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PROVABLY CONVERGENT PLUG-AND-PLAY PROXIMAL

BLOCK COORDINATE DESCENT METHOD FOR

HYPERSPECTRAL ANOMALY DETECTION

XIAOXIA LIU1 AND SHIJIE YU2,∗

Abstract. Hyperspectral anomaly detection refers to identifying pixels in the hyperspectral im-
ages that have spectral characteristics significantly different from the background. In this paper,
we introduce a novel model that represents the background information using a low-rank repre-
sentation. We integrate an implicit proximal denoiser prior, associated with a deep learning based

denoiser, within a plug-and-play (PnP) framework to effectively remove noise from the eigenim-
ages linked to the low-rank representation. Anomalies are characterized using a generalized group
sparsity measure, denoted as ∥ · ∥2,ψ . To solve the resulting orthogonal constrained nonconvex
nonsmooth optimization problem, we develop a PnP-proximal block coordinate descent (PnP-

PBCD) method, where the eigenimages are updated using a proximal denoiser within the PnP
framework. We prove that any accumulation point of the sequence generated by the PnP-PBCD
method is a stationary point. We evaluate the effectiveness of the PnP-PBCD method on hy-

perspectral anomaly detection in scenarios with and without Gaussian noise contamination. The
results demonstrate that the proposed method can effectively detect anomalous objects, outper-
forming the competing methods that may mistakenly identify noise as anomalies or misidentify
the anomalous objects due to noise interference.

Key words. Low-rank representation, proximal block coordinate descent, hyperspectral anomaly
detection, plug-and-play.

1. Introduction

Hyperspectral anomaly detection aims to identify pixels or regions in hyperspec-
tral images (HSIs) that significantly differ from the surrounding background with-
out prior knowledge of the target spectral information. These pixels, often referred
to as anomalies, could represent objects or materials such as aircraft, ships, vehi-
cles, or other structures that deviate from the natural background. Detecting such
anomalies is crucial due to their significance in various applications. For example,
in environmental monitoring, anomalies may indicate areas affected by pollution
or disease in vegetation [22]; in the food industry, anomalies may be detected for
quality control by identifying physical defects and inconsistencies in products [28].
By leveraging the rich spectral information provided by HSIs, the accuracy and re-
liability of anomaly detection can be enhanced, thereby improving decision-making
processes in fields such as security, agriculture, and resource management.

In hyperspectral anomaly detection, the Reed-Xiaoli (RX) method, introduced
by Reed and Xiaoli in 1990 [23], is a foundational method known for its simplic-
ity and widespread adoption. The RX method assumes that background spectral
features follow a multivariate Gaussian distribution and identifies anomalies by
calculating the Mahalanobis distance from the background. Over time, RX has
inspired several variants to address its limitations in real-world applications. For
example, the local RX method [20] enhances localized anomaly detection using slid-
ing windows for background estimation; the kernel RX method [17] maps data into
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high-dimensional feature spaces to better adapt to nonlinear distributions; and the
weighted RX method [10] introduces pixel-level weighting for improving robustness
against noise. While RX and its variants are computationally efficient and serve as
benchmarks in the field, they often rely on Gaussian assumptions and are sensitive
to noise and outliers, limiting their performance in complex scenes.

In contrast to statistical approaches like RX, representation-based methods fo-
cus on explicitly modeling the structure of HSIs without assuming a predefined
distribution. Li et al. [18] proposed the background joint sparse representation
detection (BJSRD) method, which reconstructs each background pixel using a s-
parse set of coefficients from a dictionary. Xu et al. [31] introduced the low-rank
and sparse representation (LRASR) method, which models the background as a
low-rank component while representing anomalies as sparse components. Feng et
al. [7] developed the local spatial constraint and total variation (LSC-TV) method,
which combines low-rank modeling with superpixel segmentation and total varia-
tion (TV) regularization to effectively separate anomalies in complex scenes. To
preserve the intrinsic 3D structure of HSIs, the low-rank component is character-
ized using tenor low-rank representation. For example, the tensor low-rank and
sparse representation (TLRSR) method [26] utilizes the tensor singular value de-
composition (t-SVD), while the method proposed in [6] employs the tensor ring
decomposition.

Deep learning methods have significantly improved hyperspectral anomaly de-
tection by extracting hierarchical features from high-dimensional data using deep
neural networks. Among these, the Auto-AD method [27], a fully convolutional
autoencoder, autonomously reconstructs the background and highlights anomalies
through reconstruction errors, eliminating the need for manual parameter tuning
or preprocessing. Other neural network models, such as stacked denoising autoen-
coders (SDAs) [35] and spectral-constrained adversarial autoencoders (SC-AAE)
[30], use manifold learning and adversarial strategies to enhance anomaly detection
capabilities. These approaches are highly effective in nonlinear and complex envi-
ronments but often require large datasets and significant computational resources,
which can pose challenges for real-time applications.

In this paper, we develop a novel approach for hyperspectral anomaly detection
that utilizes a representation-based technique for expressing the background, a deep
learning denoiser for reducing noise contamination and a group sparsity measure
for identifying anomalies. Our main contributions are summarized as follows:

• We represent the background of HSIs in terms of a tensor mode-3 product
of a learnable orthogonal basis as the subspace and a tensor formed by
eigenimages as the representation coefficients.
• We employ a deep learning denoiser in a plug-and-play (PnP) fashion to
eliminate the noise from the eigenimages. We enhance the existing relaxed
proximal denoiser to its shifted version to denoise the eigenimages that
may not fall within the pretrained range. The proposed denoiser can also
be viewed as a proximal operator associated with a weakly convex function.
• We introduce a generalized group sparsity measure, ∥·∥2,ψ, to detect sparse
anomalous objects. The function ψ is a sparsity-promoting function and
can be chosen as a weakly convex function.
• We propose a PnP version of the proximal block coordinate descent algo-
rithm, called the PnP-PBCD method, for solving the proposed nonconvex
nonsmooth minimization problem with an orthogonal constraint. The sub-
problems have either closed-form solutions or are easy to compute. We
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prove that any accumulation point of the sequence generated by the pro-
posed algorithm is a stationary point.
• We demonstrate that the proposed PnP-PBCD method outperforms other
state-of-the-art methods in detecting anomalous objects in HSIs, even in
the presence of noise.

