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A UNIFIED ANALYSIS FRAMEWORK FOR UNIFORM
STABILITY OF DISCRETIZED VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS

WENLIN QIU, MAHMOUD A. ZAKY, XIANGCHENG ZHENG*, AND AHMED S. HENDY

Abstract. We provide a unified analysis framework for discretized Volterra integrodifferential
equations by considering the J-type convolution quadrature, where different ¥ corresponds to
different schemes. We first derive the long-time [*° stability of discrete solutions, and then prove
a discrete Wiener-Lévy theorem to support the analysis of long-time I! stability. The methods
we adopt include the integral transforms in the Stieltjes sense, the complex analysis techniques,
and a linear algebra approach for an indirect estimate of intricate terms. Meanwhile, we relax
the commonly-used regularity assumption of the initial data in the literature by novel treatments.
Numerical simulations are performed to substantiate the theoretical findings.

Key words. Volterra integrodifferential equation, ¥-type convolution quadrature, uniform sta-
bility, long-time behaviour, completely monotonic kernels.

1. Introduction

1.1. Problem formulation and motivation. This work considers the unified
analysis framework for the temporal discretization of the following Volterra inte-
grodifferential equation [, 8,21, 26, 27]
Ju
1 — +
(1) 5
where A is a positive self-adjoint linear operator defined in a dense subspace D(A)

of the real Hilbert space H with a complete eigensystem {v,, ¢,}721; uo € H and
the kernel x(¢) on (0, c0) satisfies that

t
/ x(t —r)Au(r)dr =0, t>0; u(0) = ug,
0

(2)  x is completely monotonic, x € Li,.(0,00), 0 < x(00) < x(0") < oc0.

Problem () plays an important role in various fields such as the simple shearing
motions or torsion of a rod in viscoelasticity and the dynamic behavior of the
velocity field of a ‘linear’ homogeneous isotropic incompressible viscoelastic fluid
[81,B4], and extensive mathematical and numerical analysis can be found in [9, I,
4-210,30,83,86,87,43,44,46-4%]. In particular, investigating the long-time behavior
of the solutions to model () is critical and challenging. For the continuous case, it
was proved in [A,H] that the L! stability of the solutions to model () fooo lu(r)||dr <
C'||up|| holds, in which C' > 0 is independent of u(t) and || -|| indicates the norm in H
defined via the inner product (-, -) of H. The uniform L! behavior of the exponential
decay of the solutions to model (@) was proved in [IZ]. For the discretized problems,
several works have considered the asymptotic ! analysis of () with a completely
monotonic kernel. Xu studied the backward Euler temporal discretization for model
() based on a first-order convolution quadrature and proved the [' stability [3Y]
and the ! convergence [A0]. A second-order temporal finite difference approach
was investigated with the stability [E1] and the convergence [#2] proved for model
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(m). Harris and Noren [I3] utilized the backward-Euler method and deduced the
uniform [! stability for ().

This work intends to provide a unified analysis framework for temporal discretiza-
tion of problem (M) by considering the convolution quadrature method [1, B, 7@, 23]
of ¥-type, where different ¥ corresponds to different discretizations. In particular,
¥ = 1 relates to the backward Euler method, while ¥ = 1/2 corresponds to the
Crank-Nicolson scheme. Compared with these classical methods, the ¥-type meth-
ods not only serve as a mathematical generalization, but also unify the analysis of
backward Euler and Crank-Nicolson methods. In [I0,45], the corresponding stud-
ies for their applications in discretizing integrodifferential equations are far from
mature. In particular, how to analyze the long-time stability of the numerical so-
lutions to model (M) under the ¥-type convolution quadrature method in order to
characterize the long-time behaviour remains untreated in the literature due to its
complexity, which motivates the current study.

1.2. 9- type convolution quadrature. Define the Laplace transform by @w(z) =
I~ e Fw(t)dt for R(z) > A where w(t)e " € L'(R™) for all A > 0 and R(-) denotes
the real part of the complex number. We fix the time step size k > 0 and t,, = nk
with n > 0 and generate numerical solution U™ = u(t,) such that for ¢ € [1/2,1]
(see [24,23])

(3) a((s(lf)):kZU"S”, £eC <L 5(5):19+1(1_i%£'
n=0

Applying the Laplace transform to (0I), we obtain @(z) = (Y(2)A + 2I) ™" ug for
R(z) > 0. Combining this equation and (B) we obtain

[e%S) - o [eS) 1— f
4 k (k)& AU IEem T + ———U"E" = uy,
where the quadrature weight w;(k) is determined by [25]

(5) R (‘Sf)) =Y wik)el, cecC, [¢<l.

§=0
We swap the summation indices of the first left-hand side term of (B) to get
§
k AU Jjen Unen =

Further, we arrange the above formula to obtain

vk i zn:w](k)AU"—jgn + (1 — 19)]{; i zn:U)j(k)AU"_j§"+l Lo

(6) n=0 j= O n=0 j=0
+Z — U HE = [0 + (1 — 9)€]uo.

