥, K > 0.

Therefore, we have proved the following theorem.
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Theorem 1. The operator A defined in (4) is the infinitesimal generator of a C0-
semigroup of contractions on H. Thus, for any initial data U(0) ∈ D(A) there
exists only one solution to Cauchy problem (5) verifying

U ∈ C1([0,∞);H) ∩ C([0,∞);D(A)).

Remark 2. A similar result can be obtained if we change the boundary conditions
uxx(0, t) = uxx(π, t) = 0 by ux(0, t) = ux(π, t) = 0.

4. Energy decay of the solutions

In this section, we will show that the solutions obtained in the previous section
decay in an exponential way; that is, there exist two positive constants M and ω
such that

(8) ∥U(t)∥H ≤ Me−ωt∥U(0)∥H,

whenever we assume that β ̸= 0.
In order to show this property, we will use the well-known characterization of

the semigroups which are exponentially stable (see [19]). This is equivalent to show
that the imaginary axis is contained at the resolvent of the operator and that the
asymptotic condition

(9) lim
|γ|→∞

∥(iγI − A)−1∥ < ∞

holds.
We will proceed by contradiction. Thus, assume that there exists a real number

γ0 ̸= 0 such that iγ0 does not belong to the resolvent. We can guarantee the
existence of a sequence of real numbers γn → γ0 and a sequence of elements Un ∈
D(A), with ∥Un∥H = 1, such that

iγnun − vn → 0 in H2(0, π),(10)

i(ργnvn − τγn∂xxvn) + µ∂xxxxun + µ∗∂xxxxvn

−β∂xxθn → 0 in H−1(0, π),(11)

iγnαn − θn → 0 in H1(0, π),(12)

icγnθn − κ∂xxαn + β∂xxvn → 0 in L2
∗(0, π).(13)

If we use the dissipation inequality we find that ∥∂xxvn∥ → 0 and so, we have that
∥γn∂xxun∥ also tends to zero. If we multiply convergence (11) by γ−1

n αn ∈ H1
0 (0, π)

it leads

µ⟨∂xxun, γ
−1
n ∂xxαn⟩+ µ∗⟨∂xxvn, γ−1

n ∂xxαn⟩+ β⟨∂xθn, γ−1
n ∂xαn⟩ → 0.

We can observe that γ−1
n ∂xxαn is bounded. Therefore, the first two summands tend

to zero.
Since we assume β ̸= 0 we conclude that αn → 0 in H1(0, π). If we multiply

convergence (13) by αn, we obtain that θn → 0 in L2(0, π).
The asymptotic condition (9) can be proved following a similar argument since

the key point is that γn does not tend to zero.
Now, we are going to show that the semigroup generated by the solutions to our

problem is not differentiable (and so, it is not analytic). Following [7, p. 112,114],
we recall that, if a semigroup is differentiable, then the following condition

(14) lim
γ→±∞

∥(iγI − A)−1∥ = 0

holds.
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Therefore, if we are able to prove that condition (14) is not satisfied, we conclude
that the semigroup is not differentiable.

To show this, we will consider the sequence (0, 0, 0, sinnx) and also the sequence
(un, vn, αn, θn) satisfying

iγnun − vn = 0,
i(ργnvn − τγnvn,xx) + µun,xxxx + µ∗vn,xxxx − βθn,xx = 0,
iγnαn − θn = 0,
icγnθn − καn,xx + βvn,xx = sinnx.

This system admits solutions of the form

un = Cn sinnx, αn = Dn sinnx, vn = iγnCn sinnx, θn = iγnDn sinnx.

If we substitute them into the above system, we find that

(−ργ2
n − τn2γ2

n + µn4 + iµ∗γnn
4)Cn + iβn2γnDn = 0,

−iβγnn
2Cn + (κn2 − cγ2

n) = 1,

and so, we have

Dn =
iµ∗γnn

4 − ργ2
n − τn2γ2

n + µn4

−β2γ2
nn

4 + (iµ∗γnn4 − ργ2
n − ργ2

n − τn2γ2
n + µn4)(κn2 − cγ2

n)
.

Now, we take κn2 − cγ2
n = − β

µ∗ . That is,

γn =

√
κ

c
n2 +

β

cµ∗ .

Therefore, it follows that

Dn =
iµ∗γnn

4 − ργ2
n − τn2γ2

n + µn4

−β2γ2
nn

4 − β
µ∗ (iµ∗γnn4 − ργ2

n − ργ2
n − τn2γ2

n + µn4)
,

and so, we can conclude that

lim
n→∞

iγnDn =
µ∗

β2

and

lim
n→∞

∥Un∥ > 0.