The rest of this paper is organized as follows. In section 2, we propose an
optimization model for hyperspectral anomaly detection. To solve the proposed
model, we propose a PnP-PBCD method in section 3 and conduct its convergence
analysis in section 4. Next, we conduct experiments in section 5. The concluding
remarks are given in section 6.

2. Optimization Model for Hyperspectral Anomaly Detection

In this section, we propose an optimization model with an implicit deep prior
for anomaly detection in noisy HSIs. We first introduce the notations that we use
in this paper.

2.1. Notations. For a third order tensor X ∈ Rn1×n2×n3 , we let xi1i2i3 denote its
(i1, i2, i3)-th entry, let xi1i2: denote its (i1, i2)-th mode-3 fiber and let X::i3 denote
its i3-th frontal slice. The mode-k unfolding of a third order tensor X is denoted
as X(k) = unfold(k)(X ), which is the process to linearize all indexes except index k.

The dimensions of X(k) are nk×
∏3
j=1,j ̸=k nj . An element xi1i2i3 of X corresponds to

the position of (ik, j) in matrix X(k), where j = 1+
∑3
l=1,l ̸=k(il−1)

∏l−1
m=1,m̸=k nm.

The inverse process of the mode-k unfolding of a tensor X is denoted by X =
fold(k)(X(k)). In particular, the mode-3 product of a tensor Z ∈ Rn1×n2×r and a

matrix Y ∈ Rn3×r, denoted by Z ×3 Y , is a tensor X ∈ Rn1×n2×n3 with entries

xi1i2j =

r∑
i3=1

zi1i2i3yji3 .

The expression X = Z ×3 Y can also be written in terms of unfolding of tensors,
i.e., X(3) = Y Z(3).

For f : Rd → (−∞,+∞] being a proper and lower semicontinuous function with
a finite lower bound function. The function f is µ-strongly convex if f − µ

2 ∥ · ∥
2

is convex with µ ≥ 0; f is ρ-weakly convex if f + ρ
2∥ · ∥

2 is convex with ρ ≥ 0.

The proximal operator of f with parameter λ > 0 evaluated at x ∈ Rd, denoted as
proxλf (x), is defined as

proxλf (x) := argmin
u∈Rd

[
f(u) +

1

2λ
∥u− x∥22

]
.

Note that proxλf is a set-valued map, when the minimizer is not unique.

2.2. Formulation for anomaly detection in noisy HSIs. According to the
high spectral correlation of HSIs, a clean HSI can be expressed in a low-rank tensor
representation. Specifically, for L ∈ Rn1×n2×n3 , where n1 and n2 are the spatial
dimensions, and n3 is the spectral dimension, L can be represented as follows

L = Z ×3 E,

where E ∈ Rn3×r represents a basis of the spectral subspace, and the tensor
Z ∈ Rn1×n2×r denotes the representation coefficient of L with respect to E. In
particular, we choose E as an orthogonal basis, that is, E⊤E = Ir with Ir denoting
the identity matrix of size r. Additionally, each band of Z, denoted as Z::n, is called
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as an eigenimage, where n = 1, 2, . . . , r. Then a noisy HSI O ∈ Rn1×n2×n3 can be
formulated mathematically as

O = Z ×3 E + S +N ,
where S ∈ Rn1×n2×n3 represents the sparse components such as anomalous objects,
and N ∈ Rn1×n2×n3 represents Gaussian noise.

To remove Gaussian noise and detect anomalous objects simultaneously, we pro-
pose an optimization model as follows

min
Z,E,S

δ

2
∥Z ×3 E + S −O∥2F + τ∥S∥2,ψ +ΦΣ(Z),

s.t. E⊤E = Ir,

(1)

where ∥ · ∥2,ψ represents a generalized group sparsity measure for detecting anoma-
lous objects, ΦΣ(·) represents a proximal denoiser prior for removing Gaussian noise,
E is a learnable orthogonal basis, and δ, τ > 0 are parameters. The resulting model
is a nonconvex nonsmooth minimization problem with an orthogonal constraint.
More details of this model will be provided in the following subsections.

2.3. Generalized group sparsity measure. As the anomalous objects may
show spectral information inconsistent with the nearby background, these objects
can be viewed as sparse components S. Grouping S along the spectral direction
at spatial position (i, j), we can measure the magnitude of sij: using the ℓ2 norm,
and measure the group sparsity using a sparsity-promoting function [24] for ψ. The
resulting generalized group sparsity measure can be formulated as follows

(2) ∥S∥2,ψ =

n1∑
i=1

n2∑
j=1

ψ (∥sij:∥2) ,

where ψ : R → [0,+∞) and ∥sij:∥2 =
(∑n3

n=1 s
2
ijn

) 1
2 . The following are some

examples of sparsity-promoting functions for ψ:

(i) ℓ1 norm: ψ(t) = |t|;
(ii) Relaxed ℓp norm: ψ(t) = (|t|+ ε)p − εp, p ∈ (0, 1), ε > 0;
(iii) Minimax concave penalty (MCP) [33]: for θ > λ,

ψλ,θ(t) =

{
λ|t| − t2

2θ , |t| ≤ θλ;
θλ2

2 , otherwise;

(iv) Smoothly clipped absolute deviation (SCAD) [5]: for λ > 0 and θ > 2,

ψλ,θ(t) =


λ|t|, |t| ≤ λ;
−t2+2θλ|t|−λ2

2(θ−1) λ < |t| ≤ θλ;
(θ+1)λ2

2 , otherwise.