By comparing the coefficients of ™ (n > 0) on both sides of (B), we obtain the
¥-type convolution quadrature scheme of model () for 3 <9 <1,

(7) U= (I + 9kwo(k)A) " up, U = (I—i—z?kwo(k:) A)H [T — dkw (K)A] UC,

n

_7n—1 .
(8) T 9> wy (AU 4 (19 ng JAU™TIT =0, n>2.
j=0
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1.3. Main results and novelties. We list main theorems and novelties, and carry
out proofs in subsequent sections. Throughout this work, C' indicates a positive
constant independent of the time step size that may assume different values at
different occurrences. The norms are defined as ||ul|, = ||A9/?u]| for ¢ = 0,1, 2.

In addition, we denote the following time-discrete long-time [*° and [ norms for
the sequence U = {U"}7%,,

ey = max |07, Wy = (63 1072) 7, 1<
lm(H)—r}g%( ) P(H) = Z;J ) S p<oo.

For the numerical scheme (@)-(B), we first establish the following long-time {*°
stability theorem for numerical solutions in Section B.

Theorem 1. Suppose that (B) holds and U™ is defined as in (@)-(B) with ¥ €
[1/2,1]. Then [|U ||y < Cllug]|-

To prove the long-time [ properties, we derive the following discrete Wiener-
Levy theorem in Section @ for {U’(v)}32, defined in (23).

Theorem 2. Suppose (B) holds. Then for v > vy, ¥ € (1/2,1] and k sufficiently
small, it holds k Zjoil |U7(y)] < Cr.

By this theorem, we prove the uniform {! stability in Section B.

Theorem 3. Assume that (B) holds and U™ is defined as in (@)-(B) with ¥ €
(1/2,1]. Then we have ||U|[; @)y < Clluoll2-

Finally, we relax the regularity of ug from |lug||2 < C in Theorem B and also in
the literature to ||ug|| < C' in the following theorem, proved in Section B.

Theorem 4. If (B) holds and U™ is defined as in ([0)-(B) with ¥ € (1/2,1], then it
holds that ||U|[;1 gy < Cllug|.

Compared with existing works, the contributions and novelties of this work are
enumerated as follows:

e Due to the application of the ¥-type convolution quadrature discretization,
most complex integrals contain additional singular terms in denominators in
comparison with those for the special cases ¥ =1 (i.e. the backward Euler
method) and ¥ = 1/2 (i.e. the Crank-Nicolson method), which complicates
the analysis and requires more subtle treatments (e.g., to prove (B3)-(82)
we need to estimate some terms in details involving (E0)-(ET) which have
complex denominators.

e A long-time [*° stability is proved, which is rarely considered in the litera-
ture and in turn leads to the short-time /! stability.

e The proof of Theorem B requires evaluating the weighted U7 (), which is
in general difficult due to the complexity of the expressions. Thus, we
adopt a novel decomposition (I70) and an indirect strategy. Specifically, we
firstly estimate UJ(y) and UZ(v) in (Z0), and then utilize these and the
dependence of each term on « to bound other parts by a linear algebra
method based on the discrete Wiener-Lévy theorem proved in Theorem B.

e We employ a different relation (IC3) instead of the commonly-used (I[2) and
modify the analysis procedure to relax the regularity of the initial data.
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2. Preliminaries

We rewrite the Laplace transform of the kernel x(t) as Stieltjes integral [I2,B8],
ie.,

) R = [ (+u) du), s€C =C\(-x,0]
0
where p(y) is a non-decreasing function on [0, c0) such that

0=p(0) <pu(0%), ply)=pnly™), 0<y<oo,

> 1
| xoidnty) <00, u0%) < n(o0) = x(07), xol®) = [,
0 0
and (8) is uniformly convergent regarding s in any compact subset of C’. By defining

@(A,e):/ooo(y“)d“(y) @(A,e):/om(d“(y) AL e (0,00),

PESYEEwE) RSyl
with ®(¢) = ®(0,¢) and O(¢) = ©(0,¢) for £ € (0,00), we use (H) and A > 0 to get
T _duly) /oc —t(A+if) .
1 _dply) 1 e |
1o /0 yra+ril )y © x(t)dt = ®(A, £) — ilO(A, L)

Then, the Fourier transform of x(¢) yields
) x0= [ ewn= [T g = a0 -, 4o,
0 0 Yy + 74

where ®(¢) > 0 with £ > 0 and ©(¢) > 0 is continuously differentiable and strictly
decreasing on (0, 4+00). From Carr and Hannsgen [4]

. () "
(12) (i) elggo sup 0] < oo, (ii) ®() >0, (>0,
and from Noren [29, Theorem B (ii)]
(e )?
13 —_
(13) Hm sup =gy <0
We further define A(t fo &)d¢ and A4 (t fo Ex(&)dE for t > 0. Then the

following lemma is glven by recalling [@, Lemma 4.1].