Since the norm of the solution to our problem does not tend to zero, it follows that
the semigroup is not differentiable (neither analytic).

The results shown in this section are summarized in the following.

Theorem 3. The solutions generated by the semigroup associated to the operator
A are exponentially stable; that is, there exist two positive constants M and ω such
that the inequality (8) holds. However, the semigroup is not differentiable.

5. Impossibility of localization

In this section, we will prove that the unique solution which can vanish in an
open (not empty) set is the null solution. Therefore, it will be sufficient to show
that the backward in time problem has a unique solution. We recall that our system
of equations is written as

ρutt − τuttxx + µuxxxx − µ∗utxxxx − β∗αtxx = 0,
cαtt − καxx + β∗utxx = 0,

with β∗ = −β.
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We will study this system together with the boundary conditions (2) and the
initial conditions, for a.e. x ∈ (0, π),

u0(x) = v0(x) = α0(x) = θ0(x) = 0.

We will show that this problem only admits the null solution.
First, let us consider the functions

F1(t) =
1

2

∫ π

0

(
ρu2

t + τu2
tx + µu2

xx + cθ2 + κα2
x

)
dx,(15)

F2(t) =
1

2

∫ π

0

(
cθ2 + κα2

x − ρu2
t − τu2

tx − µu2
xx

)
dx,(16)

and so we have

F1t(t) = µ∗
∫ π

0

u2
txx dx,

F2t(t) =

∫ π

0

(2β∗utxxθ − µ∗u2
txx) dx.

We can use the Lagrange identities to write function F2(t) in an alternative form.
For each t ∈ (0, T ) (with a given time T > 0), we find that∫ t

0

∫ π

0

cαtt(s)αt(2t− s) dxds−
∫ t

0

∫ π

0

καxx(s)αt(2t− s) dxds

=

∫ t

0

∫ π

0

β∗utxx(s)αt(2t− s) dxds,∫ t

0

∫ π

0

cαtt(2t− s)αt(s) dxds−
∫ t

0

∫ π

0

καxx(2t− s)αt(s) dxds

=

∫ t

0

∫ π

0

β∗utxx(2t− s)αt(s) dxds,∫ t

0

∫ π

0

ρutt(2t− s)ut(s) dxds+

∫ t

0

∫ π

0

τuttx(2t− s)utx(s) dxds

+

∫ t

0

∫ π

0

µuxx(2t− s)utxx(s)dxds−
∫ t

0

∫ π

0

µ∗utxx(2t− s)utxx(s) dxds

= −
∫ t

0

∫ π

0

β∗utxx(s)αt(2t− s) dxds,∫ t

0

∫ π

0

ρutt(s)ut(2t− s) dxds+

∫ t

0

∫ π

0

τuttx(s)utx(2t− s) dxds

+

∫ t

0

∫ π

0

µuxx(s)utxx(2t− s)dxds−
∫ t

0

∫ π

0

µ∗utxx(s)utxx(2t− s) dxds

= −
∫ t

0

∫ π

0

β∗utxx(2t− s)αt(s) dxds.

If we combine these equalities, after the time integration and using the initial
conditions, we obtain∫ π

0

(
cθ2 + µu2

xx

)
dx =

∫ π

0

(
ρu2

t + τu2
xt + κα2

x

)
dx.

Therefore, taking into account the previous equalities and by using integration by
parts it follows that

(17) F2(t) =

∫ π

0

(
κα2

x − µu2
xx

)
dx.
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We note that we also have∫ π

0

(
− d

dt
(cαθ) + cθ2

)
dx =

∫ π

0

(
κα2

x + β∗utxxα
)
dx,

and ∫ π

0

(
d

dt
(ρuut + τuxuxt)− ρu2

t − τu2
xt

)
dx

=−
∫ π

0

(
β∗θxxu+ µu2

xx

)
dx+

1

2

d

dt

∫ π

0

µ∗u2
xx dx.

Therefore, we find that

d

dt

∫ π

0

(µ∗

2
u2
xx − ρuut − τuxuxt + cαθ

)
dx

=−
∫ π

0

(
β∗utxxα− β∗θuxx

)
dx+

∫ π

0

(
µu2

xx − κα2
x + cθ2 − ρu2

t − τu2
tx

)
dx.

Now, we define the function

F0(t) = εF1(t) + F2(t) + λF3(t),

where functions F1 and F2 were defined previously in (15) and (17), respectively, ε
is less than 1, λ is a positive constant assumed large enough and

F3(t) =

∫ π

0

(µ∗

2
u2
xx − ρuut − τuxuxt + cαθ

)
dx.