Note that (i) is convex, (ii) is pεp−1-weakly convex, (iii) is 1
θ -weakly convex, and

(iv) is 1
θ−1 -weakly convex, according to [3].

2.4. Proximal denoiser prior in a PnP framework. If the observed HSI O is
degraded by Gaussian noise, the components of its tensor decomposition will also
contain some noise, i.e.,

(3) O = Z̃ ×3 Ẽ,

where Z̃ denotes the eigenimages degraded by noise, and Ẽ denotes the orthogonal
basis with bias. For illustration, in Figure 1 we present some selected eigenimages
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of a noisy HSI with a noise level of 0.03 using the subspace obtained by the HySime
algorithm [2]. As shown in Figure 1, the first eigenimage is clean, while the noise
level of the other eigenimages increases as the band index increases. To remove the
noise in the HSI, we utilize a deep denoiser Dσ on each eigenimage with an adaptive
noise level σ.

(a) 1st eigenimage (b) 2nd eigenimage (c) 5th eigenimage (d) 10th eigenimage

Figure 1. Illustration of eigenimages obtained from a noisy HSI.

The deep denoiser Dσ that we will use is a proximal denoiser proposed by Hurault
et al. in [13], which has the form of a gradient descent step:

(4) Dσ := Id−∇gσ,

where gσ denotes a smooth parameterized neural network. In particular, gσ is
defined as follows

gσ(X) =
1

2
∥X −Nσ(X)∥2,

with Nσ(X) being a C2 neural network, specifically DRUNet [34], pre-trained for
denoising grayscale or color images. Moreover, the denoiser is carefully trained to
ensure that gσ approximately has an Lgσ -Lipschitz gradient with Lgσ < 1. The
overall denoiser Dσ is called a proximal denoiser, because it behaves like a proximal
operator as shown in Proposition 2.1. More discussions on this proximal denoiser
can also be found in [11, 25, 29].

Proposition 2.1. (See [12, Prop. 1]) Let gσ : Rn1×n2 → R be a C2 function with
∇gσ being Lgσ -Lipschitz and Lgσ < 1. Then, for Dσ defined as in (4), there exists
a potential ϕσ : Rn1×n2 → [0,+∞) such that proxϕσ is one-to-one and

Dσ = proxϕσ ,

where

ϕσ(X) =

{
gσ(D−1

σ (X))− 1
2∥D

−1
σ (X)−X∥2, if X ∈ Im(Dσ)

+∞, otherwise.

Moreover, ϕσ is
Lgσ
Lgσ+1 -weakly convex and ϕσ(X) ≥ gσ(X) for ∀X ∈ Rn1×n2 .

To better adapt the proximal denoiser Dσ to denoise each eigenimage Z::n, we
first consider a relaxed version of the proximal denoiser discussed in [12] as follows

Dγσ = γDσ + (1− γ) Id = Id−γ∇gσ,

with parameter γ ∈ [0, 1]. Then by applying Proposition 2.1 with gγσ = γgσ, we

get that there exists a
γLgσ
γLgσ+1 -weakly convex function ϕγσ such that Dγσ = proxϕγσ

if γLgσ < 1. This allows us to control the weak convexity of the regularization
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function ϕγσ, leading to a wide range for the selection of step size in the algorithm
that we will propose in the next section.

Second, as eigenimages may not fall in [0, 1], we consider a shifted denoiser for
an eigenimage Z as follows

D̃γσ(Z) =
1

a
[Dγσ(aZ + b)− b] ,(5)

where a > 0 and b is a constant. Then

D̃γσ(Z) =
1

a

[
proxϕγσ (aZ + b)− b

]
= proxϕ̃γσ (Z),

where ϕ̃γσ(Z) =
1
a2ϕ

γ
σ(aZ + b) and ϕ̃γσ is

γLgσ
γLgσ+1 -weakly convex.

Lastly, we define the proximal denoiser prior ΦΣ(Z) used in our proposed mod-
el (1) for removing noise in eigenimages as follows

(6) ΦΣ(Z) = λ

r∑
n=1

ϕ̃γσn(Z::n),

where λ > 0 and Σ := diag(σ1, σ2, . . . , σr) with σn denoting the noise level of the
n-th eigenimage Z::n.

2.5. Learnable orthogonal basis. The orthogonal constrained set on E is also
called the Stiefel manifold, defined as Sn3,r := {E ∈ Rn3×r : E⊤E = Ir} with
n3 ≥ r. By choosing an orthogonal basis E, the eigenimages Z::n are linearly
independent to each other. This allows us to apply the denoiser to each eigenimage
Z::n independently and the noise covariance matrix is a diagonal matrix.

In some existing works, some subspace methods consider a fixed basis for the
low-rank tensor decomposition. However, according to (3), this may result in false
labels. Hence, we consider learnable basis E, which will be updated iteratively.

3. Plug-and-play Proximal Block Coordinate Descent Method

In this section, we propose a PnP-PBCD method for solving model (1), which
is a nonconvex and nonsmooth optimization problem over a Stiefel manifold. In
particular, in model (1), both ∥ · ∥2,ψ and ΦΣ are weakly convex functions.

Let F (Z, E,S) denote the objective function of the proposed model (1) as follows

(7) F (Z, E,S) = H(Z, E,S) + τ∥S∥2,ψ +ΦΣ(Z),

where

H(Z, E,S) = δ

2
∥Z ×3 E + S −O∥2F .