Lemma 5. Assume that (B) holds. If X(£) and ©(£) are continuously differentiable
with ¢ > 0, then we get

6) Y2A/0) < ROl <4400, >0 (i) V(0] <04(1/0, €50

(iid) %Al(l/@ <O(l) <1241(1/0), >0,

Asin [4,89], we can define a continuous, strictly increasing function w : [0, 00) —
[p,00) (here p > 0 and op := max{1/0(p),1}) with w(y) = oo (y — o) and
O(w(y)) = 1/v. We extend w to [y1,00), if necessary by defining w(y) = p (11
v < 09). Then, by [3, p. 970], we obtain Xl(géé’) < A (Ljw) <471 < CAL (L /w)
for v > 1. From Lemma B (iii) and [@, Eq. (6.8)], we get

1/¢ 2/w
14) e <12 &x(€)ds <12 / aQdg <Oyt >3
0 0

and we follow [H, p. 462] to obtain
(15) er'? Swly) < Crllogy| M,y =
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Furthermore, the estimate of Shea and Wainger [35, pp. 322-323] gives

P AL(L/0)
16 —Ldl <
1o o A1)
Next, define Q(z) = z + e~* — 1. By integration by parts twice, we have
oo 1 o0
a7) W= [ = 5 [T ona®. Ao,
0 0

where we utilize the result x(t) + tx/'(t) — 0 (t — o0); see [d]. Then we get
|Q(2)] < $22 with 0 < z < 1 and |Q(z)| < z + 1 with z > 0.

Using the above analysis, the following lemma holds.

Lemma 6. If the assumption (B) holds and A > 0, we have

/A /X /A
i) et X (i) X .
(i) / (B)dt < R <4 / x(®)dt; (i) [F'(V)] < 30 / Ex(t)dt

Proof. To derive (i), we first employ e~ > e~ with 0 < ¢ < 1/) to get

1/X +o00 1/X
Q(/\):/ e*“x(t)dt+/ e**tx(t)dtz/ e Ix(t)dt.
0 1/A 0

Then from (I17), it holds that |[Y(A\)| < 4 1/)‘ t2dx'(t) + 3= flo/o)\()\tJr 1)dx’(t) where
1/X 1/A

as) g [ eavo = geamm—xama+ [ s

(19) Oo()\t + 1)dx/(t) = =2xX"(1/A) /A% + x(1/N\) /A

2/,
We apply fl//\ t2dx'(t) = 1//\ t2x"(t)dt > 0 to add (¥) and the quadruple of (I3)

to get |[X(A)] < 4fl/A dt —3x(1/XA)/A, which in turn leads to (i) by x(t) > 0.
To derive (ii), we denote J(z) = —=29(z) + z(1 — e %) such that |J(2)| < 3z+2
with z > 0 and |7(z)] < }2° with 0 < z < 1. Differentiating (C2) leads to
= Jo  T(A)dX'(t) for A > 0, which implies |Y'(A)] < 1/)‘ t3dx'(t) +
1 1//\ (2 + 3Xt)dy/(t) for A > 0. Then, we apply integration by parts and (B) to
get

1/x
SN S RRUE

, 1/A
AT (1/A) = 3A2x(1/\) + 6/ tx(t)dt] ,
0

1T
(21) K / (24 3A)AX () = —5A3x(1/A) + 32> (1/N).
1/
We apply fol/)‘ t3dx'(t) = fl/’\ t3x" (t)dt > 0 to add (1) and twentyfold of (20) to
get |[xY(A)] <30 fol/A tx(t)dt — 12272x(1/\), which implies (ii) by x(¢) > 0. O

3. Proof of Theorem M
We first give the following lemma.

Lemma 7. If (O) is satisfied, x(t) is a positive-type kernel and R (X(A +1if)) > 0
for X > 0.

Proof. The proof is completed by [82, Lemma 1] and [28, Theorem 2]. |
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Based on the above lemma, we obtain the following result by [22, pp. 26-27]

(22) Z(Zw] 0 )W > 0.

n=0 ;=0

To prove this theorem, we consider the real sequence {U™(y)} for v > 0 such
that

(23) ey o =a (%), cec <t
n=0

where (s;y) =y [y s+ )Ag( )] 7! is the Laplace transform of the solution of the
scalar problem “(t"Y) + ’yfo (t — r)u(r;y)dr = 0 with u(0,v) = 1 for v > 0 and
0<t<oo We denote

(24)  D(s;7) =X(s) +7 s = XA +10) + 77 (A +if), D(s) = D(s;00),
such that (s;y) = vy~ }[D(s;y)]~*. Thus the solution of (B) can be expressed as
Uur = Z U™ (Ym) (o, ©m)@m. Then we can rewrite the solution of (23) as

(25)  U°(y) =9 (1 +dkwo(k)y) ™",
(26)  U(y) = (1 +Ikwo(k)y) " [97! — dkwi(k)y] U°(v),
U"(y) kU"l szj U3 ()
(27) +(1—19)ij(k)vU"‘1‘j(v) =0, n>2

Define U (y) = 9U™(y) + (1 — 9)U L(y) for n > 1 and U?O(y) = 9U°(y) for
1/2 < ¢ < 1. Then for n > 2, we use (24) and

n n—1 _
gy = LT 202 L) iy,
n _7rn—1 n 2 n—1 2
ur(v) kU ) s oy = T10D) QIEU (7))
— n 2 _ n—1 2

to obtain that

He))—(06) Zw] R)UT I (U () <0,

in which, summing over n =2,3,--- | N, we get

N 2
(U ('7)) Qk( + z%zow] Uﬂn j )Uﬁ’n(’y)