If we define the Lyapunov function

G(t) =

∫ t

0

F0(s) ds,

we can observe that

G(t) ≥ m1

∫ t

0

∫ π

0

(
ρu2

t + τu2
tx + µ∗u2

xx + κα2
x + cθ2

)
dx,

whenever t ≤ t0, for t0 > 0, is small enough and after the use of the Poincaré
inequality.

We can immediately obtain that

Gt(t) =

∫ t

0

∫ π

0

(
2β∗utxxθ − (1− ε)µ∗u2

txx

)
dxds+

∫ t

0

∫ π

0

λβ∗(θuxx − αutxx) dxds

+λ

∫ t

0

∫ π

0

(
µu2

xx − κα2
x + cθ2 − ρu2

t − τu2
xt

)
dxds.

Therefore, we conclude that

Gt(t) ≤ m2

∫ t

0

∫ π

0

(
ρu2

t + cθ2 + µ∗u2
xx + κα2

x + τu2
xt

)
dxds.

In view of the Gronwall inequality it follows that

G(t) ≤ G(0)ekt = 0 for k > 0.

Since G(0) = 0 we have that u(x, t) = α(x, t) = 0 for every t ≤ t0. Now, we can
repeat the argument from 3

4 t0 and we can prove that u(x, t) = α(x, t) = 0 for every

t ≤ 7
4 t0. Repeating again the argument, it leads to the proposed result.
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6. A fully discrete scheme: stability and an a priori error analysis

In this section, we will study, from the numerical point of view, the thermome-
chanical problem studied in the previous section. For the sake of generality, let us
assume that the spatial interval is (0, ℓ), ℓ > 0 being the length of the beam and
denote by (0, T ) the time interval of interest, where T > 0 is the final time.

As usual in the numerical analysis of thermoelastic problems involving beams,
we need to modify boundary conditions (2) as follows,

(18)
u(0, t) = u(ℓ, t) = ux(0, t) = ux(ℓ, t) = 0
α(0, t) = α(ℓ, t) = 0

}
for a.e. t ∈ (0, T ).

The reason to do it is that, when we provide the weak form of the thermomechan-
ical problem determined by system (1) with initial conditions (3) and boundary
conditions (2), its solution will be in the space H1(0, ℓ) instead of H2(0, ℓ).

In order to obtain the variational formulation, let Y = L2(0, ℓ), E = H1
0 (0, ℓ)

and V = H2
0 (0, ℓ). Moreover, let us denote (·, ·) and ∥ · ∥ the inner product and the

norm defined in L2(0, ℓ), respectively.
Integrating by parts equations (1) and using initial conditions (3) and the new

boundary conditions (18), we obtain the following weak formulation written using
the velocity v = ut and the temperature θ = αt.

Find the velocity v : [0, T ] → V and the temperature θ : [0, T ] → E such that
v(0) = v0 and θ(0) = θ0 and, for a.e. t ∈ (0, T ) and for all w ∈ V and r ∈ E,

ρ(vt(t), w) + τ(vtx(t), wx) + µ(uxx(t), wxx) + µ∗(vxx(t), wxx)

+β(θx(t), wx) = ρ(F1(t), w),(19)

c(θt(t), r) + κ(αx(t), rx)− β(vx(t), rx) = ρ(F2(t), r),(20)

where the transverse displacement and the thermal displacement are then recovered
from the relations:

(21) u(t) =

∫ t

0

v(s) ds+ u0, α(t) =

∫ t

0

θ(s) ds+ α0.

We note that we have introduced two supply terms F1 and F2 to make the problem
more general, and because they will be used in the numerical simulations.

Now, a fully discrete scheme to approximate problem (19)-(21) is introduced. In
order to provide the spatial approximation, let us divide the interval [0, ℓ] into M
subintervals denoted by a0 = 0 < a1 < . . . < aM = ℓ. The mesh size is assumed
uniform with length h = ai+1 − ai = ℓ/M . So, the variational spaces E and V are
then approximated by the finite dimensional spaces Eh ⊂ E and V h ⊂ V given by

Eh = {rh ∈ C([0, ℓ]) ; rh[ai,ai+1]
∈ P1([ai, ai+1]) i = 0, . . . ,M − 1,

rh(0) = rh(ℓ) = 0},(22)

V h = {wh ∈ C1([0, ℓ]) ∩H2(0, ℓ) ; wh
[ai,ai+1]