Then a PnP-PBCD algorithm for problem (1) is summarized as follows:

Sk+1 ∈ argmin
S

H(Zk, Ek,S) + τ∥S∥2,ψ +
αS

2
∥S − Sk∥2F(8)

Ek+1 ∈ argmin
E∈Sn3,r

H(Zk, E,Sk+1) +
αE
2
∥E − Ek∥2F(9)

Zk+1 = argmin
Z

H(Z, Ek+1,Sk+1) + ΦΣ(Z) +
αZ

2
∥Z − Zk∥2F ,(10)

where the step sizes αS , αZ ≥ 0 and αE > 0.
In the following, we present the details for computing each update. We will

conduct a convergence analysis for the proposed PnP-PBCD algorithm in the next
section.
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3.1. The update of S. Combining the function H and the proximal term in (8),
the update Sk+1 can be written in terms of the proximal operator of ∥ · ∥2,ψ as
follows

Sk+1 ∈ proxτ̃∥·∥2,ψ

[
Sk − α̃S

(
Sk + Zk ×3 E

k −O
)]
,(11)

where τ̃ = τ
δ+αS

and α̃S = δ
δ+αS

. Since ∥ · ∥2,ψ is separable, the (i, j)-th mode-3

fiber of Sk+1 can be computed via

sk+1
ij: ∈ proxτ̃ψ◦∥·∥2

(ŝkij:),

where ŝkij: is the (i, j)-th mode-3 fiber of Ŝk = Sk − α̃S
(
Sk + Zk ×3 E

k −O
)
.

According to [19] and Theorem 4.1 in [32], we have

proxτ̃ψ◦∥·∥2
(s) =

{
proxτ̃ψ(∥s∥2) s

∥s∥2
, ∥s∥2 ̸= 0

0, ∥s∥2 = 0.

Depending on the choice of ψ, the proximal operator proxτ̃ψ◦∥·∥2
is computed dif-

ferently.

3.2. The update of E. Before we compute the update of E given in (9), we first
introduce a lemma for the optimization problems over a Stiefel manifold as follows.

Lemma 3.1. Let X ∈ Rn×r, A ∈ Rr×m and B ∈ Rn×m. Then the solutions of the
following problems are the same:

(12a) min
X∈Sn,r

1

2
∥XA−B∥2F ,

(12b) min
X∈Sn,r

−⟨X,BA⊤⟩,

and

(12c) min
X∈Sn,r

1

2
∥X −BA⊤∥2F .

Proof. If X ∈ Sn,r, i.e., X⊤X = Ir, we have

∥XA−B∥2F =∥A∥2F − 2⟨X,BA⊤⟩+ ∥B∥2F
=∥X −BA⊤∥2F − ∥BA⊤∥2F − r2 + ∥A∥2F + ∥B∥2F .(13)

Then the equivalence is immediately achieved. �

Recall that for unfolding of tensors

L = Z ×3 E if and only if L(3) = EZ(3).

Then the function H can be rewritten as H(Z, E,S) = δ
2∥EZ(3) + (S − O)(3)∥2F ,

which has the same form as (12a). It follows from Lemma 3.1 that minimizing (12a)
is equivalent to minimizing more simple forms as (12b) and (12c). In particular,

we consider H̃(Z, E,S) = −δ⟨E, (O−S)(3)(Z(3))
⊤⟩ of the form as (12b). Then the

update of E can be computed as follows

Ek+1 ∈ argmin
E∈Sn3,r

H̃(Zk, E,Sk+1) +
αE
2
∥E − Ek∥2F ,(14)

= ProjSn3,r

[
Ek + α̃E(Sk+1 −O)(3)(Zk(3))

⊤
]
,
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where α̃E = δ
αE

and ProjSn3,r
denotes the projection onto the Stiefel manifold Sn3,r.

It follows from Lemma 3.1 in [19] that the projection ProjSn3,r
has a closed form

and Ek+1 can be computed as follows

Ek+1 = Uk+1(V k+1)⊤, with Uk+1Σ̂k+1(V k+1)⊤ = Êk(15)

where Êk = Ek + α̃E(Sk+1 − O)(3)(Zk(3))
⊤, Uk+1Σ̂k+1(V k+1)⊤ is a reduced SVD

of Êk, Uk+1 ∈ Rn3×r, V k+1 ∈ Rr×r, and Σ̂k+1 ∈ Rr×r.

3.3. The update of Z. By applying E⊤E = Ir, we have

∥Z ×3 E − L∥2F = ∥Z − L ×3 E
⊤∥2F .

Then the subproblem for updating Z in (10) can be reformulated as

Zk+1 ∈ argmin
Z

ΦΣ(Z) +
δ

2
∥Z + (Sk+1 −O)×3 (E

k+1)⊤∥2F +
αZ

2
∥Z − Zk∥2F ,

= proxα̃ZΦΣ

[
Zk − α̃Z(Zk − (O − Sk+1)×3 (E

k+1)⊤)
]
,(16)

where α̃Z = δ
δ+αZ

. By choosing the parameter λ = 1
α̃Z

in ΦΣ defined in (6),

we have α̃ZΦΣ(Z) =
∑r
n=1 ϕ̃

γ
σn(Z::n). Then each eigenimage, i.e., Zk+1

::n can be
computed via the shifted and relaxed proximal denoiser as follows

Zk+1
::n = D̃γσn(Ẑ

k
::n),

where Ẑk = Zk − α̃Z(Zk − (O − Sk+1)×3 (E
k+1)⊤).

All in all, the proposed PnP-PBCD algorithm for model (1) is summarized in
Algorithm 1.

Algorithm 1 PnP-PBCD algorithm for model (1)

1: Initialize (Z0, E0,S0) with (E0)⊤E0 = Ir;
2: Set parameters αS , αZ ≥ 0 and αE > 0;
3: Set k = 0.
4: repeat
5: Compute Sk+1 by (11);
6: Compute Ek+1 by (15);
7: Compute Zk+1 by (16);
8: k ← k + 1.
9: until the stopping criterion is met.

Output: (Zk, Ek,Sk).

4. Convergence Analysis of the PnP-PBCD Method

In this section, we conduct a convergence analysis on the proposed PnP-PBCD
method. We first define the first-order optimality condition of problem (1) based
on the subdifferentials for nonconvex nonsmooth functions and the Riemannian
gradient of a smooth function on the Stiefel manifold. Then we prove that any
accumulation point of the sequence generated by the PnP-PBCD method given in
Algorithm 1 is a stationary point of problem (1).
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4.1. First-order optimality condition. First, we provide some preliminaries on
subdifferentials and Riemannian gradients.