< yuo(k) [(U70())* + (U (3))*] +Awr (B)] [T ()0 (7))
Then utilizing Lemma [@ and (22), we have
OV () < U () + 2kywo (k) [(U7°()” + (U ()]
+ 2k [wi () U0 ()| |UH (7)] -
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By choosing a suitable x such that |U%(y)| = JHax |U™(7y)|, we have
<n<

[US(y)* < [U )] U ()] + 2kywo (k) (JU°(7) \+|U“ )|) [T ()]
+ 2k [w1 (k)| U2 ()] U (7)
which leads to
(28)  |UN()| < [1 4 2k0ywo (k)] [U (7)] + 2k [wo (k) + O|ws (k)] |U° ()] -
We apply (B) to find

wnth) =% (52) =% (L) > 0w = v (U)o

and from Lemma B
1
X (ﬁk )’ < 300 telwy (k).

Then (£3), (E8) and (29) lead to
300 1e! }

(30) |UO(’Y)’ <min{19’k:wol(k)7}’ |U1(7)| <min{3061+1’kwo(lﬂ)7+

Employing (£8), (29) and (80), we obtain |[U™ ()| < C for n > 0 and « > =, which
in turn leads to ||[U™|| < sup |U™(Y)|||wol| < C|lug|| and thus proves Theorem M.
YE[71,00

4. Proof of Theorem 2

(29) [wi (k)] <

To derive Theorem B, we first introduce Hardy’s inequality (see [8, pp. 48-49])
as follows

1 2 _iv 1/p o .
Lemma 8. Denote gl, = {2 Jo" lo(e )do} " If g(€) = 252 gn€™ satis-
fies llglly < oo, then S o 12k < lg]];.
By (B) and (B5)-(20), U(; ) defined as

(31) UGy => UM ¢,

satisfies the following relation

(52) uen) = 3o (

and we further yield

o0 o0

(33) U(Ey) = 07 &= (n+ 1)U (v) &

7j=1 n=0
We apply (B3) and Lemma B to get
o0
_ |(n+ 1)U (y)| 1 [ v,
;;Uﬂ Z p—— Si/o U (e )] dv,

which leads to
(34)

€

/Op+/pk /:

k

o0

Sorel < [ e i|do<

n=1

‘ug —1k11 ‘ d’l)




110 W. QIU, M. A. ZAKY, X. ZHENG, AND A. S. HENDY

To prove Theorem B, we need to show that all three parts on the right-hand side of
the above equation multiplied by k are bounded by C7y. However, as v > =1 > 0,
we instead analyze the following sufficient and stronger conditions for future use

P .
(35) k2/ Ui (e s ) | dv < Cy7T,
0
(36) # [ e | o < o,
P
(37) k2/k Ui (e )| dv < Ck.
£

The method we adopt lies in using (B2) to differentiate I/ (£;) in the integrals as

D, (5(€)/k;7) 1
k VD2 (3(€)/k;7) k[0 + (1 — 0)e]2

where ¢ = e~ and for ¥ € (1/2,1]

(38) UL(&) =

)

(39) s=stho) = ) ko) + itk 0)
) k ) ) )
B 1 (29 — 1)[1 — cos(kv)]
(40) A=A ) = LT A 072 + 20(1 = 9) cos(hu)|
(41) 0= 0k, v) = 1 sin(kv)

k92 + + (1 =9)2 4+ 29(1 — 9) cos(kv)”
Furthermore, the following estimates will be applied.

Lemma 9. [39] Assume that (B) holds, 0 < A < 2el < {. Then, we have

(42 1000 - (0] < 200, B0~ B(0) 2 ~a(0) 2 ~sa (0,
@) PO+ienl = 20> Dige) (<v<e

(44) DA +i6;4)| > CLA(1/0) + £0(0)], [cop7 %] N [cop, %]

45)  [DOA+if)] > B\ 0) > ; 0), o< %

46 PO+ 2O wl, w< e <6 Ba<y,

40 RO+ > SR, A0

(T) We first derive (B3). We use (8) with A > 0 and ¢ > 0 to obtain

(48) RO+ i0)] </ W \/;df(g Y <2150,
w  Resis [ m — 6010 < O(0)

Selecting k, p sufficiently small with 0 < v < p such that

(%

- < — <
g Ak < @0 -Dpr<e

(50) cov < U(k,v) <
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where 1 < ¢y < 1. Therefore, using (IH), (£3) and (£9)-(60) and utilizing Lemmas
B-0, we have

p _ p
k‘2/ ’L{é(e_lk”;’m dv :/

<Cy 7 PplX(p)| P+ Oyt

(R (s) + 77" [2 4 (1~ D)™
VD (s; )2
P A(1/0)
o A*(1/€)
where we employ |9 + (1 — 19)67”“)‘72 < 1/(9? + (1 —9)?) <2 for v € (0,p) and
9 e (1/2,1).
(IT) Second, we deduce (B4d). Note that

dv

e <yt

(52) [0+ (1—0)e " =02+ (1 — ) + 20(1 — V) cos(vk), v € [p, %} .