∈ P3([ai, ai+1])

i = 0, . . . ,M − 1, wh
x(0) = wh

x(ℓ) = wh(0) = wh(ℓ) = 0},(23)

where the set Pr([ai, ai+1]) denotes the space of polynomials of degree less or equal
to r for each subinterval [ai, ai+1], i.e. the finite element space Eh is made of
continuous and piecewise affine functions and the finite element space V h by C1

and piecewise cubic functions. Moreover, we construct the discrete initial conditions
uh
0 , v

h
0 , α

h
0 and θh0 in the following form:

(24) uh
0 = Ph

2 u0, vh0 = Ph
2 v0, αh

0 = Ph
1 α0, θh0 = Ph

1 θ0,
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where Ph
1 and Ph

2 are the finite element projection operators over Eh and V h, which
can be found in [6].

Secondly, to provide the discretization of the first-order time derivatives, we
consider the classical implicit Euler scheme and so, we use a uniform partition of
the time interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T , with time step
k = T/N and nodes tn = nk for n = 0, 1, . . . , N .

Hence, the fully discrete approximation of problem (19)-(21) is written as follows.
Find the discrete velocity vhk = {vhkn }Nn=0 ⊂ V h and the discrete temperature

θhk = {θhkn }Nn=0 ⊂ Eh such that vhk0 = vh0 , θhk0 = θh0 and, for all wh ∈ V h and
rh ∈ Eh, and n = 1, . . . , N ,

ρ(δvhkn , wh) + τ(δ(vhkn )x, w
h
x) + µ((uhk

n )xx, w
h
xx) + µ∗((vhkn )xx, w

h
xx)

+β((θhkn )x, w
h
x) = ρ(F1n, w

h),(25)

c(δθhkn , rh) + κ((αhk
n )x, r

h
x)− β((vhkn )x, r

h
x) = ρ(F2n, r

h),(26)

where we used the notations zn = z(tn) and δzn = (zn − zn−1)/k for a given
continuous function z(t) and for a sequence {zn}Nn=0, respectively. Moreover, the
discrete transverse displacement uhk

n and the thermal displacement αhk
n are now

obtained as

(27) uhk
n = k

n∑
j=1

vhkj + uh
0 , αhk

n = k

n∑
j=1

θhkj + αh
0 .

Applying the classical Lax Milgram lemma, we can easily deduce that problem
(25)-(27) admits a unique solution under the assumptions required in Section 2 on
the constitutive coefficients.

In the rest of this section, we will show the discrete stability and we will provide
an a priori error analysis and so, for the sake of simplicity in the calculations, we
assume that the supply terms F1 and F2 vanish.

First, we will prove a discrete stability property. This is summarized in the
following result.

Lemma 4. If we assume that ρ, τ , µ, µ∗, c and κ are positive, then there exists a
positive constant C, which is independent of the discretization parameters h and k,
such that

∥vhkn ∥E + ∥uhk
n ∥V + ∥θhkn ∥+ ∥αhk

n ∥E ≤ C for n = 1, . . . , N,

where, here and in what follows, we denote by ∥ · ∥X the norm in the Hilbert space
X.

Proof. First, we take as a test function in equation (25) wh = vhkn to obtain

ρ(δvhkn , vhkn ) + τ(δ(vhkn )x, (v
hk
n )x) + µ((uhk

n )xx, (v
hk
n )xx) + µ∗((vhkn )xx, (v

hk
n )xx)

+ β((θhkn )x, (v
hk
n )x) = ρ(fn, v

hk
n ).

Taking into account that

(δvhkn , vhkn ) ≥ 1

2k

{
∥vhkn ∥2 − ∥vhkn−1∥2

}
,

(δ(vhkn )x, (v
hk
n )x) ≥

1

2k

{
∥(vhkn )x∥2 − ∥(vhkn−1)x∥2

}
,

((uhk
n )xx, (v

hk
n )xx) ≥

1

2k

{
∥(uhk

n )xx∥2 − ∥(uhk
n−1)xx∥2

}
,
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by using the Cauchy-Schwarz inequality and the Young’s inequality

(28) ab ≤ ϵa2 +
1

4ϵ
b2,

it follows that

(29)

ρ

2k

{
∥vhkn ∥2 − ∥vhkn−1∥2

}
+

τ

2k

{
∥(vhkn )x∥2 − ∥(vhkn−1)x∥2

}
+ β((θhkn )x, (v

hk
n )x)

+
µ

2k

{
∥(uhk

n )xx∥2 − ∥(uhk
n−1)xx∥2

}
≤ C

(
1 + ∥vhkn ∥2

)
.