Let f : Rd → (−∞,+∞] be a proper and lower semicontinuous function with a
finite lower bound. The (limiting) subdifferential of f at x ∈ dom f := {x ∈ Rd :
f(x) <∞}, denoted by ∂f(x), is defined as

∂f(x) := {u ∈ Rd :∃xk → x, f(xk)→ f(x) and uk → u with uk ∈ ∂̂f(xk) as k →∞},

where ∂̂f(x) denotes the Fréchet subdifferential of f at x ∈ dom f , which is the set
of all u ∈ Rd satisfying

lim inf
y ̸=x,y→x

f(y)− f(x)− ⟨u, y − x⟩
∥y − x∥

≥ 0.(17)

One can also observe that {u ∈ Rd : ∃xk → x, f(xk)→ f(x) and uk → u with uk ∈
∂f(xk) as k →∞} ⊆ ∂f(x).

Also, we set TXSm,n := {Y ∈ Rm×n : Y ⊤X +X⊤Y = 0} as the tangent space
of Stiefel manifold at X ∈ Rm×n. We also set the Riemannian metric on Stiefel
manifold as the metric induced from the Euclidean inner product. Then according
to [1], the Riemannian gradient of a smooth function f at X is given by

grad f(X) := ProjTXSm,n(∇f(X)),

where ProjTXSm,n(Y ) := Y − 1
2X(X⊤Y + Y ⊤X).

Second, we define the first-order optimality condition of the orthogonal con-
strained optimization problem as in (1). The point (Z̄, Ē, S̄) is a first-order sta-
tionary point of problem (1) if

0 ∈ ∇SH(Z̄, Ē, S̄) + τ∂∥ · ∥2,ψ(S̄),(18a)

0 = gradE H(Z̄, Ē, S̄), Ē⊤Ē = Ir,(18b)

0 ∈ ∇ZH(Z̄, Ē, S̄) + ∂ΦΣ(Z̄),(18c)

where gradE H(Z̄, Ē, S̄) denotes the Riemannian gradient of H with respect to E
evaluated at (Z̄, Ē, S̄), and ∂∥ · ∥2,ψ and ∂ΦΣ denote the subdifferentials of ∥ · ∥2,ψ
and ΦΣ, respectively.

4.2. Subsequence convergence. We present some assumptions for problem (1)
as follows:

(A1) τ∥ · ∥2,ψ is ρ1-weakly convex.
(A2) ΦΣ is coercive and ρ2-weakly convex.

Note that the coercivity on ΦΣ required in Assumption (A2) can be achieved by
the coercivity of gσ, according to [12].

We first show two lemmas that we will use in the convergence analysis. The
first lemma is for analyzing the updates of Z and S, and the second lemma is for
understanding the update of E.

Lemma 4.1. Let f : Rd → (−∞,+∞] be a proper, lower semicontinuous and
ρ-weakly convex function, and let h : Rd → R be a differentiable and µ-strongly
convex function. If there exists x̂ such that

(19) x̂∈ argmin
x

f(x) + h(x) +
α

2
∥x− x0∥2,

where α ≥ 0, then

(20) f(x0) + h(x0) ≥ f(x̂) + h(x̂) +
α+ (α+ µ− ρ)+

2
∥x0 − x̂∥2,
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with (α+ µ− ρ)+ = max{α+ µ− ρ, 0}.

Proof. For the ρ-weakly convex function f , it follows from Lemma 2.1 in [4] that

f(x0) ≥ f(x̂) + ⟨u, x0 − x̂⟩ −
ρ

2
∥x0 − x̂∥2,

for ∀u ∈ ∂f(x̂). Similarly, for the differentiable and µ-strongly convex function h,
it follows from [21] that

h(x0) ≥ h(x̂) + ⟨∇h(x̂), x0 − x̂⟩+
µ

2
∥x0 − x̂∥2.

Summing the inequalities above, we obtain

f(x0) + h(x0) ≥ f(x̂) + h(x̂) + ⟨u+∇h(x̂), x0 − x̂⟩+
µ− ρ
2
∥x0 − x̂∥2.

By the update of x̂ in (19), we have 0 ∈ ∂f(x̂) + ∇h(x̂) + α(x̂ − x0). That is,
−∇h(x̂)+α(x0− x̂) ∈ ∂f(x̂). Substituting u = −∇h(x̂)+α(x0− x̂) into the above
inequality, we obtain

f(x0) + h(x0) ≥ f(x̂) + h(x̂) +
2α+ µ− ρ

2
∥x0 − x̂∥2.

Note that by (19), we also have

f(x0) + h(x0) ≥ f(x̂) + h(x̂) +
α

2
∥x0 − x̂∥2.

Hence, taking the maximum of 2α+ µ− ρ and α, we obtain (20). �
Note that for α ≥ 0, it can be verified that α + (α + µ − ρ)+ > 0 if and only if

α > 0 or µ− ρ > 0.

Proposition 4.2. Let X ∈ Rn×r, A ∈ Rr×m and B ∈ Rn×m. Meanwhile, let
H1(X), H2(X), and H3(X) denote the objective functions of (12a), (12b), and
(12c), respectively. Then we have for any X ∈ Sn,r,
(21) gradH1(X) = gradH2(X) = gradH3(X).

Proof. We first compute the gradients of H1, H2, and H3 as follows

∇H1(X) = (XA−B)A⊤ = XAA⊤ +∇H2

∇H2(X) = −BA⊤

∇H3(X) = X −BA⊤ = X +∇H2.

Then by projecting the gradients above onto the tangent space of Stiefel manifold at
X, we can compute the Riemannian gradients of H1, H2, and H3. Since ProjTXSn,r
is linear, we have

gradH1(X) = ProjTXSn,r (XAA
⊤) + gradH2(X)

and

gradH3(X) = ProjTXSn,r (X) + gradH2(X).