Using (E0) with v € (%, ﬂ, we have

1 _2)2 92 + (1 — 9)? 4 29(1 — 9) cos(vk)
92 + (1 —9)2 4+ 29(1 — 9) cos(vk) (20 — 1)2[1 — cos(kv)]?
E2A2[92% + (1 — 9)?]
(20 — 1)2[1 — cos(kv)]?
and with v € (p, 3], we obtain 1/(9% + (1 — )% + 29(1 — ¥) cos(vk)) < 1/(9? +
(1-9)%) <2
(IT.A) When v € [%, ’T_,fk], we get
sine 1 (20 — 1)(1 — cose)
4) — < /{(k <
which leads to

(53)
< (kA)?,

1+ cos(ek)
< < —=

P(A,0)—2(A,0) = —/O vt [(% N %)24_1} 21T (20 — 1)5(1 — cose)2

Thus we obtain

! - oA CEw)
(55) @(A.0) 2 {1 1 + (20 —1)5(1 — COS€)2:| X(A), [D(s;v)| = ; > e
In addition, by (8), we have
(56) ROinls [ = o< S

Thus, based on the above analysis and Lemma B, we have
zoek ‘ R () 41 [9 + (1 — 9)eikv] 2
[ pelae= [T |EOET L 0
(57) c < v[D(s;7)]
< Ck+CAX 1 <Ck.

dv

(IL.B) When v € T2, ] we have

sin(ek) c (20 — D[1 + cos(ek)]
0 < l(k,v) < 20— 1% < ¢, f = Ak,v) = [1+20(1 — 9)(1 — cos(ek))]k

Y

C2
?7

ciek

(A, L) — B(A,0) > — ( )2 o(,0).

C2
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Then by selecting suitable € such that ek < *éé?, we have

2
(58) B0 > [1 - (’“) ] T > 20, D) 22> 2
c2 v Ty

Analogous to (B7), using (B8) we obtain

2o -1

]{72/ |ul 71kv |d”l) </ |X (8)—’_7 5 |d’U
=% zer Y|D(s;7)]
(59) x A()\)A_l -1
g/ |55 + s |av < ok
ek LygX(N)3 - v(A)

Employing (62) and (B9), we obtain (82).

(III) Finally, we turn to prove (BH). Notice that if v € [p, £, we can select
¢ and k small enough such that cov < 4(k,v) < cyv and A(k,v) < 2e0f < U(k,v)

where 1 < ¢; < oco. Then we split the interval [cop, c}f] into three parts, i.e.,

e [eon 5] = (leoer ] 0 [eor 5 ]) 0 (524 m feor 50)

U ([2w,oo] [co,o7 C;D = Ay + As + As.

It then follows from (BR) that

/ |ul 71kv |d1} — /E
P

v[D(s;7)]?
A’()\+1€)+'y 1 U / /H A +i6) +
SC/ al =C dav
cop [ (A +il; )] A Jae JAs D(\ +il;7))?

For the first part, we use (£4) and (£9) to yield
~/ . 1 1 w/Q
(61) / M dl < C/ [ "”7@(5)]0% S < C/ Cif <.
A YDA+ i67)] A Y2 LAY +£0(0)] o
Then for the second part, we employ ([2) and (I3) to get

L4047 0(w)?
(62) / DO+ i | 1S gy

Finally, for the third part we employ (), (E8) and (IIE) to obtain

YO +il) + 71 [1+7® / 1
63 / el <C <C — < C .
©3) ) DO )P e ((—w) v

Using (B1)-(63), we obtain (B8) and thus complete the proof.

(60)

(X'(s) 1) [0+ (1 )

dv

< Cw < Ch.

5. Proof of Theorems B and @

5.1. Proof of Theorem B. We utilize Theorem @ to arrive at
m+1
(64) kY NU < Clluollk(m +2) = Clluo]| (tm + 2k) < Cllug|
j=0
for some t,, such that 1 <t¢,, < C for some constant C. Thus we remain to derive
(65) EY s poim) <

j=m42VE[1,00)
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such that we could combine this with

o™ < sup |y TU" ()] ol
YE[Y1,00

to conclude
oo
kY U7 < Cllugll2,
j=m+2

which, together with (B4), implies the conclusion of Theorem B.
With suitably small p, we use (B1) and (23) to get

1 (+1) 1 ~G+ng ().
) C0=gn [ crugne= o [ o (o)

2mi
By the transform & = e~ %%, the contour becomes {z =k tog(p™!) +iy: |yl < 7T/]€}
—kz
Asu (%;7) is analytic in 2% = {z : ®(z) > 0,2 # 0} and contributions from
the line segments on J(z) = £ (J(2) indicates the imaginary part of z) are can-

celed via periodicity, the contour could be further simplified as {z = iv : |v| < 7/k}
such that

. w/k . —ivk
(67) v =g [ e (M )