Now, we obtain the estimates for the discrete temperature. If we take as a test
function rh = θhkn in discrete equation (26) we have

c(δθhkn , θhkn ) + κ((αhk
n )x, (θ

hk
n )x)− β((vhkn )x, (θ

hk
n )x) = ρ(sn, θ

hk
n ).

Keeping in mind that

(δθhkn , θhkn ) ≥ 2

k

{
∥θhkn ∥2 − ∥θhkn−1∥2

}
,

((αhk
n )x, (θ

hk
n )x) ≥

2

k

{
∥(αhk

n )x∥2 − ∥(αhk
n−1)x∥2

}
,

by using again the above inequalities we find that

(30)

c

2k

{
∥θhkn ∥2 − ∥θhkn−1∥2

}
+

κ

2k

{
∥(αhk

n )x∥2 − ∥(αhk
n−1)x∥2

}
−β((vhkn )x, (θ

hk
n )x) ≤ C

(
1 + ∥θhkn ∥2

)
.

Combining estimates (29) and (30) it follows that

1

2k

{
∥vhkn ∥2 − ∥vhkn−1∥2

}
+

1

2k

{
∥(vhkn )x∥2 − ∥(vhkn−1)x∥2

}
+

1

2k

{
∥(uhk

n )xx∥2 − ∥(uhk
n−1)xx∥2

}
+

1

2k

{
∥θhkn ∥2 − ∥θhkn−1∥2

}
+

1

2k

{
∥(αhk

n )x∥2 − ∥(αhk
n−1)x∥2

}
≤C

(
1 + ∥vhkn ∥2 + ∥θhkn ∥2

)
.

Multiplying these estimates by k and summing them until n, we find that

∥vhkn ∥2 + ∥(vhkn )x∥2 + ∥(uhk
n )xx∥2 + ∥θhkn ∥2 + ∥(αhk

n )x∥2

≤Ck
n∑

j=1

(
1 + ∥vhkj ∥2 + ∥θhkj ∥2

)
+ C

(
∥vh0 ∥2E + ∥uh

0∥2V + ∥θh0∥2 + ∥αh
0∥2E

)
,

and, applying a discrete version of Gronwall’s inequality (see, e.g., [5]) we conclude
the desired a priori stability estimates. �

Now, we provide an a priori error analysis in the rest of this section. The main
result is the following.

Theorem 5. Under the assumptions of Lemma 4, if we denote by (u, v, α, θ) the
solution to the variational problem (19)-(21) and by {uhk

n , vhkn , αhk
n , θhkn }Nn=0 the

solution to the discrete variational problem (25)-(27), then we have the following a
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priori error estimates, for all {wh
n}Nn=0 ⊂ V h and {rhn}Nn=0 ⊂ Eh,

max
0≤n≤N

{
∥vn − vhkn ∥2E + ∥un − uhk

n ∥2V + ∥θn − θhkn ∥2 + ∥αn − αhk
n ∥2E

}
≤ Ck

N∑
j=1

(
∥vtj − δvj∥2E + ∥utj − δuj∥2V + ∥vj − wh

j ∥2V + ∥θtj − δθj∥2

+∥αtj − δαj∥2E + ∥θj − rhj ∥2E
)
+ C max

0≤n≤N

{
∥vn − wh

n∥2 + ∥θn − rhn∥2
}

+
C

k

N−1∑
j=1

{
∥vj − wh

j − (vj+1 − wh
j+1)∥2 + ∥θj − rhj − (θj+1 − rhj+1)∥2

}
+C

(
∥v0 − vh0 ∥2 + ∥u0 − uh

0∥2V + ∥θ0 − θh0∥2 + ∥α0 − αh
0∥2E

)
.

Proof. First, we obtain the error estimates on the velocity field. We subtract varia-
tional equation (19), at time tn, and for a test function w = wh ∈ V h, and discrete
variational equation (25), and we obtain, for all wh ∈ V h,

ρ(vtn − δvhkn , wh) + τ((vtn − δvhkn )x, w
h
x) + µ((un − uhk

n )xx, w
h
xx)

+µ∗((vn − vhkn )xx, w
h
xx) + β((θn − θhkn )x, w

h
x) = 0,

and so, it follows that, for all wh ∈ V h,

ρ(vtn − δvhkn , vn − vhkn ) + τ((vtn − δvhkn )x, (vn − vhkn ))

+ µ((un − uhk
n )xx, (vn − vhkn )xx)

+ µ∗((vn − vhkn )xx, (vn − vhkn )xx) + β((θn − θhkn )x, (vn − vhkn )x)

=ρ(vtn − δvhkn , vn − wh) + τ((vtn − δvhkn )x, (vn − wh)x)

+ µ((un − uhk
n )xx, (vn − wh)xx)

+ µ∗((vn − vhkn )xx, (vn − wh)xx) + β((θn − θhkn )x, (vn − wh)x).