It is easy to verify that for any X ∈ Sn,r,

ProjTXSn,r (XAA
⊤) = XAA⊤ − 1

2
X(X⊤XAA⊤ + (XAA⊤)⊤X) = 0

and ProjTXSn,r (X) = X − 1
2X(X⊤X +X⊤X) = 0. Therefore, we obtain (21). �

Next, we prove the non-increasing monotonicity of the objective sequence
{F (Zk, Ek,Sk)} and the boundedness of the sequence {(Zk, Ek,Sk)} generated by
Algorithm 1.
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Theorem 4.3. Assume that assumptions (A1) and (A2) are satisfied. Let F (Z, E,S)
be the objective function of model (1) defined in (7) and let {(Zk, Ek,Sk)} be the
sequence generated by Algorithm 1 with αS + (αS + δ − ρ1)+ > 0 and αZ + (αZ +
δ − ρ2)+ > 0. Then the following statements hold:

(i) The sequence {F (Zk, Ek,Sk)} of function values at the iteration points
decreases monotonically, and

F (Zk−1, Ek−1,Sk−1)− F (Zk, Ek,Sk)

≥c1
2

(
∥Sk − Sk−1∥2F + ∥Ek − Ek−1∥2F + ∥Zk −Zk−1∥2F

)
,

(22)

for some c1 > 0.
(ii) The sequence {(Zk, Ek,Sk)} is bounded.
(iii) lim

k→∞
∥Sk−Sk−1∥F = 0, lim

k→∞
∥Ek−Ek−1∥F = 0, and lim

k→∞
∥Zk−Zk−1∥F =

0, for any i = 1, 2, 3.

Proof. (i) The updates of S and Z have the form of (19). Then Lemma 4.1 implies
that

F (Zk−1, Ek−1,Sk−1)− F (Zk−1, Ek−1,Sk) ≥ αS + (αS + δ − ρ1)+
2

∥Sk − Sk−1∥2F
and

F (Zk−1, Ek,Sk)− F (Zk, Ek,Sk) ≥ αZ + (αZ + δ − ρ2)+
2

∥Zk −Zk−1∥2F .

Next, it follows from (13) and (14), we have

F (Zk−1, Ek−1,Sk)− F (Zk−1, Ek,Sk)

=H̃(Zk−1, Ek−1,Sk)− H̃(Zk−1, Ek,Sk)

≥αE
2
∥Ek − Ek−1∥2F .

Combining the inequalities above, we obtain (22) with c1 = min{αS + (αS + δ −
ρ1)+, αE , αZ + (αZ + δ − ρ2)+}.

(ii) Since (Ek)⊤Ek = Ir, we have that the sequence {Ek} is bounded. By (i),
we have F (Zk, Ek,Sk) ≤ F (Z0, E0,S0). Also, we observe that F (Zk, Ek,Sk) ≥
τ∥Sk∥2,ψ +ΦΣ(Zk) ≥ 0. Since both ∥ · ∥2,ψ and ΦΣ are coercive, that is,

lim
∥S∥F→∞

∥S∥2,ψ =∞ and lim
∥Z∥F→∞

ΦΣ(Z) =∞,

we have that the sequences {Sk} and {Zk} are bounded.
(iii) Let K be an arbitrary integer. Summing (22) from k = 1 to K, we have

K∑
k=1

(
∥Sk − Sk−1∥2F + ∥Ek − Ek−1∥2F + ∥Zk −Zk−1∥2F

)
≤ 2

c1

(
F (Z0, E0,S0)− F (ZK , EK ,SK)

)
≤ 2

c1
F (Z0, E0,S0).

Taking the limits of both sides of the inequality as K →∞, we have
∞∑
k=1

(
∥Sk − Sk−1∥2F + ∥Ek − Ek−1∥2F + ∥Zk −Zk−1∥2F

)
<∞.

Then assertion (iii) immediately holds. �
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Corollary 4.4. Assume that assumptions (A1) and (A2) are satisfied. Let {(Zk, Ek,
Sk)} be the sequence generated by Algorithm 1 with αS + (αS + δ − ρ1)+ > 0 and
αZ + (αZ + δ − ρ2)+ > 0. Then lim

k→∞
∥Zk ×3 E

k −Zk−1 ×3 E
k−1∥F = 0.

Proof. We have

∥Zk ×3 E
k −Zk−1 ×3 E

k−1∥F
≤∥(Zk −Zk−1)×3 E

k∥F + ∥Zk−1 ×3 (E
k − Ek−1)∥F

≤
√
r∥Zk −Zk−1∥F + c2∥Ek − Ek−1∥F ,(23)

where c2 = maxk ∥Zk∥F <∞ according to assertion (ii) in Theorem 4.3. Then by
assertion (iii) in Theorem 4.3, the result holds.

�

Lastly, we show that every convergent subsequence converges to the first-order
stationary point of problem (1).

Theorem 4.5. Assume that assumptions (A1) and (A2) are satisfied. Let {(Zk, Ek,
Sk)} be the sequence generated by Algorithm 1 with αS + (αS + δ − ρ1)+ > 0 and
αZ + (αZ + δ − ρ2)+ > 0. Then every accumulation point of {(Zk, Ek,Sk)} is a
first-order stationary point of problem (1).

Proof. By the updates of Sk, Ek and Zk given in (8), (9), and (10), respectively,
we have for any k = 1, 2, . . .

0 ∈ ∇SH(Zk−1, Ek−1,Sk) + τ∂∥ · ∥2,ψ(Sk) + αS(Sk − Sk−1),

0 = gradE H̃(Zk−1, Ek,Sk), (Ek)⊤Ek = Ir,

0 ∈ ∇ZH(Zk, Ek,Sk) + ∂ΦΣ(Zk) + αZ(Zk −Zk−1).