27 J_ w/k
based on which we employ (24), the integrate by parts and (89)-(E1) to get

, -1 iwt; w/k w/k D )
iy = (T / o, D (57) 95
(68) U’ (v) : ( n/k 77T/k6 D2(s;~) O

2t;mi \ D(s;7)

By symmetry and change of variable for the integral on (—m/k, 0] we obtain

joy T [T et Duls(hv))
0 )= %{ o = e
Similar to [4, (4.34)], we obtain

(70) Dy(s7) _ D'(s) +7" (1_ 2575‘)1) N [VD—%QDS(S;V) [D2 . ]

D2(s;7) [D(s)]? D( (s)*D(s;7) L D(s)  D(s;7)

Then for VA € [A1,00), (B9) and () give
(71) U (y) = R {7107 + 77208 + 77U + U(3) + U3 (1)}
where R(z) represents the real part of z and

i L P eivtj,l D/(S) ;
U b - ve i peE ™

. L P eivti—1 1 B 23])’(5) y
) U= [ ra g [mer e

i L P etvti-1 —2s y
(™) Us= timJo [0+ (1-— 19)6—“”‘]2 [D(S)]3d 7

j B ;3 P elvti—1 2Ds($,’}/) 2 1 !
) 0= [ e (567 o

; 7;1 w/k eivti—1 (s, )
(76) U5 (FY) - /p [19 + (1 _ ﬂ)efivk]Q (5’ )dv
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Then we intend to bound U] (1 < ¢ < 5) in order to show (B3). In Sections
B 2-b3, we shall prove by technical analysis that

(77) UI(7)| < Ct;2), v € [, 00),
(78) UZ(7)| < Ct;2y, v € [y, 00).

To bound UJ (¢ = 1,2,3), a novel approach is adopted. Note that U] (¢ =1,2,3)
are not related to «, and () holds for any v € [y1,00). Thus we choose three
different v with 41 < 75 < 73 < C in ([A), leading to the following system

wloa ] [ RO Ui () = R(UL () + UL (1))
Voo el Mo || R(U) | = | U(2) = R(UZ(G2) + U5 (%))
Y3 s s R(Us) U7 (73) — R(U3 (73) + U3 (73))
By the invertability of Vandermonde matrix, we have
3
j
(79) ;P}%(Ui | < C max, {wa 5 |+Z‘m ))”,
which, together with Theorem B, (Z2) and (I78), implies (B3) as follows
oo e’} 3
k> sup [y <CR Y { IR(UY) }+Z sup |y U7 (v )]
j=m+2 YE[v1,00) j=m+2 Li=1 i—4 YE[r1,00)
< j -2 1773
< Ck Z |:1I£a§3|U g |+t 1+Z sup |y U/ (v )@
e i—a YE[1,00)
<Cyu+Ck Y % <C,
j=m+42
where we use k& > t;_21 < [TTCC= & — < 1. Thus, we remain to prove ([Z2)
Jj=m+42

and (IR) to complete the proof of Theorem B.

5.2. Proof of (7). By integration by parts for (Z3) we have U (v) := UiA(W) +
Ui () + Uj o(7) where

©0) U= Rsthoyn|
= - _ s(k,v); ,
A = i [0+ (1 — 9)e—ivk]? Voo
, B[P 2(1 = D)keVti2 o
81 U7 ___7 / K(s;v)dv,
( ) 4,B<7) Wtjtj—l 0 [19+(1—19)6_ivk]3 ( ’7)
; 43 P elvti—2 -,
82 U =_ K'(s;7)dv with
(52) Lo ==t [ T e e vi
= 52Ds( i) |: 2 1 ]
83 IC s;) = + 5
(83) 57 = D) D(si) o )
Sro oy _ 28Ds(s; ’y +S2D” 1

25D (s17) {3@/() 's)+DS (s;7)  Ds(s;vy )]
D2(s)D(s;v) [ D?(s) D(s)D(s;7) D(s;7)]
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Using the symmetry and periodicity, we have U. Z 4(7)]v=0 = 0 such that

65)  Uda0) = = L Risth.p)i)| < 07
5 = s(k,p); < B P
LA T [0+ (1= 0)e k]2 PRV ST =
Then for v € [0, p], we get
V2 - > du(y)
86 SN +10)] > LER( 0] = < V2%(0).
) RO+i0l= TR, 70 =| [ B < Vo
Besides, from [,,, Corollary 2b.2, p. 328], we have Y™ (s) = (=1)™ml! [;* (si’;g%’zﬂ
for m =0,1,2,---. Therefore, we obtain the following estimates
- < duy) - dp(y) 20(¢)
87 "(s)] < 2/ = 2/ < ;
G0 W= ) R F T e e S
< * dp(y) _ 2 2
"(s)] <2 <=z
B9 Wiz [ < SR R0,

Then we use (BA) and (B9) to obtain
3202 (T + XA +10)]) _ 320 [y +0(0)]

NG - X"
and it follows from (ER)-(E9) and (BB)-(8A) that

)

(89) ‘16(3; 7)‘ <

(90) ‘l%’(s,v)) < CW 140+ W] .
From (EI)-(B4), we have
(UL 5 + UL o ()| <2652, / ([t vy 0| + [ (5,00 ) o
<Cy~ Stj 2

which, together with (BH), proves (IZ2).