Keeping in mind that

ρ(δvn − δvhkn , vn − vhkn ) ≥ ρ

2k

{
∥vn − vhkn ∥2 − ∥vn−1 − vhkn−1∥2

}
,

τ((δvn − δvhkn )x, (vn − vhkn )x) ≥
τ

2k

{
∥(vn − vhkn )x∥2 − ∥(vn−1 − vhkn−1)x∥2

}
,

µ((un − uhk
n )xx, (δun − δuhk

n )xx) ≥
µ

2k

{
∥(un − uhk

n )xx∥2 − ∥(un−1 − uhk
n−1)xx∥2

}
,

((θn − θhkn )x, (vn − wh)x) =− (θn − θhkn , (vn − wh)xx),

after several algebraic manipulations, by using Cauchy-Schwarz inequality and the
Young’s inequality (28) we find that, for all wh ∈ V h,

ρ

2k

{
∥vn − vhkn ∥2 − ∥vn−1 − vhkn−1∥2

}
+

τ

2k

{
∥(vn − vhkn )x∥2 − ∥(vn−1 − vhkn−1)x∥2

}
+

µ

2k

{
∥(un − uhk

n )xx∥2 − ∥(un−1 − uhk
n−1)xx∥2

}
+ β((θn − θhkn )x, (vn − vhkn )x)

≤C
(
∥vn − vhkn ∥2 + ∥vtn − δvn∥2E + ∥utn − δun∥2V + ∥vn − wh∥2V

+ ∥θn − θhkn ∥2 + ∥(un − uhk
n )xx∥2 + (δvn − δvhkn , vn − wh)

)
.(31)
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Secondly, we derive the error estimates for the temperature. We subtract vari-
ational equation (20), at time tn and for a test function rh ∈ Eh, and discrete
variational equation (26), and we have, for all rh ∈ Eh,

c(θtn − δθhkn , rh) + κ((αn − αhk
n )x, r

h
x)− β((vn − vhkn )x, r

h
x) = 0.

Thus, we find that,

c(θtn − δθhkn , θn − θhkn ) + κ((αn − αhk
n )x, (θn − θhkn )x)

− β((vn − vhkn )x, (θn − θhkn )x)

=c(θtn − δθhkn , θn − rh) + κ((αn − αhk
n )x, (θn − rh)x)

− β((vn − vhkn )x, (θn − rh)x).

Taking into account that

c(δθn − δθhkn , θn − θhkn ) ≥ c

2k

{
∥θn − θhkn ∥2 − ∥θn−1 − θhkn−1∥2

}
,

κ((αn − αhk
n )x, (δαn − δαhk

n )x) ≥
κ

2k

{
∥(αn − αhk

n )x∥2 − ∥(αn−1 − αhk
n−1)x∥2

}
,

using again several times Cauchy-Schwarz inequality and the Young’s inequality
(28), it leads

c

2k

{
∥θn − θhkn ∥2 − ∥θn−1 − θhkn−1∥2

}
+

κ

2k

{
∥(αn − αhk

n )x∥2 − ∥(αn−1 − αhk
n−1)x∥2

}
− β((vn − vhkn )x, (θn − θhkn )x)

≤C
(
∥θtn − δθn∥2 + ∥αtn − δαn∥2E + ∥θn − θhkn ∥2

+ ∥(vn − vhkn )x∥2 + ∥θn − rh∥2E

+ ∥(αn − αhk
n )x∥2 + (δθn − δθhkn , θn − rh)

)
.(32)

Combining estimates (31) and (32) we obtain, for all wh ∈ V h and rh ∈ Eh,

ρ

2k

{
∥vn − vhkn ∥2 − ∥vn−1 − vhkn−1∥2

}
+

τ

2k

{
∥(vn − uhk

n )x∥2 − ∥(vn−1 − uhk
n−1)x∥2

}
+

µ

2k

{
∥(un − uhk

n )xx∥2 − ∥(un−1 − uhk
n−1)xx∥2

}
+

c

2k

{
∥θn − θhkn ∥2 − ∥θn−1 − θhkn−1∥2

}
+

κ

2k

{
∥(αn − αhk

n )x∥2 − ∥(αn−1 − αhk
n−1)x∥2

}
≤C

(
∥vn − vhkn ∥2 + ∥vtn − δvn∥2E + ∥utn − δun∥2V + ∥vn − wh∥2V + ∥θn − θhkn ∥2

+ ∥(un − uhk
n )xx∥2 + (δvn − δvhkn , vn − wh) + ∥θtn − δθn∥2 + ∥αtn − δαn∥2E

+ ∥(vn − vhkn )x∥2 + ∥θn − rh∥2E + ∥(αn − αhk
n )x∥2 + (δθn − δθhkn , θn − rh)