Then we have

AkS : = −αS(Sk − Sk−1) +∇SH(Zk, Ek,Sk)−∇SH(Zk−1, Ek−1,Sk)(24a)

∈ ∇SH(Zk, Ek,Sk) + τ∂∥ · ∥2,ψ(Sk)

AkE : = gradE H̃(Zk, Ek,Sk)− gradE H̃(Zk−1, Ek,Sk)(24b)

= gradE H(Zk, Ek,Sk),

and

AkZ : = −αZ(Zk −Zk−1)(24c)

∈ ∇ZH(Zk, Ek,Sk) + ∂ΦΣ(Zk).

Note that (24b) is obtained by Proposition 4.2. Furthermore, since∇SH(Z, E,S) =
δ(Z ×3 E + S −O), by (23) we have

∥AkS∥F ≤ αS∥Sk − Sk−1∥F + δ∥Zk ×3 E
k −Zk−1 ×3 E

k−1∥F
≤ αS∥Sk − Sk−1∥F + δ

√
r∥Zk −Zk−1∥F + c2δ∥Ek − Ek−1∥F .(25)

Since gradE H̃(Z, E,S) = ProjTESn3,r

(
−δ(O − S)(3)(Z(3))

⊤), we have

∥AkE∥F ≤
∥∥∥ProjT

Ek
Sn3,r

(
−δ(O − Sk)(3)(Zk(3) −Z

k−1
(3) )⊤

)∥∥∥
F

≤ (1 + r2)∥δ(O − Sk)(3)(Zk(3) −Z
k−1
(3) )⊤∥F

≤ (1 + r2)δc3∥Zk −Zk−1∥F ,
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where c3 = maxk ∥O − Sk∥F . Also, we have

∥AkZ∥F ≤ αZ∥Zk −Zk−1∥F .

Suppose that {(Zkl , Ekl ,Skl)} is a subsequence of {(Zk, Ek,Sk)} which con-
verges to (Z̄, Ē, S̄) as l → ∞. It immediately follows from Theorem 4.3 (iii) that

AklS → 0, AklE → 0, and AklZ → 0, as l → ∞. Also, due to the continuity of ∇SH,
gradE H and ∇ZH, we have

∇SH(Zkl , Ekl ,Skl)→ ∇SH(Z̄, Ē, S̄)

gradE H(Zkl , Ekl ,Skl)→ gradE H(Z̄, Ē, S̄)

∇ZH(Zkl , Ekl ,Skl)→ ∇ZH(Z̄, Ē, S̄),

as l→∞. Then (Z̄, Ē, S̄) satisfies (18b) for the first-order optimality condition of
problem (1).

Next, we show (Z̄, Ē, S̄) satisfies (18a) and (18c). Since ∥ · ∥2,ψ is lower semi-
continuous, we have

lim inf
l→∞

∥Skl∥2,ψ ≥ ∥S̄∥2,ψ.

Then according to (8), we have

H(Zkl−1, Ekl−1,Skl) + τ∥Skl∥2,ψ +
αS

2
∥Skl − Skl−1∥2F

≤H(Zkl−1, Ekl−1, S̄) + τ∥S̄∥2,ψ +
αS

2
∥S̄ − Skl−1∥2F .

The continuity ofH implies that liml→∞H(Zkl−1, Ekl−1, S̄)−H(Zkl−1, Ekl−1, S̄) =
0. By rewriting the above inequality and taking the limit superior of both sides as
l→∞, we have

lim sup
l→∞

∥Skl∥2,ψ ≤ ∥S̄∥2,ψ.

Recall the definition of (limiting) subdifferential. Since we have Skl → S̄, ∥Skl∥2,ψ →
∥S̄∥2,ψ, AklS −∇SH(Zkl , Ekl ,Skl) ∈ τ∂∥·∥2,ψ(Skl) and AklS −∇SH(Zkl , Ekl ,Skl)→
∇SH(Z̄, Ē, S̄), as l→∞, we have (18a) is satisfied.

Similarly, we can show (18c) is satisfied. �

Remark 4.6. The parameter αE can be chosen as 0, only if (O − S̄)(3)(Z̄(3))
⊤

is full-rank. In this case, we can achieve lim
k→∞

∥Ek − Ek−1∥F = 0 using (15),

lim
k→∞

∥Zk −Zk−1∥F = 0, and lim
k→∞

∥Sk − Sk−1∥F = 0, without using αE > 0.

5. Numerical Experiments

In this section, we conduct numerical experiments for anomaly detection in noisy
HSIs. We compare the proposed method with RX [23], LRASR [31], LSCTV [7],
TLRSR [26], Auto-AD [27] methods. All the numerical experiments are executed
on a personal desktop with an Intel Core i7 9750H at 2.60 GHz with 16 GB RAM.

We test the proposed anomaly detection method and the competing methods on
four HSIs from the “airport-beach-urban” dataset [14]. In this dataset, items such
as boats, cars, and airplanes are labeled as anomalous objects. The details of the
test HSIs are shown as follows:

• “Airport” was captured by the airborne visible/infrared imaging spectrom-
eter (AVIRIS) [9] sensor over Los Angeles, with a spatial resolution of 7.1 m.
The HSI size is 100× 100× 205.
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• “Beach” was captured by the ROSIS-03 sensor in Pavia, with a spatial
resolution of 1.3 m. The HSI size is 150× 150× 102.
• “Urban 1” and “Urban 2” were captured by the AVIRIS over Los Angeles,
with a spatial resolution of 7.1 m. The HSIs are of size 100× 100× 205.

We test all the methods for anomaly detection on the original HSIs and on simulated
noisy HSIs degraded by Gaussian noise with a noise level of 0.03.

5.1. Comparison of experimental results. To evaluate the accuracy of ob-
ject detection, we plot the receiver operating characteristic (ROC) curve [15] and
calculate the area under the ROC curve (AUC) [16]. The ROC curve plots the
probability of detection vs the false alarm rate for various possible thresholds. The
closer the ROC curve is to the upper-left corner and the larger AUC score, the
better the detection performance.