5.3. Proof of (8). For UZ(y), we apply integration by parts to obtain
v et Ds(537)
tymitj—1 [0 + (1 —9)e VM2 D2(s;9) lo=p
_ 1 /”/k 2ik(1 — 0)e~Wkeivti-1 D (s;7)
(91) tymit;—1 J, [0+ (1 = F)e=vF]3 D2(s;7)
_ /”/ C e R  [Dulsy) 20X,
timit;_q [0+ (1 —)e k]2 | D2(s;y)  D3(s;y)
=Ui 4,(7) = UL 5(v) = U o(0),

in which we have

j v=m/k
U5,A('7) =

dv

: . -1 /KT I1D (s D . D.(s:~)[2
0250+ Ul < G [ [ Dbl [l g
p

2 D) Disi7)P
Oyt TR 4 4 [R)] R+ 72
=7 / { D7) DIEE ]d“

= Uip(), ti-121,

in which we used (24). We will estimate Ug 4 () and Ug7 p(7) separately as follows.
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(I) Estimation of UéA(*y). First, we take v = T and use (89)-(&T) to get

2 2
A—i, K—O, S—m,

20— 1)k
D(@ﬂQDk”):?<@02nk>+@§fnw

which combines (BH) to obtain

Dy—%ﬁw1 % (%) 1 e
‘ 29—k < 20—k n ~ < (29 — 1)k 0s

2 = 2 2~—1 21 2 — 9
’D (219 05 Y )‘ 2X<(21971)k) ‘(2197771);@ ((21971)%)

Thus, we follow () to yield
(92) U2 ,(| < CK*2_y, tjo1 > 1.

(IT) Estimation of UgﬁD('y). We first split Ug,D(’Y) as

(93)
U5

Oyt TP\ IR RG] IR )P+
- t? 1 (/ / +/k)[ 1D(s;7)I? T R

Then we first discuss v € [£, T2£]. We use (54)-(BB) and (E8) to yield

w—ek
/k

{I X(s)+771+R"(s)] W(S)PJ”_Td

D7) D7)
—1 ,y—2 55()\),7—1 X\Q(A),y—l ,y—?)
<C/ ( 4YQP+VﬂM§+V?m$+©P>M

()\‘2 + k2 4+ X dv < Ck.

Similar to this, for v € [*5%, T] we employ (52)-(63), (58) and (BR) to get

™

[ RG] R, R A
”Lﬁw{ D(s;7) 2 D(s;7)]?

dv < Ck.

Finally we consider v € [p, ¢]. From (E0), we employ (E7), (£9), (22)-(£8), (I4),
(2), and

[0 + (1 — 9) 4+ 20(1 - 9) cos(kv)]”

W= e (= 0) cos(hko) + 2001 — 9)

dt
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to obtain that

71/’i [?(8)I+71+|§<”(8)| ?(8)I2+72} I
o |D(s;7)]? ID(s;7)]?

/ W‘“ [ (@2—;@ * ;w)) “
]

+

<Cyt

€

2

 ydl
4
(54) = w|2 /. TP

in which we used ([@)- ( ) and (I2) so that

2 -1 -2 2w 2 3
—1 v ¥ 02(¢) 03(f)
< -
Based on the above analysis, we have

(95) UL p(M S Clk+1+9)t 4, tj—1 21
We combine (82) and (85) to complete the proof of (I78).

5.4. Proof of Theorem @A. The key idea of relaxing the regularity of the initial
data lies in using (I3) instead of () in the estimate of (M) to reduce the power of
7. Specifically, we establish the following bound by 1/0(¢) < C for w/2 < ¢ < 2w
(ct. [5, (5.5))), (T3), and (I3)

vl/;w (o + o) C/jw o )

o) c/jw [ @fg 32/3 (z @(152 4/3> é;) (6[9‘152])4/3)31 dr

2w 2w
=3 L
<cC < 2/3 —37p < -2
/2 [ CIOEE @(y)}dé_C( +7) . 72dl < Cyw™ < C,
which immediately leads to the re-estimate of (44)
% A// % 2 -2
[ [EOL Ol RO,
P 1D(s57)] 1D(s;7)l

Therefore, we obtain for this case

UZ(7)| < Ct72, tjoa>1, € [n,0).

2

The proof of Theorem B is thus completed by incorporating this equation, (IZ4),
(79), (53) and ().
6. Numerical experiments

We select Q = (0,1), Au = —0%u/dz?, the Abel kernel x(t) = F(a) S for0<a<1
and zero Dirichlet boundary conditions. Both the smooth and non-smooth initial
data will be applied. The centering finite difference with mesh size h = 1/M is
applied for spatial discretization, and we take k = T/N for relatively large T.
We denote the discrete spatial £2 norm as |[U™||%, = hz |U"|2 the discrete

time-space £!(£2) norm as U* = an:1 U™ z2, and the error as E(h,k) =
U = Ul co-

We first evaluate the accuracy of the proposed 9J-type convolution quadrature
method with different . We take h = 1/100, T' = 800 and the smooth initial value
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up = sin(mz), and present errors and CPU times in Table M. We observe that the
errors become smaller as 1) gradually approaches 0.5, especially for smaller N.