)
.
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Multiplying these estimates by k and summing up to n we have, for all {wh
j }nj=0 ⊂

V h and {rhj }nj=0 ⊂ Eh,

∥vn − vhkn ∥2 + ∥(vn − vhkn )x∥2 + ∥(un − uhk
n )xx∥2

+ ∥θn − θhkn ∥2 + ∥(αn − αhk
n )x∥2

≤Ck

n∑
j=1

(
∥vj − vhkj ∥2 + ∥vtj − δvj∥2E + ∥utj − δuj∥2V + ∥vj − wh

j ∥2V + ∥θj − θhkj ∥2

+ ∥(uj − uhk
j )xx∥2 + (δvj − δvhkj , vj − wh

j ) + ∥θtj − δθj∥2 + ∥αtj − δαj∥2E

+ ∥(vj − vhkj )x∥2 + ∥θj − rhj ∥2E + ∥(αj − αhk
j )x∥2 + (δθj − δθhkj , θj − rhj )

)
+ C

(
∥v0 − vh0 ∥2E + ∥u0 − uh

0∥2V + ∥θ0 − θh0∥2 + ∥α0 − αh
0∥2E

)
.

Finally, we take into account that

k
n∑

j=1

(δvj − δvhkj , vj − wh
j ) = (vn − vhkn , vn − wh

n) + (vh0 − v0, v1 − wh
1 )

+
n−1∑
j=1

(vj − vhkj , vj − wh
j − (vj+1 − wh

j+1)),

k
n∑

j=1

(δθj − δθhkj , θj − rhj ) = (θn − θhkn , θn − rhn) + (θh0 − θ0, θ1 − rh1 )

+
n−1∑
j=1

(θj − θhkj , θj − rhj − (θj+1 − rhj+1)),

applying again a discrete version of Gronwall’s inequality we deduce the desired a
priori error estimates. �

As a particular case of derivation of the convergence order, we obtain the lin-
ear convergence under suitable additional regularity conditions on the continuous
solution. So, we have the following.

Corollary 6. Let us assume that the solution to variational problem (19)-(21) has
the following additional regularity:

u ∈ H3(0, T ;E) ∩H2(0, T ;V ) ∩ C1([0, T ];H3(0, ℓ)),
α ∈ H3(0, T ;Y ) ∩H2(0, T ;E) ∩ C1([0, T ];H2(0, ℓ)).

Therefore, there exists a positive constant, which is independent of the discretization
parameters h and k, such that

max
0≤n≤N

{
∥vn − vhkn ∥E + ∥un − uhk

n ∥V + ∥θn − θhkn ∥+ ∥αn − αhk
n ∥E

}
≤ C(h+ k).

7. Numerical results

In this section, we examine two academic cases: one to check if the accuracy of
the algorithm we propose is achieved numerically; and a second one to numerically
assert that the energy decays exponentially.

The finite element code to solve the problem was implemented using Matlab
and solved in a 3.40 GHz computer with 16 GB of RAM. A typical run with 200
elements and 1000 timesteps took about 1.5 seconds.
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Table 1. Numerical errors obtained for values of h and k (multi-
plied by 100).

h ↓ k → 1× 10−2 5× 10−3 1× 10−3 1× 10−4 1× 10−5 5× 10−6 1× 10−6

1× 10−1 5.28993 5.28354 5.27856 5.27813 5.27806 5.27806 5.27805

5× 10−2 2.20091 2.18994 2.18307 2.18254 2.18249 2.18249 2.18248

2× 10−2 0.80629 0.77573 0.76027 0.75963 0.75958 0.75958 0.75957

1× 10−2 0.43509 0.39174 0.36163 0.36067 0.36062 0.36061 0.36061

5× 10−3 0.26236 0.21642 0.17757 0.17557 0.17549 0.17551 0.17548

2× 10−3 0.16271 0.11426 0.07350 0.06836 0.07027 0.06831 0.06831

1× 10−3 0.13260 0.08093 0.04170 0.04161 0.03415 0.03984 0.03415

2× 10−4 0.22676 0.02269 0.03791 0.01431 0.01315 0.01940 0.00972

7.1. Numerical convergence. To be able to compare the numerical solution
with a known analytical solution, we use the supply terms introduced in the previous
section. Given the expression for the solution and the problem parameters, we
are able to manufacture some functions that will give such solution. Then, this
analytical solution is compared with the one obtained numerically leading to the
exact error, as described in the previous section. Repeating this process for several
timesteps and element sizes we achieve the convergence table. The problem was
run until a final time of T = 0.5 was achieved.