(a) Airport (b) Beach

(c) Urban 1 (d) Urban 2

Figure 2. Comparison of ROC curves obtained by different meth-
ods from HSIs with no noise.

The average AUC scores and average computational time in seconds are pre-
sented in Table 1. The ROC curves obtained from HSIs with no noise and with a
noise level of 0.03 are presented in Figure 2 and Figure 3, respectively. In terms of
computational time, as shown in Table 1, the proposed PnP-PBCD method com-
pletes detection in an average of less than 15 seconds, although the traditional RX
method remains the fastest overall. Regarding detection accuracy, as also shown
in Table 1, when no noise is presented, the proposed PnP-PBCD method achieves
the highest average AUC score. The other methods have lower average AUC scores
due to poor performance in one or more scenes, as shown in Figure 2. This issue
becomes more visible when the observed HSI is degraded by noise. For example, the
LRASR method performs competitively with our method in “Urban 1” and “Urban
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(a) Airport (b) Beach

(c) Urban 1 (d) Urban 2

Figure 3. Comparison of ROC curves obtained by different meth-
ods from HSIs with a noise level of 0.03.

2” as shown in Figure 3 (c) and (d). However, it performs poorly for “Airport”
and “Beach” as shown in Figure 3 (a) and (b). Hence, the proposed PnP-PBCD
method is more robust in anomaly detection across different test HSIs, even with
noise.

Table 1. Comparison of average AUC scores and average compu-
tational time obtained by different methods.

Noise
Index RX LRASR LSCTV Auto-AD TLRSR

PnP-PBCD
level (ours)

0
Ave AUC 0.9550 0.8702 0.9137 0.9437 0.9500 0.9663
Ave Time 0.21 4.06 364.13 3.75 4.79 14.86

0.03
Ave AUC 0.8948 0.8831 0.9089 0.9478 0.7939 0.9607
Ave Time 0.21 5.02 382.90 4.47 5.15 13.62

For visual quality comparison, the anomalous objects detected by different meth-
ods are presented in Figures 4 and 5 for observed HSIs with no noise. We observe
that the LRASR, LSCTV, TLRSR, and proposed PnP-PBCD methods can detect
rich patterns in complex scenes, as shown in Figure 4, while the Auto-AD and
proposed PnP-PBCD methods can ignore unnecessary objects in simpler scenes, as
shown in Figure 5. Next, we present the anomalous objects detected by different
methods in Figures 6 and 7 for observed HSIs with a noise level of 0.03. The noise
significantly reduces the detection quality of the RX and TLRSR methods, as these
methods also recognize noise as anomalies. Our proposed methods remain stable
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(a) Observed HSI (b) RX (c) LRASR (d) LSCTV

(e) Ground truth (f) Auto-AD (g) TLRSR (h) PnP-PBCD (ours)

Figure 4. Comparison of anomalous objects detected by different
methods from “Airport” with no noise.

(a) Observed HSI (b) RX (c) LRASR (d) LSCTV

(e) Ground truth (f) Auto-AD (g) TLRSR (h) PnP-PBCD (ours)

Figure 5. Comparison of anomalous objects detected by different
methods from “Urban 1” with no noise.

even with noise. Also, compared with the Auto-AD method, the proposed PnP-
PBCD method achieves more complete detection and stronger density in Figures 6
and 7, indicating greater confidence in detecting anomalous objects.

All in all, the proposed PnP-PBCD method is an efficient method for anomaly
detection, outperforming the competing methods in terms of detection accuracy
and visual quality, especially in noisy HSIs.
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(a) Observed HSI (b) RX (c) LRASR (d) LSCTV

(e) Ground truth (f) Auto-AD (g) TLRSR (h) PnP-PBCD (ours)

Figure 6. Comparison of anomalous objects detected by different
methods from “Beach” with a noise level of 0.03.

(a) Observed HSI (b) RX (c) LRASR (d) LSCTV

(e) Ground truth (f) Auto-AD (g) TLRSR (h) PnP-PBCD (ours)

Figure 7. Comparison of anomalous objects detected by different
methods from “Urban 2” with a noise level of 0.03.

5.2. Parameter settings and analysis. For the proposed PnP-PBCD method,
we set model parameters δ = 0.25, and τ = 1; and we select the relaxed ℓp norm
with p = 0.1 and ε = 10−5 as ψ for ∥ · ∥2,ψ given in (2). We also set the parameters

a = 0.2, b = 0.4, and γ = 0.99 for the shifted and relaxed denoiser D̃γσ given in (5);
and we set algorithm parameters αS = αE = αZ = 0.01. Algorithm 1 stops if
∥Sk+1 − Sk∥F /∥Sk∥F ≤ 10−3.
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Next, we conduct a parameter analysis on the model parameters δ and τ . We use
Urban 1 with a noise level of 0.03 for testing. The plot of AUC values vs parameters
δ and τ is presented in Figure 8. The AUC values are similar when the ratio of δ
to τ (i.e., δτ ) is fixed, and the AUC achieves the best performance when this ratio
is approximately 0.25.

Figure 8. Plot of the AUC values vs parameters δ and γ.

6. Conclusions

This paper presents a novel approach for hyperspectral anomaly detection by
integrating a low-rank representation model with a deep learning-based denoiser
within a PnP framework. Our method effectively addresses the challenges of noise
contamination in hyperspectral images by employing a subspace representation for
the background and utilizing a deep implicit prior to denoise the representation
coefficients. The introduction of a generalized group sparsity measure, ∥ · ∥2,ψ,
enhances the detection of sparse anomalous objects. We developed a PnP-PBCD
method to solve the resulting nonconvex nonsmooth optimization problem, ensur-
ing that any accumulation point is a stationary point. Our experimental results
demonstrate that the proposed PnP-PBCD method significantly outperforms ex-
isting state-of-the-art techniques, effectively detecting anomalous objects even in
noisy conditions.
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