TaBLE 1. Errors and CPU times (seconds) when h = 1/100 and
T = 800 with ug = sin(wz).

0 N ¥ =05 ¥ =0.75 =1
E(h,k)  CPU(s) E(h,k) CPU(s) E(h,k)  CPU(s)
6 8.3622e-4  0.001 2.2093e-2  0.001 2.1495¢-1  0.001
12 7.7253¢-3  0.002 1.5950e-2  0.002 3.3644e-2  0.002
0.5 24 8.7164e-3  0.003 1.1945e-2  0.004 1.6716e-2  0.003
48 6.7309¢-3  0.006 8.1305¢-2  0.007 9.8504e-3  0.007
96 4.3490e-3  0.007 5.0356e-3  0.010 5.7938¢-3  0.012

We then test the long-time stability of numerical solutions to the proposed
method. We take h = 1/128, T' = 1000 and the smooth initial value uy = sin(rz),
and present U* and CPU times in Table B. We observe that as N increases, U*
is gradually decreasing, which illustrates the long-time stability of the proposed
scheme. Similar phenomena are also shown in Table B where we select h = 1/128,
T = 1000 and the non-smooth initial value ug = 2~ 7. These results demonstrate
the validity of our analysis in long-time simulations.

TABLE 2. £'(£?) norms of U and CPU times (seconds) when h =
1/128 and T' = 1000 with ug = sin(7z).

¥ =0.5 ¢ =0.75 ¥=1
a N
U* CPU(s) U+ CPU(s) U* CPU(s)
128  2.3793e+2 0.060 3.0388e+-2 0.067 3.8210e+2 0.071
256  1.2514e+2 0.154 1.5245e+2 0.173 1.8225e+2 0.167
0.9 512 6.4318e+1 0.368 7.6608e+1 0.411 8.9448e+1 0.389
1024 3.2639%e+1 1.076 3.8457e+1 1.171 4.4402e+1 1.172
2048  1.6450e+1 7.785 1.9281e+1 8.026 2.2142e+1 8.199
128 2.0802e-1 0.068 2.0946e-1 0.053 2.1096e-1 0.056
256 1.0520e-1 0.158 1.0613e-1 0.175 1.0708e-1 0.172
0.1 512 5.3164e-2 0.440 5.3737e-2 0.403 5.4320e-2 0.402
1024  2.6849e-2 1.169 2.7188e-2 1.162 2.7532e-2 1.177
2048  1.3549e-2 7.986 1.3744e-2 8.205 1.3941e-2 8.314

7. Concluding remarks

In this work, we derive a unified analysis framework for the long-time uniform
stability of time-discrete solutions for Volterra integrodifferential equations with the
completely monotonic kernel via the ¥-type convolution quadrature. An interesting
topic is to extend the work to the non-homogeneous case, where one may require
certain long-time decay property of the forcing term f to perform the long-time
stability analysis. For error estimates, one may consider the truncation errors as
the forcing term and then invoke the stability result to get the convergence analysis
result. Nevertheless, a substantial modification is at least needed since it is still
not clear whether the estimates of the truncation errors satisfy the desired long-
time decay properties. We will investigate these issues by combining the frequency
domain analysis method in [4,29] and error analysis method in [40,42] in the future.

Another challenging topic is to include the case ¥ = 1/2 in the I' stability
analysis in Theorems B and @, since (A0)—(ET) may cause blow-up when ¢ = 1/2
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TABLE 3. £'(£?) norms of U and CPU times (seconds) when h =
1/128 and T = 1000 with uy = 2~ 1.

¥ =0.5 ¢ =0.75 ¥=1
a N
U* CPU(s) U* CPU(s) U* CPU(s)
128  1.7123e+3 0.057 2.0803e+3 0.058 2.4864e+3 0.063
256 9.0028e+2 0.158 1.0685e+3 0.153 1.2448e+3 0.173
0.8 512 4.6325e+2 0.423 5.4410e+-2 0.405 6.2674e+2 0.391
1024 2.3544e+2 1.211 2.7528e+2 1.172 3.1552e+2 1.184
2048 1.1882e+2 8.138 1.3866e+2 8.308 1.5859e+2 8.146
128  1.0126e+1 0.068 1.0355e+1 0.068 1.0587e+1 0.061
256  5.1953e4-0 0.163 5.3381e+0 0.178 5.4820e+-0 0.164
0.2 512 2.6558e+40 0.428 2.7406e+-0 0.452 2.8257e+4-0 0.486
1024 1.3533e+0 1.161 1.4018e+0 1.192 1.4504e+0 1.244
2048  6.8773e-1 8.389 7.1471e-1 8.326 7.4172e-1 8.464

in frequency domain analysis, which may require more sophisticated techniques or
methods that remain to be further explored.
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