For this case, we consider the following problem parameters:

ℓ = 1, ρ = 5, τ = 1, µ = 0.5, µ∗ = 3, κ = 5, β = 7, c = 10.

We impose the following analytical solutions, for (x, t) ∈ (0, 1)× (0, 1),

u(x, t) = (1− x)3 x3 et, α(x, t) = 3 (1− x)3 x3 et,

that possess the required regularity at the boundary to be compatible with the
boundary conditions of the problem. In order to obtain the previous solution, the
expressions for the supply terms are the following, for (x, t) ∈ (0, 1)× (0, 1),

F1(x, t) =66x3 et (2x− 2)− 252 et (x− 1)
2 − 252x2 et + 396x2 et (x− 1)

2

− 5x3 et (x− 1)
3 − 378x et (2x− 2) + 132x et (x− 1)

3
,

F2(x, t) =24x3 et (2x− 2) + 144x2 et (x− 1)
2 − 30x3 et (x− 1)

3

+ 48x et (x− 1)
3
.

Finally, the initial conditions were chosen to be compatible with the analytical
solution, they were obtained by evaluating the solution u and α at time t = 0.

The numerical errors given by

max
0≤n≤N

{
∥vn − vhkn ∥E + ∥un − uhk

n ∥V + ∥θn − θhkn ∥+ ∥αn − αhk
n ∥E

}
and obtained for different timesteps k and element sizes h are listed in Table 1. We
can see the convergence of the approximations when parameters h and k decrease
and that the error reduces linearly with both parameters. In order to clearly show
this effect, the main diagonal of the table is plotted in Figure 1.

7.2. Exponential decay. To check the exponential energy decay, we do not con-
sider for this section any source function and so, F1(x, t) = F2(x, t) = 0. This case
was solved with an element size of h = 0.01 and a timestep of k = 10−3 until a final
time of T = 100 was reached; we checked that the mesh was sufficiently refined to
avoid affecting the results.
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Figure 1. Linear convergence of the algorithm. The numerical
error is plotted against the mesh size (h+ k).

The initial conditions and data for this problem are

u0(x) = α0(x) = 5 (1− x)3 x3 for all x ∈ [0, 1],
ℓ = 1, ρ = 5, τ = 1, µ = 0.5, µ∗ = 10, κ = 1, β = 7, c = 5.

In this case, we will focus on the behavior of the discrete energy. Following the
definition given in the continuous case, we consider that it has the expression:

Ehk
n =

1

2

(
µ∥(uhk

n )xx∥2 + ρ∥vhkn ∥2 + τ∥(vhkn )x∥2 + κ∥(αhk
n )x∥2 + c∥θhkn ∥2

)
.

The evolution of this discrete energy with time for that problem is shown in
Figure 2. The decay of the energy with time is clearly seen in the left figure. The
plot on the right shows the same energy plotted in a semilogarithmic scale; the
straight line after a short initial transient confirms that the decay is exponential,
as expected.
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Figure 2. Evolution of the energy of the system without source
functions in natural (left) and semilogarithmic (right) scales.

8. Conclusions

In this paper, we have studied a thermoelastic problem involving a viscoelastic
beam where the heat conduction has been modeled by using the type II Green-
Naghdi theory. First, by using the theory of linear semigroups we have proved that
this problem has a unique solution and, taking into account the characterization of
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the exponentially stable semigroups, we have shown the exponential energy decay.
We have also obtained that the semigroup is not differentiable and the impossibility
of localization; that is, the unique solution which can vanish in an open (not empty)
set is the null solution. Secondly, we have provided a fully discrete approximation
by using the finite element method to approximate the spatial variable and the
implicit Euler scheme to discretize the time derivatives. Some properties as the
discrete stability and a priori error estimates have been proved, leading to the linear
convergence of the numerical scheme. Finally, we have presented some numerical
simulations to demonstrate the numerical convergence and the behavior of the
discrete energy.
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CINTECX, Departamento de Ingenieŕıa Mecánica, Universidade de Vigo, Campus As Lagoas-
Marcosende, 36310, Vigo, Spain

E-mail : jacobo.gonzalez.baldonedo@uvigo.es
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